Details

Title

Design and computational fluid dynamics analysis of the last stage of innovative gas-steam turbine

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 3

Affiliation

Głuch, Stanisław Jerzy : Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Building, Narutowicza 11/12, 80-233 Gdansk, Poland ; Ziółkowski, Paweł : Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Building, Narutowicza 11/12, 80-233 Gdansk, Poland ; Witanowski, Łukasz : Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland ; Badur, Janusz : Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland

Authors

Keywords

Axial turbine ; Blade design ; Computational Fluid Dynamics ; Last stage oflow-pressure ; Twisted blade

Divisions of PAS

Nauki Techniczne

Coverage

255-278

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Szewalski R.: Rational Blade Height Calculation in Action Turbines. Czasopismo Techniczne (1930), 1, 83–86 (in Polish).
[2] Szewalski R.: A novel design of turbine blading of extreme length. Trans. Inst. Fluid-Flow Mach. 70–72(1976) 137–143.
[3] Szewalski R.: Present Problems of Power Engineering Development. Increase of Unit Power and Efficiency of Turbines and Power Palnts. Ossolineum, Wrocław Warszawa Kraków Gdansk 1978 (in Polsih).
[4] Gardzilewicz A., Swirydczuk J., Badur J., Karcz M., Werner R., Szyrejko C.: Methodology of CFD computations applied for analyzing flows through steam turbine exhaust hoods. Trans. Inst. Fluid-Flow Mach. 113(2003), 157–168.
[5] Knitter D., Badur J.: Coupled 0D and 3D analyzis of axial force actiong on regulation stage during unsteady work. Systems 13(2008), 1/2 Spec. Issu., 244–262 (in Polsih).
[6] Knitter D.: Adaptation of inlet and outlet of turbine for new working conditions. PhD dissertation, Inst. Fluid Flow Mach. Pol. Ac. Sci., Gdansk, 2008 (in Polish).
[7] Ziółkowski P.: Thermodynamic analysis of low emission gas-steam cycles with oxy combustion. PhD dissertation, Inst. of Fluid Flow Mach. Pol. Ac. Sci., Gdansk 2018 (in Polish).
[8] Ziółkowski P., Badur J.: A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion. In: Proc. 32nd Int.Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS, Wroclaw, 2019 (W. Stanek, P. Gładysz, S. Werle, W. Adamczyk, Eds.), 1557–1568.
[9] Rubechini F., Marconcini M., Arnone A., Stefano C., Daccà F.: Some aspects of CFD modelling in the análisis of a low-pressure steam turbine. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Montrèal, May, 14–17 2007, GT2007- 27235.
[10] Fiaschi D., Manfrida G., Maraschiello F.: Design and performance prediction of radial ORC turboexpanders. Appl. Energ. 138(2015), 517–532.
[11] Fiaschi D., Innocenti G., Manfrida G., Maraschiello F.: Design of micro radial turboexpanders for ORC power cycles: From 0D to 3D. Appl. Therm. Eng. 99(2016), 402–410.
[12] Noori Rahim Abadi M.A., Ahmadpour A., Abadi S.M.N.R., Meyer J.P.: CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl. Therm. Eng. 112(2017), 1575–1589.
[13] Tanuma T., Okuda H., Hashimoto G., Yamamoto S., Shibukawa N., Okuno K., Saeki H., Tsukuda T.: Aerodynamic and structural numerical investigation of unsteady flow effects on last stage blades. In: Microturbines, Turbochargers and Small Turbomachines, Steam Turbine, Proc. ASME Turbo Expo, Montrèal, June 15–19, 2015, GT2015-43848.
[14] Tanuma T.: Development of last-stage long blades for steam turbines. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 279–305.
[15] Klonowicz P., Witanowski Ł., Suchocki T., Jedrzejewski Ł., Lampart P.: Selection of optimum degree of partial admission in a laboratory organic vapour microturbine. Energ. Convers. Manage. 202(2019), 112189.
[16] Witanowski Ł., Klonowicz P., Lampart P., Suchocki T., Jedrzejewski Ł., Zaniewski D., Klimaszewski P.: Optimization of an axial turbine for a small scale ORC waste heat recovery system. Energy 205(2020), 118059.
[17] Zaniewski D., Klimaszewski P., Witanowski Ł., Jedrzejewski Ł., Klonowicz P., Lampart P.: Comparison of an impulse and a reaction turbine stage for an ORC power plant. Arch. Thermodyn. 40(2019), 3, 137–157
[18] Touil K., Ghenaiet A.: Characterization of vane-blade interactions in two-stage axial turbine. Energy 172(2019), 1291–1311.
[19] Zhang L.Y., He L., Stuer H.: A numerical investigation of rotating instability in steam turbine last stage. In: Power for Land, Sea, and Air, Proc. ASME Turbo Expo, Vancouver, June 6–10, 2011, GT2011-46073, 1657–1666.
[20] Butterweck A., Głuch J.: Neural network simulator’s application to reference performance determination of turbine blading in the heat-flow diagnostics. In: Intelligent Systems in Technica and Medical Diagnostics (J. Korbicz, M. Kowal, Eds.), Advances in Intelligent Systems and Computing, Vol. 230. Springer, Berlin Heidelberg 2014, 137–147.
[21] Głuch J. Drosinska-Komor M.: Neural Modelling of Steam Turbine Control Stage. In: Advances in Diagnostics of Processes and Systems (J. Korbicz, K. Patan, M. Luzar, Eds.), Studies in Systems, Decision and Control, Vol. 313. Springer, 2021, 117–128.
[22] Głuch J., Krzyzanowski J.: Application of preprocessed classifier type neural network for searching of faulty components of power cycles in case of incomplete measurement data. In: Power for Land, Sea, and Air, Proceed. ASME Turbo Expo, Amsterdam, June 3–6, 2002, GT2002-30028, 83–91.
[23] Badur J., Kornet D., Sławinski D., Ziółkowski P.: Analysis of unsteady flow forces acting on the thermowell in a steam turbine control stage. J. Phys.: Conf. Ser. 760(2016), 012001.
[24] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159–180.
[25] Ziółkowski P., Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure – Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
[26] Głuch S., Piwowarski M.: Enhanced master cycle – significant improvement of steam rankine cycle. In: Proc. 25th Int. Conf. Engineering Mechanics 2019, Vol. 25 (I. Zolotarev, V. Radolf, Eds.), Svratk,13–16 May, 2019, 125–128.
[27] Kowalczyk T., Badur J., Ziółkowski P.: Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluidflow machinery main dimensions, and partial loads. Energy 206(2020), 118072.
[28] Perycz S.: Steam and Gas Turbines. Wyd. Polit. Gdanskiej, Gdansk 1988 (in Polish).
[29] https://www.ansys.com/products/fluids/ansys-cfx (accessed 15 Jan. 2021).
[30] Menter F.R., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. In: Proc. 4th Int. Symp.on Turbulence, Heat and Mass Transfer (K. Hajalic, Y. Nagano, M. Tummers, Eds.). Begell House, West Redding 2003, 625–632.
[31] Lemmon E. W., Huber M. L. & McLinden M.O.: NIST Standard Reference Database 23. In: Reference Fluid Thermodynamic and Transport Properties- REFPROP, Version 8.0, User’s Guide, Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg 2010.
[32] Wilcox D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada 1998.
[33] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P.J., Stajnke M., Badur J.: Thermal-FSI modelling of flow and heat transfer in a heat exchanger based on minichannels. J. Power Technol. 97(2017), 5, 373–381.
[34] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 3, 65–87.

Date

2021.11.09

Type

Article

Identifier

DOI: 10.24425/ather.2021.138119

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×