Details

Title

An investigation into vibration control of gear bearing systems

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 4

Affiliation

Saghafi, Amin : Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran ; Farshidianfar, Anooshirvan : Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Authors

Keywords

gear bearing system ; vibration control ; H-infinity control ; active control

Divisions of PAS

Nauki Techniczne

Coverage

473-491

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] H.N. Özgüven and D.R. Houser. Dynamic analysis of high speed gears by using loaded static transmission error. Journal of Sound and Vibration, 125(1):383–411, 1988. doi: 10.1016/0022-460X(88)90416-6.
[2] T.J. Sutton, S.J. Elliott, M.J. Brennan, K.H. Heron and D.A.C. Jessop. Active isolation of multiple structural waves on a helicopter gearbox support strut. Journal of Sound and Vibration, 205(1):81–101, 1997. doi: 10.1006/jsvi.1997.0972.
[3] G.T. Montague, A.F. Kaskak, A. Palazzolo, D. Manchala, and E. Thomas. Feed-forward control of gear mesh vibration using piezoelectric actuators. Shock and Vibration, 1(5):473–484 1994. doi: 10.3233/SAV-1994-1507.
[4] B. Rebbechi, C. Howard, and C. Hansen. Active control of gearbox vibration. Proceedings of the Active Control of Sound and Vibration Conference, pages 295–304, Fort Lauderdale, Florida, USA, 02-04 December, 1999.
[5] M.H. Chen and M.J. Brennan. Active control of gear vibration using specially configured sensors and actuators. Smart Materials and Structures, 9:342–350, 2000. doi: 10.1088/0964-1726/9/3/315.
[6] M. Li, T.C. Lim, and W.S. Shepard Jr. Modeling active vibration control of a geared rotor system. Smart Materials and Structures, 13:449–458, 2004. doi: 10.1088/0964-1726/13/3/001.
[7] Y.H. Guan, T.C. Lim, and W.S. Shepard Jr. Experimental study on active vibration control of a gearbox system. Journal of Sound and Vibration, 282(3-5):713–733, 2005. doi: 10.1016/j.jsv.2004.03.043.
[8] Y.H. Guan, M. Li, T.C. Lim, and W.S. Shepard Jr. Comparative analysis of actuator concept for active gear pair vibration control. Journal of Sound and Vibration, 269(1-2):273–294, 2004. doi: 10.1016/S0022-460X(03)00072-5.
[9] Y. Li, F. Zhang, Q. Ding, and L. Wang. Method and experiment study for active vibration control of gear meshing. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 27(2):215–221, 2014.
[10] W. Gao, L. Wang, and Y. Liu. A modified adaptive filtering algorithm with online secondary path identification used for suppressing gearbox vibration. Journal of Mechanical Science and Technology, 30(11):4833–4843, 2016. doi: 10.1007/s12206-016-1002-z.
[11] W. Sun, F. Zhang, H. Li, H. Wang, and S. Luo. Co-simulation study on vibration control of multistage gear transmission system based on multiple control algorithms. Proceedings of the 2017 International Conference on Advanced Mechatronic Systems, pages 1–7, Xiamen, China, 2017. doi: 10.1109/ICAMechS.2017.8316474.
[12] W. Sun, F. Zhang, W. Zhu, H. Wang, S. Luo, and H. Li. A comparative study based on different control algoritms for suppressing multistage gear transmission system vibrations. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/7984283.
[13] H. Wang, F. Zhang, H. Li, W. Sun, and S. Luo. Experimental analysis of an active vibration frequency control in gearbox. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/1402697.
[14] C. Lauwerys, J. Swevers, and P. Sas. Robust linear control of an active suspension on a quarter car test-rig. Control Engineering Practice, 13(5):577–586, 2005. doi: 10.1016/ j.conengprac.2004.04.018.
[15] W. Sun, J. Li, Y. Zhao, and H. Gao. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics, 21(1):250–260, 2011. doi: 10.1016/j.mechatronics.2010.11.001.
[16] A. Farshidianfar, A. Saghafi, S.M. Kalami, and I. Saghafi. Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method. Meccanica, 47:437–453, 2012. doi: 10.1007/s11012-011-9451-z.
[17] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4-6 October, 1995. doi: doi.org/10.1109/MHS.1995.494215">10.1109/MHS.1995.494215.
[18] J.F. Schutte and A.A. Groenwold. A study of global optimization using particle swarms. Journal of Global Optimization, 31:93–108, 2005. doi: 10.1007/s10898-003-6454-x.
[19] D. Sedighizadeh and E. Masehian. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5):1793-8201, 2009.
[20] A. Saghafi, A. Farshidianfar, and A.A. Akbari. Vibrations control of gear-bearing dynamic system. Modares Mechanical Engineering, 14(6):135-143, 2014. (in Persian).
[21] A. Farshidianfar and A. Saghafi. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dynamics, 75:783–806, 2014. doi: 10.1007/s11071-013-1104-4.
[22] A. Saghafi and A. Farshidianfar. An analytical study of controlling chaotic dynamics in a spur gear system. Mechanism and Machine Theory, 96(1):179–191, 2016. doi: 10.1016/j.mechmachtheory.2015.10.002.
[23] G. Pinte, S. Devos, B. Stallaert, W. Symens, J. Swevers, and P. Sas. A piezo-based bearing for the active structural acoustic control of rotating machinery. Journal of Sound and Vibration, 329(9):1235–1253, 2010. doi: 10.1016/j.jsv.2009.10.036.
[24] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. 2nd ed., Wiley Interscience, New York, 2005.

Date

18.10.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.138401 ; ISSN 0004-0738, e-ISSN 2300-1895
×