Details

Title

Comprehensive analysis of tribological factor influence on stress-strain and thermal state of workpiece during titanium alloys machining

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 2

Affiliation

Stupnytskyy, Vadym : Lviv Polytechnic National University, Lviv, Ukraine ; She, Xianning : Lviv Polytechnic National University, Lviv, Ukraine

Authors

Keywords

titanium alloy ; cutting ; coefficient of friction ; stress-strain state ; thermal state ; simulation of cutting ; tool wear

Divisions of PAS

Nauki Techniczne

Coverage

227-248

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] M. Motyka, W. Ziaja, and J. Sieniawski. Titanium Alloys – Novel Aspects of Their Manufacturing and Processing. IntechOpen, London, 2019.
[2] A.Í.S. Antonialli, A.E. Diniz, and R. Pederiva. Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture, 50(1):65–74, 2010. doi: 10.1016/j.ijmachtools.2009.09.006.
[3] Q. Yang, Z. Liu, Z. Shi, and B. Wang. Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. The International Journal of Advanced Manufacturing Technology, 71:1901–1908, 2014. doi: 10.1007/s00170-014-5633-x.
[4] V.P. Astakhov. Metal Cutting Mechanics. CRC Press, Boca Raton, 1998.
[5] V.P. Astakhov and J.C. Outeiro. Metal cutting mechanics, finite element modelling. In J.P. Davim (ed), Machining. Fundamentals and Recent Advances, chapter 1, pages 1–27. Springer-Verlag London, 2008. doi: 10.1007/978-1-84800-213-5_1.
[6] F. Novikov and E. Benin. Determination of conditions ensuring cost price reduction of machinery. Economics of Development, 3(63):69–74, 2012.
[7] J.P. Davim (ed.). Machining of Titanium Alloys. Springer-Verlag Berlin, Heidelberg, 2014.
[8] F. Klocke, W. König, and K. Gerschwiler. Advanced machining of titanium- and nickel-based alloys. In: E. Kuljanic (ed.) Advanced Manufacturing Systems and Technology. CISM Courses and Lectures, vol. 372, chapter 1, pages 7–42. Springer, Vienna, 1996. doi: 10.1007/978-3-7091-2678-3_2.
[9] V.P. Astakhov. Tribology of Metal Cutting. Elsevier, London, 2006.
[10] J.P. Davim (ed.). Tribology in Manufacturing Technology. Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-31683-8.
[11] S.G. Larsson. The cutting process – A tribological nightmare. Technical Report, Seco Corp., Bern, Switzerland, December 2014. http://cbnexpert.blogspot.com/2014).
[12] P.L.B. Oxley. Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley & Sons, New York, 1989.
[13] A. Moufki, D. Dudzinski, and G. Le Coz. Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 81:615–626, 2015. doi: 10.1007/s00170-015-7018-1.
[14] M.J. Bermingham, S. Palanisamy, and M.S. Dargusch. Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 62:76–87, 2012, doi: 10.1016/j.ijmachtools.2012.07.001.
[15] O.C. Zienkiewicz, R.L. Taylor, and D.D. Fox. The Finite Element Method for Solid and Structural Mechanics. 7th edition. Butterworth-Heinemann, Oxford, 2014.
[16] F. Klocke. Manufacturing Processes 1. Cutting. Springer-Verlag, Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-11979-8.
[17] D.A. Stephenson and J.S. Agapiou. Metal Cutting Theory and Practice. 3rd edition. CRC Press, Boca Raton, 2016.
[18] H. Shi. Metal Cutting Theory. New Perspectives and New Approaches. Springer, 2018.
[19] V. Stupnytskyy and I. Hrytsay. Simulation study of cutting-induced residual stress. In: Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering: 341-350, 2020. doi: 10.1007/978-3-030-22365-6_34.
[20] N.G. Burago and V.N. Kukudzhanov. About damage and localization of strains. Problems of Strength and Plasticity, 63:40–48, 2001. doi: 10.13140/RG.2.1.4749.9923.
[21] P.Ståhle, A. Spagnoli, and M. Terzano. On the fracture processes of cutting. Procedia Structural Integrity, 3:468–476, 2017. doi: 10.1016/j.prostr.2017.04.063.
[22] E. Gdoutos. Fracture Mechanics Criteria and Applications. Springer Netherlands, 1990.
[23] S.L.M.R. Filho, R.B.D. Pereira, C.H. Lauro, and L.C. Brandao. Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The International Journal of Advanced Manufacturing Technology, 101:2191–2203, 2019. doi: 10.1007/s00170-018-3110-7.
[24] A. Pramanik and G. Littlefair. Wire EDM mechanism of MMCs with the variation of reinforced particle size. Materials and Manufacturing Processes, 31(13):1700–1708, 2016. doi: 10.1080/10426914.2015.1117621.
[25] V. Stupnytskyy and I. Hrytsay. Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of Mechanical Engineering, 67(2):149–167, 2020. doi: 10.24425/ame.2020.131688.
[26] T. Obikawa and E. Usui. Computational Mmachining of titanium alloy—finite element modeling and a few results. Journal of Manufacturing Science and Engineering, 118(2):208–215, 1996. doi: 10.1115/1.2831013.
[27} M. Rahman, Z.-G. Wang, and Y.-S. Wong. A review on high-speed machining of titanium alloys. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 49(1):11-20, 2006. doi: 10.1299/jsmec.49.11.
[28] G. Chen, C. Ren, X. Yang, X. Jin, and T. Guo. Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56:1027–1038, 2011. doi: 10.1007/s00170-011-3233-6.
[29] T. Tamizharasan and N. Senthilkumar. Optimization of cutting insert geometry using DEFORM-3D: numerical simulation and experimental validation. International Journal of Simulation Modelling, 11(2):65–76, 2012. doi: 10.2507/IJSIMM11(2)1.200.
[30] E. Usui, T. Shirakashi, and T.Kitagawa. Analytical prediction of cutting tool wear. Wear, 100 (1-3):129–151, 1984. doi: 10.1016/0043-1648(84)90010-3.
[31] J.F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24:981–988, 1953. doi: 10.1063/1.1721448.
[32] A.G. Suslov. To the problem of friction and wear of machinery. Journal of Friction and Wear, 5:801-807, 1990.
[33] P.J. Blau. Amontons’ laws of friction. In: Q.J. Wang, Y.W. Chung. (eds) Encyclopedia of Tribology. Springer, Boston, 2013. doi: 10.1007/978-0-387-92897-5_166.
[34] P.D. Hartung, B.M. Kramer, and B.F. von Turkovich. Tool wear in titanium machining. CIRP Annals, 31(1):75–80, 1982. doi: 10.1016/S0007-8506(07)63272-7.
[35] A.G. Kisel’, D.S. Makashin, K.V. Averkov, and A.A. Razhkovskii. Effectiveness and physical characteristics of machining fluid. Russian Engineering Research, 38:508–512, 2018. doi: 10.3103/S1068798X18070092.
[36] D.V. Evdokimov and M.A. Oleynik. Research of the friction coefficient of titanium and instrumental alloys. Dry and boundary friction. News of Samara Scientific Center of the Russian Academy of Sciences, 22(1):43-46, 2020. doi: 10.37313/1990-5378-2020-22-1-43-46 (in Russian).
[37] Y. Su, L. Li, G. Wang, and X. Zhong. Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool. Journal of Manufacturing Processes, 34(A):706-712, 2018. 10.1016/j.jmapro.2018.07.004.
[38] R.B. Da Silva, J.M. Vieira, R.N. Cardoso, H.C. Carvalho, E.S. Costa, A.R. Machado and R.F. De Ávila. Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, 271(9-10):2459–2465, 2011. 10.1016/j.wear.2010.12.046.
[39] S.Y. Hong, I. Markus, and W.-C. Jeong. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 41(15):2245–2260, 2001. doi: 10.1016/S0890-6955(01)00041-4.
[40] V. Stupnytskyy and I. Hrytsay. Computer-aided conception for planning and researching of the functional-oriented manufacturing process. In: Tonkonogyi V. et al. (eds): Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering, pages 309–320. Springer, Cham, 2020. doi: 10.1007/978-3-030-40724-7_32.

Date

15.07.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.137049 ; ISSN 0004-0738, e-ISSN 2300-1895
×