Details
Title
Checkweigher using an EMFC weighing cell with magnetic springs and air-bearingsJournal title
Metrology and Measurement SystemsYearbook
2021Volume
vol. 28Issue
No 3Authors
Affiliation
Lee, Hyun-Ho : Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea ; Yoon, Kyung-Taek : Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea ; Choi, Young-Man : Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of KoreaKeywords
checkweigher ; magnetic spring ; electromagnetic force compensationDivisions of PAS
Nauki TechniczneCoverage
465-478Publisher
Polish Academy of Sciences Committee on Metrology and Scientific InstrumentationBibliography
[1] Schwartz, R. (2000). Automatic weighing-principles, applications and developments. Proceedings of XVI IMEKO, Austria, 259–267.[2] Yamazaki, T., & Ono, T. (2007). Dynamic problems in measurement of mass-related quantities. Proceedings of the SICE Annual Conference, Japan, 1183–1188. https://doi.org/10.1109/SICE.2007.4421164.
[3] Mettler-Toledo GmbH. (2021, June 13). https://www.mt.com/.
[4] Yamakawa, Y., Yamazaki, T., Tamura, J., & Tanaka, O. (2009). Dynamic behaviors of a checkweigher with electromagnetic force compensation. Proceedings of the XIX IMEKO, Portugal, 208– 211. https://www.imeko.org/publications/wc-2009/IMEKO-WC-2009-TC3-184.pdf.
[5] Yamakawa, Y., & Yamazaki, T. (2010). Dynamic behaviors of a checkweigher with electromagnetic force compensation (2nd report). Proceedings of the XIX IMEKO, Portugal. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-001.pdf.
[6] Yamakawa, Y., & Yamazaki, T. (2013). Simplified dynamic model for high-speed checkweigher. International Journal of Modern Physics. 24, 1–8. https://doi.org/10.1142/S2010194513600367.
[7] Yamakawa, Y., & Yamazaki, T. (2015). Modeling and control for checkweigher on floor vibration. Proceedings of the XXI IMEKO, Czech Republic. https://www.imeko.org/IMEKO-WC-2015- TC3-093.pdf.
[8] Yamazaki, T., Sakurai, Y., Ohnishi, H., Kobayashi, M., & Kurosu, S. (2002). Continuous mass measurement in checkweighers and conveyor belt scales. Proceedings of the SICE Annual Conference, 470–474. https://doi.org/10.1109/SICE.2002.1195446.
[9] Sun, B., Teng, Z., Hu, Q., Lin, H., & Tang, S. (2020). Periodic noise rejection of checkweigher based on digital multiple notch filter. IEEE Sensors Journal, 20(13), 7226–7234. https://doi.org/10.1109/JSEN.2020.2978232.
[10] Piskorowski, J., & Barcinski, T. (2008). Dynamic compensation of load cell response: A timevarying approach. Mechanical Systems and Signal Processing, 22(7), 1694–1704. https://doi.org/10.1016/j.ymssp.2008.01.001.
[11] Pietrzak, P., Meller, M., & Niedzwiecki, M. (2014). Dynamic mass measurement in checkweighers using a discrete time-variant low-pass filter. Mechanical Systems and Signal Processing, 48(1–2), 67–76. https://doi.org/10.1016/j.ymssp.2014.02.013.
[12] Umemoto, T., Sasamoto, Y., Adachi, M., Kagawa, Y. (2008). Improvement of accuracy for continuous mass measurement in checkweighers with an adaptive notch filter. Proceedings of the SICE Annual Conference, 1031–1035. https://doi.org/10.1109/SICE.2008.4654807.
[13] Boschetti, G., Caracciolo, R., Richiedei, D., & Trevisani, A. (2013). Model-based dynamic compensation of load cell response in weighing machines affected by environmental vibrations. Mechanical Systems and Signal Processing, 34(1–2), 116–130. https://doi.org/10.1016/j.ymssp.2012.07.010.
[14] Sun, B., Teng, Z., Hu, Q., Tang, S., Qiu, W., & Lin, H. (2020). A novel LMS-based SANC for conveyor belt-type checkweigher. IEEE Transactions on Instrumentation and Measurement, 70, 1– 10. https://doi.org/10.1109/TIM.2020.3019618.
[15] Niedzwiecki, M., Meller, M., & Pietrzak, P. (2016). System identification -based approach to dynamic weighing revisited. Mechanical Systems and Signal Processing, 80, 582–599. https://doi.org/10.1016/j.ymssp.2016.04.007.
[16] Choi, I. M., Choi, D. J., & Kim, S. H. (2001). The modelling and design of a mechanism for micro-force measurement. Measurement Science and Technology, 12(8), 1270–1278. https://doi.org/10.1088/0957-0233/12/8/339.
[17] Hilbrunner, F., Weis, H., Fröhlich, T., & Jäger, G. (2010). Comparison of different load changers for EMFC-balances. Proceedings of the IMEKO TC3, TC5, and TC22 Conferences Metrology in Modern Context, Thailand. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-016.pdf.
[18] Yoon, K. T., Park, S. R., & Choi, Y. M. (2020). Electromagnetic force compensation weighing cell with magnetic springs and air bearings. Measurement Science and Technology, 32(1). https://doi.org/10.1088/1361-6501/abae8e.
[19] Zhang, H., Kou, B., Jin, Y., & Zhang, H. (2014). Modeling and analysis of a new cylindrical magnetic levitation gravity compensator with low stiffness for the 6-DOF fine stage. IEEE Transactions on Industrial Electronics, 62(6), 3629–3639. https://doi.org/10.1109/TIE.2014.2365754.
[20] Choi, Y. M., & Gweon, D. G. (2010). A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Transactions on Mechatronics, 16(5), 925–931. https://doi.org/10.1109/TMECH.2010.2056694.
[21] Lijesh, K. P., & Hirani, H. (2015). Design and development of Halbach electromagnet for active magnet bearing. Progress in Electromagnetics Research C, 56, 173–181. https://doi.org/10.2528/PIERC15011411.