Details

Title

Characteristics of fulvic acids generated in communes waste landfills

Journal title

Archives of Environmental Protection

Yearbook

2021

Volume

vol. 47

Issue

No 1

Authors

Affiliation

Orliński, Tomasz : Department of Environmental Engineering, Institute of Water Supply and Environmental Protection, Cracow University of Technology, Poland ; Anielak, Anna M. : Department of Environmental Engineering, Institute of Water Supply and Environmental Protection, Cracow University of Technology, Poland

Keywords

humic acids ; fulvic acids ; landfill ; leachate ; humic substances

Divisions of PAS

Nauki Techniczne

Coverage

41-52

Publisher

Polish Academy of Sciences

Bibliography

Anielak, A. (2019). Humic acids: extraction, analysis and importance in the environment as well as methods for their removal. Przemysł Chemiczny, 98 (10), pp. 1580-1586.
Anielak, A., Grzegorczuk, M. & Schmidt, R. (2008). The products of oxidation of fulvic acids with sodium chlorate(I) and dioxidane. Przemysł Chemiczny, 87 (4), pp. 702-706.
Anielak, A.M., Kryłów, M. & Łomińska-Płatek, D. (2018). Characterization of fulvic acids contained in municipal sewage purifi ed with activated sludge. Archives of Environmental Protection 44 (1), pp. 70-76. DOI 10.24425/118183
Araujo, B., Doumer, M. & Mangrich, A. (2017). Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer. Journal of Environmental Management, 190, pp. 122-131.
Baettker, E., Kozak, C., Knapik, H. & Aisse, M. (2020). Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere, 251, 126414
Bai, H., Chang, Q., Shi, B. & Sham, A. (2013). Effects of fulvic acid on growth performance and meat quality in growing-finishing pigs. Livestock Science, 158 (1-3), pp. 118-123.
Biedugnis, S., Podwójci, P. & Smolarkiewicz, M. (2003). Optimization of municipal waste management on a micro and macro-regional scale. Warsaw: Polish Academy of Sciences.
Claret, F., Tournassat, C., Crouzet, C., Gaucher, E., Schäfer, T., Braibant, G. & Guyonnet, D. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 31, pp. 2036-2045.
Collado, S., Nunez, D., Oulego, P., Riera, F. & Diaz, M. (2020). Effect of landfill leachate ageing on ultrafiltration performance and membrane fouling behaviour. Journal of Water Process Engineering, 36, 101291.
Dong-June, S., Yoon-Jim, K., Sang-Yee, H. & Dong-Hoon, L. (2007). Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues. Journal of Hazardous Materials, 148, pp. 679 - 692.
Elahi, A., Arooj, I., Bukharo, D. & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, pp. 3729-3743.
Esparza-Soto, M. & Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37, pp. 2301-2310.
Frączek, K. & Grzyb, J. (2009). Sanitary analyses of surface water in the influence area of municipal waste dump Barycz in Krakow. Ecological Chemistry and engineering A. , 16 (9), pp. 1107-1116.
Gautam, P., Kumar, S. & Lokhandwala, S. (2019). Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. Journal of Cleaner Production, 237 (10), 117639.
Ghosh, P., Thakur, I. & Kaushik, A. (2017). Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, pp. 259-270.
Gong, G., Yuan, X., Zhang, Y., Li, Y., Liu, W., Wang, M., Zhao, Y. & Xu, L. (2020). Characterization of coal-based fulvic acid and the. RSC Advances, 10, pp. 5468-5477.
Gong, G., Zhao, Y., Zhang, Y., Deng, B., Liu, W., Wang, M., Yuan, X. & Xu, L. (2020). Establishment of a molecular structure model for classified products of coal-based fulvic acid. Fuel, 267, 117210.
GUS. (2020). Central Statistical Office. Waste management in the urban and rural commune of Włoszczowa. Retrieved from: https://bdl.stat.gov.pl/BDL/dane/teryt/tablica#
GUS. (2020). Central Statistical Office. Wild dumps. Warszawa. Retrieved from: https://bdl.stat.gov.pl/BDL/metadane/cechy/3196#
Han Y.S., Lee, J.Y., Miller, C.J. & Franklin, L. (2009). Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners. Waste Manag. Res. , 27 (3), pp. 233-241.
He, M., Shi, Y. & Lin, C. (2008). Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. Journal of Environmental Sciences, 20 (11), pp. 1294-1299.
Huo, S., Xi, B., Yu, H., He, L., Fan, S. & Liu, H. (2008). Characteristics of dissolved organic matter (DOM) in leachate with. Journal of Environmental Science, 20 (4), pp. 492-498.
Islam, M., Xu, Q. & Yuan, Q. (2020). Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. Journal of Environmental Health Science and Engineering, 18, pp. 285-295.
Jayasooriya, R., Dilshara, M., Kang, C.-H., Lee, S., Choi, Y., Jeong, Y. & Kim, G.-Y. (2016). Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. International Immunopharmacology, 36, pp. 241-248.
Jin, J., Sun, K., Yang, Y., Wang, Z., Han, L., Wang, X., Wu, F. & Xing, B. (2018). Comparison between Soil- and Biochar-Derived Humic Acids: Composition, Conformation, and Phenanthrene Sorption. Environmental Science and Technology, 52 (4), pp. 1880-1888.
Kalousek, P., Schreiber, P., Vyhnanek, T., Trojan, V., Adamcova, D. & Veverkova, M. (2020). Effect of Landfill Leachate on the Growth Parameters in Two Selected Varieties of Fiber Hemp. International Journal of Environmental Research, 14, pp. 155-163.
Kapelewska, J. (2018). The landfill leachate as a potential source of pollution of the aquatic environment. Białystok: PhD dissertation. University of Bialystok. Faculty of Biology and Chemistry.
Khalil, C., Al Hageh, C., Korfali, S. & Khnayzer, R. (2020). Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere, 208, pp. 1-13.
Kjeldsen, P., Barlaz, M., Rooker, A. B., Ledin, A. & Christensen, T. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32 (4), pp. 297-336.
Klöcking, R. & Helbig, B. (2005). Medical aspect and applications of humic substances. [In:] A. Steinbüchel, & R. Marchessauldt. (Eds) Biopolymers for Medical and Pharmaceutical Applications, pp. 3-16. Weinheim, Germany: Wiley-VCH.
Klojzy – Kaczmarczyk, B., Makoudi, S., Mazurek, J. & Staszczak, J. (2016). The storage and the impact for environment of Barycz municipal landfill. Scientific Journals of the Institute of Mineral and Energy Economy of the Polish Academy of Sciences, 92, pp. 195-210.
Klojzy-Karczmarczyk, B. (2018). Report on the implementation of the Environmental Protection Program of the Włoszczowa Poviat for the years 2016-2019 with the perspective until 2023 for the years 2016-2017. Kraków - Włoszczowa.
Kurtyka, M. (2020). Regulation of the Minister of Climate of 2 January 2020 on the waste catalog (Journal of Laws of 2020, item 10). Warszawa: Journal of Laws of the Republic of Poland.
Leboda, R. & Oleszczuk, P. (2002). Municipal waste and its management. Selected issues. Lublin: UMCS.
Li, J., Ding, Y., Wang, K., Ku, N., Qian, G., Xu, Y. & Zhang, J. (2020). Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere, 241, 125038.
Li, X., Li, X., Han, B., Zhao, Y., Li, T., Zhao, P. & Yu, X. (2019). Improvement in lipid production in Monoraphidium sp. QLY-1 by combining fulvic acid treatment and salinity stress. Bioresource Technology, 294, 122179.
Linczar, M. (1985). Properties of soils and directions of their evolution on eroded terrains of the Głubczyce Plateau. Roczniki AR, 27 (4), pp. 107-148.
Liu, L., Ji, M., Wang, F., Tian, Z., Wang, T., Wang, S., Wang, S. & Yan, Z. (2020). Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Science of The Total Environment, 704, 135285.
Luo, H., Zeng, Y., Cheng, Y., He, D. & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of The Total Environment, 703, 135468.
Łabaz, B. (2010). Properties of humic acids in phaeozems of the Kłodzko district. Water - Environment - Rural Area, 10 (31), pp. 153-164.
MacCarthy, P. & Rice, J. (1994). Industrial applications of humus. [In] N. Sensei, & T. Miano (Eds) Substances in the Global Environment and Implications on Human Health (pp. 1209-1223). Bari, Italy: Proc. 6th Intern. Meetings of the Intern. Humic Substances Soc., Monopoly.
Mao, Y. (2019). Modulation of the growth performance, meat composition, oxidative status, and immunity of broilers by dietary fulvic acids. Poultry Science, 98 (10), pp. 4509-4513.
Mark, A.N. & Nopawan, R. (2002). Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Research, 36 (6), pp. 1572 - 1584.
MPO. (2010). Operating instructions for the Barycz municipal waste landfill in Krakow. Actualization. Kraków: MPO Kraków.
Negi, P., Mor, S. & Ravindra, K. (2020). Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environment, Development and Sustainability, 22 (1), pp. 1455-1474.
PGKiM. (2019). Data received from the administrator. Włoszczowa.
Qi, G., Yue, D. & Nie, Y. (2012). Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Frontiers of Environmental Science & Engineering, 6 (5), pp. 711–716.
Rani, A., Negi, S., Hussain, A. & Kumar, S. (2020). Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresource Technology, 297, 122437.
Rosik-Dulewska, C. (2010). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Rosik-Dulewska, C. (2020). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Shuiqin, Z., Liang, Y., Wei, L., Zhian, L. Y., Shuwen, H. & Bingqiang, Z. (2017). Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere, 166, pp. 334-342.
Siemieniec, A. & Siemieniec, M. (2015). Instructions for managing a municipal waste landfill in Promnik. Kielce: PGO Kielce.
Soujanya Kamble, B., Saxena, P., Kurakalva, R. & Shankar, K. (2020). Evaluation of seasonal and temporal variations of groundwater quality around Jawaharnagar municipal solid waste dumpsite of Hyderabad city, India, 2 (3), pp. 1-22.
Tahiri, A., Richel, A., Destain, J., Druart, P., Thonart, P. & Ongena, M. (2016). Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Analytical and Bioanalytical Chemistry, 408 (7), pp. 1917-1928.
Uyguner, C., Hellriegel, C., Otto, W. & Larive, C. (2004). Characterization of humic substances: Implications for trihalomethane formation. Analytical and Bioanalytical Chemistry, 378, pp. 1579-1586.
Vithanage, M., Wijesekara, H. & Mayakaduwa, S. (2014). Management of Municipal Solid Waste Landfill Leachate: A Global Environmental Issue. In: M. Vithanage, H. Wijesekara, A. Siriwardana, S. Mayakaduwa, & Y. OK, Environmental deterioration and human health: Natural and anthropogenic determinants (pp. 236-287).
Walenczak, K. (2011). Characterization of soils of central and eastern part of Wroclaw. Wrocław: PhD dissertation. University of Life Sciences in Wroclaw.
Wang, H., Wang, Y., Li, X., Sun, Y., Wu, H. & Chen, D. (2016). Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Management, 56, pp. 271 - 279.
Wang, Y., Yang, R., Zheng, J., Shen, Z. & Xu, X. (2019). Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 167, pp. 10-19.
Welter, J., Soares, E., Rotta, E. & Seibert, D. (2018). Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. Journal of Environmental Chemical Engineering, 6 (1), pp. 1390-1395.
Weng, L., Van Riemsdijk, W., Koopal, L. & Hiemstra, T. (2006). Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. Journal of Colloid and Interface Science, 302 (2), pp. 442-457.
Xiaol, C., Guixiang, L., Xin, Z., Yongxia, H. & Youcai, Z. (2012). Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Management, 32 (3), pp. 438-447.
Xu, D., Deng, Y., Xi, P., Yu, G., Wang, Q., Zeng, Q., Jiang, Z. & Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 286, pp. 226-233.
Yang, S., Zhuo, K., Sun, D., Wang, X. & Wang, J. (2019). Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. Journal of Colloid and Interface Science, 543, pp. 263-272.
Yi, Q., Mi, Z., Weifeng, D., Cheng, X., Baocai, L. & Qingming, J. (2019). Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia, 137, 104270.
Zhang, J., Gong, J., Zenga, G., Ou, X., Jiang, Y., Chang, Y., Guo, M., Zhang, G. & Liu, H. (2016). Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Applied Surface Science, 370, pp. 335-350.
Zhang, S. W. (2014). Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy. Journal of Applied Spectroscopy, 81 (5), pp. 843-849.

Date

2021.03.08

Type

Article

Identifier

DOI: 10.24425/aep.2021.136447

Source

Archives of Environmental Protection; 2021; vol. 47; No 1; 41-52

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×