Details
Title
Growth stability analysis of embedded delaminations with the use of FE node relocation procedure and effective resistance curve conceptJournal title
Archive of Mechanical EngineeringYearbook
2020Volume
vol. 67Issue
No 4Affiliation
Czarnocki, Piotr : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Zagrajek, Tomasz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.Authors
Keywords
delamination growth stability ; growth modelling ; node relocation procedure ; effective resistance curveDivisions of PAS
Nauki TechniczneCoverage
415-433Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] C. Kassapoglou and J. Hammer. Design and analysis of composite structures with manufacturing flaws. Journal of American Helicopter Society, 35(4):46–52, 1990. doi: 10.4050/JAHS.35.46.
[2] R.C. Yu and A. Pandolfi. Modelling of delamination fracture in composites: a review. In: S. Sridharan (ed.), Delamination Behaviour of Composites, pages 429–451. Woodhead Publishing Ltd., Cambridge, 2008.
[3] H. Chai, C.D. Babcock, and W.G. Knausss. One dimensional modelling of failure in laminated plates by delamination buckling. International Journal of Solids and Structures, 17(11):1069–1083. 1981.
[4] J.D. Whitcomb. Finite element analysis of instability related delamination growth. Journal of Composite Materials, 15(5):403–426, 1981. doi: 10.1177/002199838101500502.
[5] V.V. Bolotin. Defects of the delamination type in composite structures. Mechanics of Composite Materials, 20(2):173–188, 1984. doi: 10.1007/BF00610358.
[6] L.M. Kachanov. Delamination Buckling of Composite Materials, pages 57–67, Kuwer Academic Press, 1988.
[7] G.R. Irwin. Fracture, Handbook der Physik (Fracture, Handbook of Physics), pages 551–590. Springer, Berlin, 1958. (in German).
[8] E.F. Rybicki and M.F. Kanninen. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4):931–938, 1977. doi: 10.1016/0013-7944(77)90013-3.
[9] C. Bisagni, R. Vesccovini, and C.G. Davila. Assessment of the damage tolerance of post-buckled hat-stiffened panels using single-stringer specimens. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, paper no. AIAA2010-2696, Orlando, USA, 12–15 April, 2010. doi: 10.2514/6.2010-2696.
[10] J.D. Whitcomb. Three-dimensional analysis of a postbuckled embedded delamination. Journal of Composite Materials, 23(9):862–889, 1989. doi: 10.1177/002199838902300901.
[11] J.D. Whitcomb. Analysis of a laminate with a postbuckled embedded delamination, including contact effect. Journal of Composite Materials, 26(10):1523–1535, 1992. doi: 10.1177/002199839202601008.
[12] H. Okada, M. Higashi, M. Kikuchi, Y. Fukui, and N. Kumazawa. Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front. Engineering Fracture Mechanics, 72(11):1717–1737, 2005. doi: 10.1016/j.engfracmech.2004.12.005.
[13] D. Xie and S.B. Biggers Jr. Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design, 42(11):977–984, 2006. doi: 10.1016/j.finel.2006.03.007.
[14] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Finite Elements in Analysis and Design, 73(6):771–785, 2006. doi: 10.1016/j.engfracmech.2005.07.013.
[15] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details. Finite Elements in Analysis and Design, 73(6):786–801, 2006. doi: 10.1016/j.engfracmech.2005.07.014.
[16] A.C. Orifici, R.S. Thomson, R. Egenhardt, C. Bisagni, and J. Bayandor. Development of a finite element analysis methodology for the propagation of delaminations in composite structures. Mechanics of Composite Materials, 43(1):9–28, 2007. doi: 10.1007/s11029-007-0002-6.
[17] A. Riccio, A. Raimondo, and F. Scaramuzzino. A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression. Composites Part B: Engineering, 71:131–142, 2015. doi: 10.1016/j.compositesb.2014.11.007.
[18] D. Zou and C. Bisagni. Study of skin-stiffer separation in T-stiffened composite specimens in post-buckling condition. Journal of Aerospace Engineering, 31(4), 2018. doi: 10.1061/(ASCE)AS.1943-5525.0000849.
[19] A.C. Orifici, R.S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor. A finite element methodology for analysing degradation and collapse in postbuckling composite aerospace structures. Journal of Composite Materials, 43(26):3239–3263, 2009. doi: 10.1177/0021998309345294.
[20] C.G. Dávila and C. Bisagni. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination. Composite Structures, 161:73–84, 2017. doi: 10.1016/j.compstruct.2016.11.033.
[21] E. Pietropaoli and A. Riccio. On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Composites Science and Technology, 70(8):1288–1300, 2010. doi: 10.1016/j.compscitech.2010.04.006.
[22] E. Pietropaoli and A. Riccio. Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Composites Science and Technology, 71(6):836–846, 2011. doi: 10.1016/j.compscitech.2011.01.026.
[23] Y.P. Liu, G.Q. Li, and C.Y. Chen. Crack growth simulation for arbitrarily shaped cracks based on the virtual crack closure technique. International Journal of Fracture, 185:1–15, 2014. doi: 10.1007/s10704-012-9790-3.
[24] Y.P. Liu, C.Y. Chen, and G.Q. Li. A modified zigzag approach to approximate moving crack front with arbitrary shape. Engineering Fracture Mechanics, 78(2):234–251, 2011. doi: 10.1016/j.engfracmech.2010.08.007.
[25] A. Riccio, M. Damiano, A. Raimondo, G. di Felice, and A. Sellitto. A~fast numerical procedure for the simulation of inter-laminar damage growth in stiffened composite panels. Composite Structures, 145:203–216, 2016. doi: 10.1016/j.compstruct.2016.02.081.
[26] K.F. Nilsson, L.E. Asp, J.E. Alpman, and L. Nysttedt. Delamination buckling and growth for delaminations at different depths in a slender composite panel. International Journal of Solids and Structures, 38(17):3039–3071, 2001. doi: 10.1016/S0020-7683(00)00189-X.
[27] R.A. Jurf and R.B. Pipes. Interlaminar fracture of composite materials. Journal of Composite Materials, 16(5):386–394, 1982. doi: 10.1177/002199838201600503.
[28] R.L. Ramkumar and J.D. Whitcomb. Characterisation of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy. In: W. Johnson (ed.), Delamination and Debonding of Materials, pages 315–335, ASTM, Philadelphia, 1985. doi: 10.1520/STP36312S.
[29] S. Hashemi, A.J. Kinloch, and J.G. Williams. The effects of geometry, rate and temperature on mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly(ether-ether-ketone) composites. Journal of Composite Materials, 24(9):918–956, 1990. doi: 10.1177/002199839002400902.
[30] S. Hashemi, A.J. Kinloch, and J.G. Williams. Mixed-mode fracture in fiber-polymer composite laminates. In: T. O'Brien (ed.) Composite Materials: Fatigue and Fracture, vol. 3, pages 143–168, ASTM ASTM, Philadelphia, 1991. doi: 10.1520/STP17717S.
[31] C. Hwu, C.J. Kao, and L.E. Chang. Delamination fracture criteria for composite laminates. Journal of Composite Materials, 29(15):1962–1987, 1995. doi: 10.1177/002199839502901502.
[32] M.L. Benzeggagh and M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56:439–449, 1996.
[33] N.B. Adeyemi, K.N. Shivakumar, and V.S. Avva. Delamination fracture toughness of woven-fabric composites under mixed-mode loading. AIAA Journal, 37(4):517–520, 1999. doi: 10.2514/2.747.
[34] J.R. Reeder. 3D mixed-mode delamination fracture criteria – an experimentalist's perspective. In: American Society for Composites 21st Annual Technical Conference, document ID: 20060048260, Dearborn, USA, 2006.
[35] R. Kruger. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 57(2):109–143, 2004. doi: 10.1115/1.1595677.
[36] E.J. Barbero. Finite Element Analysis of Composite Materials, CRC Press, Boca Raton, 2014.
[37] J.W. Hutchinson, M.E. Mear, and J.R. Rice. Crack paralleling an interface between dissimilar materials. Journal of Applied Mechanics, 54(4):828–832, 1987. doi: 10.1115/1.3173124.
[38] M.A. Tashkinov. Modelling of fracture processes in laminate composite plates with embedded delamination. Frattura ed Integrita Strutturale, 11(39):248–262, 2017.
[39] A.B. Pereira and A.B. de Morais. Mode II interlaminar fracture of glass/epoxy multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 35(2):265–272, 2004. doi: 10.1016/j.compositesa.2003.09.028.
[40] A.B. Pereira and A.B. de Morais. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates. Composites Science and Technology, 64(13-14):2261–2270, 2004. doi: 10.1016/j.compscitech.2004.03.001.