Details

Title

Three-dimensional simulations of the airborne COVID-19 pathogens using the advection-diffusion model and alternating-directions implicit solver

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

4

Affiliation

Łoś, Marcin : AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland ; Woźniak, Maciej : AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland ; Muga, Ignacio : Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile ; Paszynski, Maciej : AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland

Authors

Keywords

COVID-19 ; pathogen spread ; isogeometric analysis ; implicit dynamics ; advection-diffusion ; parallel alternating directions solver

Divisions of PAS

Nauki Techniczne

Coverage

e137125

Bibliography

  1.  “Coronavirus disease (COVID-19): How is it transmitted?”. [Online] Available: https://www.who.int/emergencies/diseases/novel- coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-how-is-covid-19-transmitted.
  2.  D.W. Peaceman and H.H. Rachford Jr., “The numerical solution of parabolic and elliptic differential equations’’, J. Soc. Ind. Appl. Math., vol. 3, no. 1, pp. 28‒41, 1955.
  3.  J. Douglasand and H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables’’, Trans. Am. Math. Soc., vol. 82, no. 2, pp. 421‒439, 1956.
  4.  E.L. Wachspress and G. Habetler, “An alternating-direction-implicit iteration technique’’, J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 403‒423, 1960.
  5.  G. Birkhoff, R.S. Varga, and D. Young, “Alternating direction implicit methods’’, Adv. Comput., vol. 3, pp. 189‒273, 1962.
  6.  J.L. Guermond and P. Minev, “A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting’’, C.R. Math., vol. 348, pp. 581‒585, 2010.
  7.  J.L. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 195, pp. 6011‒6054, 2006.
  8.  J.A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Unification of CAD and FEA, John Wiley and Sons, 2009.
  9.  M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis’’, Comput. Fluids, vol. 49, pp. 93‒100, 2011.
  10.  K. Chang, T.J.R. Hughes, and V.M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall’’, Comput. Fluids, vol. 68, pp. 94‒104, 2012.
  11.  L. Dedè, T.J.R. Hughes, S. Lipton, and V.M. Calo, “Structural topology optimization with isogeometric analysis in a phase field approach’’, USNCTAM2010, 16th US National Congree of Theoretical and Applied Mechanics, 2010.
  12.  L. Dedè, M.J. Borden, and T.J.R. Hughes, “Isogeometric analysis for topology optimization with a phase field model’’, Arch. Comput. Methods Eng., vol. 19, pp. 427‒465, 2012.
  13.  H. Gómez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes, “Isogeometric analysis of the {Cahn-Hilliard} phase-field model’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 4333‒4352, 2008.
  14.  H. Gómez, T.J.R. Hughes, X. Nogueira, and V.M. Calo, “Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations’’, Comput. Methods Appl. Mech. Eng., vol. 199, pp. 1828‒1840, 2010.
  15.  R. Duddu, L. Lavier, T.J.R. Hughes, and V.M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements’’, Int. J. Numer. Methods Eng., vol. 89, pp. 762‒785, 2012.
  16.  S. Hossain, S.F.A. Hossainy, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls’’, Comput. Mech., vol. 49, pp. 213‒242, 2012.
  17.  Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid-structure interaction analysis with applications to arterial blood flow’’, Comput. Mech., vol. 38, pp. 310‒322, 2006.
  18.  Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 173‒201, 2007.
  19.  V.M. Calo, N. Brasher, Y. Bazilevs, and T.J.R. Hughes, “Multiphysics Model for Blood Flow and Drug Transport with Application to Patient-Specific Coronary Artery Flow’’, Comput. Mech., vol. 43, pp. 161‒177, 2008.
  20.  M. Łoś, M. Paszyński, A. Kłusek, and W. Dzwinel, “Application of fast isogeometric L2 projection solver for tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 316, pp. 1257‒1269, 2017.
  21.  M. Łoś, A. Kłusek, M. Amber Hassam, K. Pingali, W. Dzwinel, and M. Paszyński, “Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 343, pp. 1‒22, 2019.
  22.  A. Paszyńska, K. Jopek. M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers’’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907‒917, 2018.
  23.  L. Gao and V.M. Calo, “Fast Isogeometric Solvers for Explicit Dynamics’’, Comput. Methods Appl. Mech. Eng., vol. 274, pp. 19‒41, 2014.
  24.  L. Gao and V.M. Calo, “Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients’’, J. Comput. Appl. Math., vol. 273, pp. 274‒295, 2015.
  25.  L. Gao, “Kronecker Products on Preconditioning’’, PhD. Thesis, King Abdullah University of Science and Technology, 2013.
  26.  M. Łoś, M. Woźniak, M. Paszyński, L. Dalcin, and V.M. Calo, “Dynamics with Matrices Possessing Kronecker Product Structure’’, Procedia Comput. Sci., vol. 51, pp. 286‒295, 2015.
  27.  M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, and V. Calo, “Parallel fast isogeometric solvers for explicit dynamics’’, Comput. Inform., vol. 36, no. 2, pp. 423‒448, 2017.
  28.  M. Łoś, M. Woźniak, M. Paszyński, A. Lenharth, and K. Pingali, “IGA-ADS : Isogeometric Analysis FEM using ADS solver’’, Comput. Phys. Commun., vol. 217, pp. 99‒116, 2017.
  29.  G. Gurgul, M. Woźniak, M. Łoś, D. Szeliga, and M. Paszyński, “Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations’’ Comput. Methods Mater. Sci., vol. 17, no.1, pp. 1‒11, 2017.
  30.  M. Łoś, J. Munoz-Matute, K. Podsiadło, M. Paszyński, and K. Pingali, “Parallel shared-memory isogeometric residual minimization (iGRM) for three-dimensional advection-diffusion problems’’, Lect. Notes Comput. Sci., vol. 12143, pp. 133‒148, 2020.
  31.  A. Alonso, R. Loredana Trotta, and A. Valli, “Coercive domain decomposition algorithms for advection-diffusion equations and systems’’, J. Comput. Appl. Math., vol. 96, no. 1, pp. 51‒76, 1998.
  32.  K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The tao of parallelism in algorithms’’, SIGPLAN, vol. 46, 2011, doi: 10.1145/1993316. 1993501.
  33.  A. Takhirov, R. Frolov, and P. Minev, “Direction splitting scheme for Navier-Stokes-Boussinesq system in spherical shell geometries’’, arXiv:1905.02300, 2019.

Date

24.04.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137125

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; Early Access; e137125
×