Details
Title
Metamodel-based optimization of the labyrinth sealJournal title
Archive of Mechanical EngineeringYearbook
2017Volume
vol. 64Issue
No 1Affiliation
Rulik, Sebastian : Silesian University of Technology, Institute of Power Engineering and Technology, Gliwice, Poland ; Wróblewski, Włodzimierz : Silesian University of Technology, Institute of Power Engineering and Technology, Gliwice, Poland ; Frączek, Daniel : Silesian University of Technology, Institute of Power Engineering and Technology, Gliwice, PolandAuthors
Keywords
labyrinth seal ; metamodel optimization ; neural network ; genetic algorithms ; evolutionary algorithms ; CFD optimizationDivisions of PAS
Nauki TechniczneCoverage
75-91Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] G. Renner and A. Ekárt. Genetic algorithms in computer aided design. Computer-Aided Design, 35(8):709–726, 2003. doi: 10.1016/S0010-4485(03)00003-4.[2] V. Schramm. Labyrinth Seals of Maximum Sealing: A Approach to Computer-Based Form Optimization, volume 46. Logos Verlag Berlin GmbH, 2011. (in German).
[3] W. Wróblewski, S. Dykas, K. Bochon, and S. Rulik. Optimization of tip seal with honeycomb land in LP counter rotating gas turbine engine. Task Quarterly, 14(3):189–207, 2010.
[4] G. Nowak and W. Wróblewski. Cooling system optimisation of turbine guide vane. Applied Thermal Engineering, 29(2-2):567–572, 2009. doi: 10.1016/j.applthermaleng.2008.03.015.
[5] G. Nowak, W. Wróblewski, and I. Nowak. Convective cooling optimization of a blade for a supercritical steam turbine. International Journal of Heat and Mass Transfer, 55(17-18):4511– 4520, 2012. doi: 10.1016/j.ijheatmasstransfer.2012.03.072.
[6] G. Nowak and A. Rusin. Shape and operation optimisation of a supercritical steam turbine rotor. Energy Conversion and Management, 74:417–425, 2013. doi: 10.1016/j.enconman.2013.06.037.
[7] A. Jahangirian and A. Shahrokhi. Aerodynamic shape optimization using efficient evolutionary algorithms and unstructured CFD solver. Computers & Fluids, 46(1):270–276, 2011. doi: 10.1016/j.compfluid.2011.02.010.
[8] J. Antony. Design of experiments for engineers and scientists. Elsevier, 2nd edition, 2014.
[9] L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström, and S. Wold. Design of Experiments, Principles and Applications. Umetrics AB, Sweden, 2000.
[10] H.B. Demuth, M.H. Beale, O. De Jess, and M.T. Hagan. Neural Network Design. Martin Hagan, USA, 2nd edition, 2014.
[11] T. Back. Evolutionary algorithms in theory and practice. Oxford University Press, 1996.
[12] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996.
[13] V. Schramm, K. Willenborg, S. Kim, and S. Wittig. Influence of a honeycomb facing on the flow through a stepped labyrinth seal. In ASME Turbo Expo 2000: Power for Land, Sea, and Air, pages V003T01A092–V003T01A092. ASME, 2000. doi: 10.1115/2000-GT-0291.
[14] M.D. Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2):161–174, 1991.
[15] B. Iooss and P. Lemaître. A review on global sensitivity analysis methods. In Dellino G. and Meloni C., editors, Uncertainty Management in Simulation-Optimization of Complex Systems, chapter 5, pages 101–122. Springer, 2015.
[16] F. Campolongo and J. Cariboni. Sensitivity analysis: How to detect important factors in large models. Technical report, 2007. http://publications.jrc.ec.europa.eu/repository/ handle/ JRC37120.
[17] F. Pianosi, F. Sarrazin, and T. Wagener. A Matlab toolbox for global sensitivity analysis. Environmental Modelling & Software, 70:80–85, 2015. doi: 10.1016/j.envsoft.2015.04.009.