Details

Title

The Variation of Precipitated Phase Investigated with the Usage of Nonlinear Ultrasonic Technique

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 4

Affiliation

You, Jun : Research Institute of Light Alloys, Central South University, Changsha, 410083, China ; You, Jun : Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center, Central South University, Changsha, 410083, China ; You, Jun : State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, China ; Wu, Yunxin : Research Institute of Light Alloys, Central South University, Changsha, 410083, China ; Wu, Yunxin : School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China ; Wu, Yunxin : Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center, Central South University, Changsha, 410083, China ; Wu, Yunxin : State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, China ; Gong, Hai : Research Institute of Light Alloys, Central South University, Changsha, 410083, China ; Gong, Hai : School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China ; Gong, Hai : Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center, Central South University, Changsha, 410083, China ; Gong, Hai : State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, China

Authors

Keywords

nonlinear ultrasound ; Al-Cu precipitation ; 2219-T6 aluminum alloy ; precipitates phase

Divisions of PAS

Nauki Techniczne

Coverage

605-610

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Balasubramaniam K., Valluri J.S., Prakash R.V. (2011), Creep damage characterization using a low amplitude nonlinear ultrasonic technique, Materials Characterization, 62(3): 275–286, doi: 10.1016/j.matchar.2010.11.007.
2. Benal M.M., Shivanand H.K. (2007), Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites, Wear, 262(5–6): 759–763, doi: 10.1016/j.wear.2006.08.022.
3. Buha J., C R.N., Crosky A.G., Hono K. (2007), Secondary precipitation in an Al-Mg-Si-Cu alloy, Acta Materialia, 55(9): 3015–3024, doi: 10.1016/j.actamat.2007.01.006.
4. Cantrell J.H., Yost W.T. (1997), Effect of precipitate coherency strains on acoustic harmonic generation, Journal of Applied Physics, 81(7): 2957–2962, doi: 10.1063/1.364327.
5. Cantrell J.H., Yost W.T. (2000), Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation, Applied Physics Letters, 77(13): 1952–1954, doi: 10.1063/1.1311951.
6. Cantrell J.H., Zhang X.G. (1998), Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network, Journal of Applied Physics, 84(10): 5469–5472, doi: 10.1063/1.368309.
7. Dace G.E., Thompson R.B., Brasche L.J.H., Rehbein D.K., Buck O. (1991), Nonlinear acoustics, a technique to determine microstructural changes in materials, [in:] Review of Progress in Quantitative Nondestructive Evaluation, Thompson D.O., Chimenti D.E. [Eds], Vol. 10B, pp. 1685–1692, Springer, Boston, MA, doi: 10.1007/978-1-4615-3742-7_71.
8. Demir H., Gündüz S. (2009), The effects of aging on machinability of 6061 aluminium alloy, Materials & Design, 30(5): 1480–1483, doi: 10.1016/j.matdes.2008.08.007.
9. Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. (1998), The precipitation sequence in Al-Mg-Si alloys, Acta Materialia, 46(11): 3893–3904, doi: 10.1016/S1359-6454(98)00059-7.
10. Fang X., Song M., Li K., Du Y. (2010), Precipitation sequence of an aged Al-Mg-Si alloy, Journal of Mining and Metallurgy B: Metallurgy, 46(2): 171–180, doi: 10.2298/JMMB1002171F.
11. Granato A., Lüke K. (1956), Theory of mechanical damping due to dislocations, Journal of Applied Physics, 27(6): 583–593, doi: 10.1063/1.1722436.
12. Hikata A., Chick B.B., Elbaum C. (1965), Dislocation contribution to the second harmonic generation of ultrasonic waves, Journal of Applied Physics, 36(1): 229–236, doi: 10.1063/1.1713881.
13. Kim C.S., Jhang K.Y. (2012), Fatigue-induced micro-damage characterization of austenitic stainless steel 316 using innovative nonlinear acoustics, Chinese Physics Letters, 29(6): 060702, doi: 10.1088/0256-307x/29/6/060702.
14. Kim J., Jhang K.Y. (2013), Evaluation of ultrasonic nonlinear characteristics in heat-treated aluminum alloy (Al-Mg-Si-Cu), Advances in Materials Science and Engineering, 2013: Article ID 407846, doi: 10.1155/2013/407846.
15. Kim J., Song D.G., Jhang K.Y. (2016), Absolute measurement and relative measurement of ultrasonic nonlinear parameters, Research in Nondestructive Evaluation, 28(4): 211–225 doi: 10.1080/09349847.2016.1174322.
16. Li P., Yost W.T., Cantrell J.H., Salama K. (1985), Dependence of acoustic nonlinearity parameter on second phase precipitates of aluminum alloys, IEEE 1985 Ultrasonics Symposium, pp. 1113–1115, doi: 10.1109/ULTS-YM.1985.198690.
17. Metya A., Ghosh M., Parida N., Sagar S.P. (2008), Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel, NDT & E International, 41(6): 484–489, doi: 10.1016/j.ndteint.2008.01.008.
18. Miao W.F., Laughlin D.E. (1999), Precipitation hardening in aluminum alloy 6022, Scripta Materialia, 40(7): 873–878, doi: 10.1016/S1359-6462(99)00046-9.
19. Mondal C., Mukhopadhyay A., Sarkar R. (2010), A study on precipitation characteristics induced str- ength variation by nonlinear ultrasonic parameter, Journal of Applied Physics, 108(12): 124910, doi: 10.1063/1.3524526.
20. Ozturk F., Sisman A., Toros S., Kilic S., Picu R.C. (2010), Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Materials & Design, 31(2): 972–975, doi: 10.1016/j.matdes.2009.08.017.
21. Park J., Kim M., Chi B., Jang C. (2013), Corre- lation of metallurgical analysis & higher harmonic ul- trasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors, NDT & E International, 54: 159–165, doi: 10.1016/j.ndteint.2012.10.008.
22. Rajasekaran S., Udayashankar N.K., Nayak J. (2012), T4 and T6 treatment of 6061 Al-15 Vol.% SiCP composite, ISRN Materials Science, 2012: 1–5, doi: 10.5402/2012/374719.
23. Ren G., Kim J., Jhang K.Y. (2015), Relationship between second- and third-order acoustic nonlinear parameters in relative measurement, Ultrasonics, 56: 539–544, doi: 10.1016/j.ultras.2014.10.009.
24. Siddiqui R.A., Abdullah H.A., Al-Belushi K.R. (2000), Influence of aging parameters on the mechani- cal properties of 6063 aluminium alloy, Journal of Materials Processing Technology, 102(1–3): 234–240, doi: 10.1016/S0924-0136(99)00476-8.
25. Troeger L.P., Starke, Jr E.A. (2000), Microstructural and mechanical characterization of a superplas- tic 6xxx aluminum alloy, Materials Science and Engineering: A, 277(1–2): 102–113, doi: 10.1016/S0921-5093(99)00543-2.
26. Viswanath A., Rao B.P.C., Mahadevan S., Parameswaran P., Jayakumar T., Raj B. (2011), Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlin- ear ultrasonic technique, Journal of Materials Processing Technology, 211(3): 538–544, doi: 10.1016/j.jmatprotec.2010.11.011.
27. Xiang Y., Deng M., Xuan F.Z. (2014), Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique, Journal of Nondestructive Evaluation, 33: 279– 287, doi: 10.1007/s10921-013-0222-8.
28. Yassar R.S., Field D.P., Weiland H. (2011), Transmission electron microscopy and differential scan- ning calorimetry studies on the precipitation sequence in an Al-Mg-Si alloy: AA6022, Journal of Materials Research, 20(10): 2705–2711, doi: 10.1557/JMR.2005.0330.
29. You J., Wu Y.X., Gong H., Ahmad A.S, Lei Y. (2019), Determination of the influence of post – heat treatment on second-phase of Al 2219-T6 alloy using ultrasonic non-linear measurement technique, Insight – Non-Destructive Testing and Condition Monitoring, 61(4): 209–213, doi: 10.1784/insi.2019.61.4.209.

Date

2021.12.22

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138153
×