Details

Title

Difference melt model

Journal title

Archives of Control Sciences

Yearbook

2021

Volume

vol. 31

Issue

No 3

Affiliation

Kazhikenova, Saule Sh. : Karaganda Technical University, Kazakhstan ; Shaltakov, Sagyndyk N. : Karaganda Technical University, Kazakhstan ; Nussupbekov, Bekbolat R. : Karaganda University E.A. Buketov, Kazakhstan

Authors

Keywords

Navier–Stokes equations ; hydrodynamic ; approximations ; mathematical models ; melt

Divisions of PAS

Nauki Techniczne

Coverage

607-627

Publisher

Committee of Automatic Control and Robotics PAS

Bibliography

[1] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier–Stokes equations. Journal of Physics Communications, 3(10), (2019), 13–18, DOI: 10.1088/2399-6528/ab4b86.
[2] S.Sh. Kazhikenova, S.N. Shaltaqov, D. Belomestny, and G.S. Shai- hova: Finite difference method implementation for Numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(33), (2020), 50–56.
[3] C. Bardos: A basic example of non linear equations: The Navier– Stokes equations. Mathematics: Concepts and Foundations, III (2002), http://www.eolss.net/sample-chapters/c02/e6-01-06-02.pdf.
[4] J.XuandW.Yu:ReducedNavier–Stokes equations with streamwise viscous diffusion and heat conduction terms. AIAA Pap., 1441 (1990), 1–6, DOI: 10.2514/6.1990-1441.
[5] Y. Seokwan and K. Dochan: Three-dimensional incompressible Navier– Stokes solver using lower-upper symmetric Gauss–Seidel algorithm. AIAA Journal, 29(6), (1991), 874–875, DOI: 10.2514/3.10671.
[6] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annual Review of Fluid Mechanics, 23, (1991), 413–453, DOI: 10.1146/annurev.fl.23.010191.002213.
[7] S.E. Rogers, K. Dochan, and K. Cetin: Steady and unsteady solutions of the incompressible Navier–Stokes equations. AIAA Journal, 29(4), (1991), 603–610, DOI: 10.2514/3.10627.
[8] S. Masayoshi, T. Hiroshi, S. Nobuyuki, and N. Hidetoshi: Numerical simulation of three-dimensional viscous flows using the vector potential method. JSME International Journal, 34(2), (1991), 109–114, DOI: 10.1299/jsmeb1988.34.2_109.
[9] E. Sciubba: A variational derivation of the Navier–Stokes equations based on the exergy destruction of the flow. Journal of Mathematical and Physical Sciences, 25(1), (1991), 61–68.
[10] A. Bouziani and R. Mechri: The Rothe’s method to a parabolic integrodifferential equation with a nonclassical boundary conditions. International Journal of Stochastic Analysis, Article ID 519684, (2010), DOI: 10.1155/2010/519684.
[11] N. Merazga and A. Bouziani: Rothe time-discretization method for a nonlocal problem arising in thermoelasticity. Journal of Applied Mathematics and Stochastic Analysis, 2005(1), (2005), 13–28, DOI: 10.1080/00036818908839869.
[12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180–1186, http://umj.imath.[K]iev.ua/index.php/umj/article/view/1768.
[13] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176–91, http://umj.imath.[K]iev.ua/index.php/ umj/article/view/1508.
[14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr-Sommerfeld type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022–1039, DOI: 10.7868/S0044466918060133.

Date

2021.09.27

Type

Article

Identifier

DOI: 10.24425/acs.2021.138694
×