Details

Title

Comparison of the models of the air gauge static characteristics

Journal title

Archive of Mechanical Engineering

Yearbook

2017

Volume

vol. 64

Issue

No 1

Affiliation

Jermak, Czeslaw Janusz : Institute of Mechanical Technology, Poznan University of Technology, Poland ; Piątkowski, Ryszard : Chair of Thermal Engineering, Poznan Univesity of Technology, Poland ; Dereżyński, Janusz : Institute of Mechanical Technology, Poznan University of Technology, Poland ; Rucki, Miroslaw : Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland

Authors

Keywords

air gauges ; dynamic measurement ; in-process control

Divisions of PAS

Nauki Techniczne

Coverage

93-110

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] M. Mennesson. High precision measurement method of lengths and thicknesses. Comptes Rendus des Seances de l’Academie des Sciences, 194(25.4.1932):1459–1461, 1932.
[2] W.J. Gluchow and A.A. Tupolew. Non-contact pneumatic measuring control devices for the production of workpieces with discontinuous surfaces. Feingeratetechnik, 23(2):69–73, 1974. (in German).
[3] E.I. Ped. Optimization of the constructional elements choice of the air gauges designed for the dynamic measurements. Measurement Techniques, 7:29–31, 1981. (in Russian).
[4] F.T. Farago and Curtis M.A. Handbook of Dimensional Measurement. Industrial Press Inc., New York, 1994.
[5] G. Schuetz. Pushing the limits of air gaging-and keeping them there. Quality, 54(7):22–26, 2015.
[6] G. Schuetz. Air gaging gets better with age. Quality, 3:28–32, 2008.
[7] L. Finkelstein. Reflections on a century of measurement science as an academic discipline. Metrology and Measurement Systems, 14(4):635–638, 2007.
[8] M. Rucki, B. Barisic, and G. Varga. Air gauges as a part of the dimensional inspection systems. Measurement, 43(1):83–91, 2010. doi: 10.1016/j.measurement.2009.07.001.
[9] T. Janiczek and J. Janiczek. Linear dynamic system identification in the frequency domain using fractional derivatives. Metrology and Measurement Systems, 17(2):279–288, 2010. doi: 10.2478/v10178-010-0024-6.
[10] V.B. Bokov. Pneumatic gauge steady-state modelling by theoretical and empirical methods. Measurement, 44(2):303–311, 2011. doi: 10.1016/j.measurement.2009.01.015.
[11] B. Dobrowolski, Z. Kabza, and A. Spyra. Digital simulation of air flow through a nozzle of pneumatic gauge. In Proc. 33rd Annual Conference JUREMA, pages 67–70, 1988.
[12] M.N. Abhari, M. Ghodsian, M. Vaghefi, and N. Panahpur. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3):292–298, 2010. doi: 10.1016/j.flowmeasinst.2010.03.002.
[13] J. Peng, X. Fu, and Y. Chen. Response of a swirlmeter to oscillatory flow. Flow Measurement and Instrumentation, 19(2):107–115, 2008. doi: 10.1016/j.flowmeasinst.2007.10.002.
[14] C. Crnojevic, G. Roy, A. Bettahar, and P. Florent. The influence of the regulator diameter and injection nozzle geometry on the flow structure in pneumatic dimensional control systems. Journal of Fluids Engineering, 119:609–615, 1997. doi: 10.1115/1.2819288.
[15] C. Jermak, editor. Theory and Practice of Air Gauging. Poznan University of Technology, 2011.
[16] T. Kiczkowiak and S. Grymek. Critical pressure ratio b as defined in iso 6358 and iso 6953 standards. Pomiary Automatyka Kontrola (Measurement, Automation, Monitoring), 57:559– 562, 2011. (in Polish).
[17] A Cellary and C.J. Jermak. Dynamics of a cascade pneumatic sensor for length measurements. In Proc. of Optoelectronic and Electronic Sensors II, pages 36–39. International Society for Optics and Photonics, 1997. doi: 10.1117/12.266719.
[18] A.V. Deych. Technical gasodynamics. Gosenergoizdat, Moscow, 1961. (in Russian).
[19] M. Kabacinski, C. T Lachowicz, and J. Pospolita. Numerical analysis of flow averaging tubes in the vortex-shedding regime. Archive of Mechanical Engineering, 60(2):283–297, 2013. doi: 10.2478/meceng-2013-0018.
[20] Koscielny W. and C. Wozniak. Models of the flow characteristics of the pneumatic restrictors. In Proc. PNEUMA’95, pages 73–82, 1995. (in Polish).
[21] Koscielny W. and C. Wozniak. Experimental evaluation of the models of the pneumatic restrictors flow characteristics. In Proc. PNEUMA’95, pages 83–92, 1995. (in Polish).
[22] Automation of the pneumatic dimensional measurement in mechanical engineering. Mashinostroyeniye, Moscow, 1964. (in Russian).
[23] C.J. Jermak. Methods of shaping the metrological characteristics of air gages. Strojniski Vestnik/Journal of Mechanical Engineering, 56(6):385–390, 2010.
[24] R.J. Soboczynski. Investigations on the metrological properties of high pressure air gauges. PhD thesis, Wrocław Technical University, 1977. (in Polish).
[25] Calculation of the high pressure air gauges characteristics. Journal Measuring Techniques, 6:107, 1971.
[26] Guide to the expression of uncertainty in measurement. Warszawa, Główny Urząd Miar, 1999. (in Polish).
[27] C.J. Jermak and M. Rucki. Air gauging: Static and dynamic characteristics. IFSA, Barcelona, Spain, 2012.
[28] C.J. Jermak and M. Rucki. Air gauging: Still some room for development. AASCIT Communication, 2(2):29–34, 2015.

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/meceng-2017-0006 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2017; vol. 64; No 1; 93-110

References

Mennesson (1932), High precision measurement method of lengths and thicknesses Comptes Rendus des Seances de l Academie des, Sciences, 25, 194.
×