Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 49
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE) against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air) in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes). After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3)°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

Go to article

Authors and Affiliations

Katarzyna Majchrzycka
Małgorzata Okrasa
Agnieszka Brochocka
Wiesława Urbaniak-Domagała
Download PDF Download RIS Download Bibtex

Abstract

In this work, T-shaped mould design was used to generate hot spot and the effect of Sr and B on the hot tearing susceptibility of A356 was investigated. The die temperature was kept at 250o C and the pouring was carried out at 740o C. The amonut of Sr and B additions were 30 and 10 ppm, respectively. One of the most important defects that may exist in cast aluminium is the presence of bifilms. Bifilms can form by the surface turbulence of liquid metal. During such an action, two unbonded surfaces of oxides fold over each other which act as a crack. Therefore, this defect cause many problems in the cast part. In this work, it was found that bifilms have significant effect over the hot tearing of A356 alloy. When the alloy solidifies directionally, the structure consists of elongated dendritic structure. In the absence of equiaxed dendrites, the growing tips of the dendrites pushed the bifilms to open up and unravel. Thus, leading to enlarged surface of oxide to become more harmful. In this case, it was found that these bifilms initiate hot tearing.

Go to article

Authors and Affiliations

M. Uludağ
R. Çetin
D. Dışpınar
Download PDF Download RIS Download Bibtex

Abstract

Drops of molten cast iron were placed on moulding sand substrates. The composition of the forming gaseous atmosphere was examined. It

was found that as a result of the cast iron contact with water vapour released from the sand, a significant amount of hydrogen was evolved.

In all the examined moulding sands, including sands without carbon, a large amount of CO was formed. The source of carbon monoxide

was carbon present in cast iron. In the case of bentonite moulding sand with seacoal and sand bonded with furan resin, in the composition

of the gases, the trace amounts of hydrocarbons, i.e. benzene, toluene, styrene and naphthalene (BTX), appeared. As the formed studies

indicate much higher content of BTX at lower temperature it was concluded that the hydrocarbons are unstable in contact with molten

iron

Go to article

Authors and Affiliations

J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

At thermal junctions of aluminium alloy castings and at points where risering proves to be difficult there appear internal or external

shrinkages, which are both functionally and aesthetically inadmissible. Applying the Probat Fluss Mikro 100 agent, which is based on

nano-oxides of aluminium, results in the appearance of a large amount of fine microscopic pores, which compensate for the shrinking of

metal. Experimental tests with gravity die casting of AlSi8Cu3 and AlSi10Mg alloys have confirmed that the effect of the agent can be of

advantage in foundry practice, leading to the production of castings without local concentrations of defects and without the appearance of

shrinkages and macroscopic gas pores. Also, beneficial effect on the mechanical properties of the metal has been observed.

Go to article

Authors and Affiliations

J. Roučka
J. Hotař
Download PDF Download RIS Download Bibtex

Abstract

A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap

metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with

regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy

this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the

advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were

investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap

aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test.

Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were

determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly.

Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good

quality products.

Go to article

Authors and Affiliations

C. Yuksel
O. Tamer
E. Erzi
U. Aybarc
E. Cubuklusu
O. Topcuoglu
M. Cigdem
D. Dispinar
Download PDF Download RIS Download Bibtex

Abstract

In the present work, rapidly solidified Al-10Ni-XSc (X = 0, 1 and 2) alloys were fabricated by melt spinning under Ar atmosphere. The Effects of Sc on the microstructural and thermal properties and microhardness values were investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and a Vickers microhardness tester. Experimental results revealed that the addition of 2 wt. % Sc to melt-spun Al-10Ni alloys changed their brittle nature and hindered formation of cracks. The addition of Sc to melt-spun Al-10Ni alloys also changed the morphology of Al3Ni intermetallics from an acicular/needle – like to a rounded particle-like structure and led to reduction in their size. Formation of the metastable Al9Ni2 phase was observed due to the higher constitutional undercooling caused by Sc addition. A considerable improvement in microhardness value (from 95. 9 to 230. 1 HV) was observed with the addition of Sc.
Go to article

Authors and Affiliations

Fatih Kilicaslan M.
E. Karakose
Download PDF Download RIS Download Bibtex

Abstract

In the manufacturing sector, the processing of magnesium alloys through the liquid casting route is one of the promising methods to manufacture automotive and aircraft components, for their excellent mechanical properties at the lower weight. Investment casting process has the great cabaility to produce near net shape complex castings for automotive and aircraft applications. The distinct and attractive engineering properties of magnesium alloys have shown to be promising in terms of its potential to replace materials such as cast iron, steel, and aluminum In this regard, the efforts to develop processing technology for these alloys for their wide range of applications in industries have been reported by the scientific and engineering community. For successful production of magnesium alloy castings, it requires specialized foundry techniques because of the particular chemical and physical properties of magnesium; especially the reactive and oxidative nature of these alloys. The industry is young enough, to tap the potential.
Go to article

Authors and Affiliations

A.V. Vyas
1
ORCID: ORCID
M.P. Sutaria
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparative study of the preparation and characterisation of Fe 38.5 Co 38.5 Nb 7 P 15Cu 1 alloy produced by mechanical alloying (MA) and rapid quenching (RQ) method. In order to obtain the starting mixture (SS) in the present study, we opted for the replacement of elemental Nb and P powders with ferroalloy powders of niobium and phosphorus. Benzene was used as a control agent of the process (PCA) for wet MA. The samples obtained (powders and ribbons) were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray microanalysis (EDX), magnetic measurements M(H) and thermomagnetic measurements M(T). After 40 h of wet MA, the alloy was partially amorphous, and the ribbons obtained by RQ do not show an amorphous state. Also, the magnetic measurements show the influence of the method used on the magnetic properties.
Go to article

Authors and Affiliations

A. Cotai
1 2
ORCID: ORCID
S. Miraglia
2
ORCID: ORCID
B.V. Neamţu
1
ORCID: ORCID
T.F. Marinca
1
ORCID: ORCID
H.F. Chicinaș
1 3
ORCID: ORCID
O. Isnard
2
ORCID: ORCID
I. Chicinaş
1
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
  2. Institut Néel, CNRS / Université Grenoble Alpes, 25 rue des Martyrs, BP166, 38042 Grenoble, Cédex 9, France
  3. Guhring Romania, Constructurilor Street 30, Apahida 407035, Romania
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.

Go to article

Authors and Affiliations

A. Kotarska
D. Janicki
J. Górka
ORCID: ORCID
T. Poloczek
Download PDF Download RIS Download Bibtex

Abstract

For long time, Sn-Pb solder alloys have been used extensively as the main interconnection materials in the soldering. It is no doubt that Sn-Pb offers many advantages including good electrical conductivity, mechanical properties as well as low melting temperature. However, Pb is very toxic and Pb usage poses risk to human health and environments. Owing to this, the usage of Pb in the electronic industry was banned and restricted by the legislation. These factors accelerate the efforts in finding suitable replacement for solder alloy and thus lead-free solder was introduced. The major problems associated with lead-free solder is the formation of large and brittle intermetallic compound which have given a rise to the reliability issues. Micro alloying with Sb seems to be advantageous in improving the properties of existing lead-free solder alloy. Thus, this paper reviews the influence of Sb addition to the lead-free solder alloy in terms of microstructure formations and thermal properties.
Go to article

Authors and Affiliations

Nur Syahirah Mohamad Zaimi
1
Mohd Arif Anuar Mohd Salleh
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Mohd Izrul Izwan Ramli
1

  1. Center of Excellence Geopolymer & Green Technology (CeGeoGTech), Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to investigate the possibility of obtaining an amorphous/crystalline composite starting from Ni-Si- B-based powder grade 1559-40 and silver powder. The alloy was produced using arc melting of 95% wt. Ni-Si-B-based powder (1559-40) and 5% wt. Ag powder. Ingot was re-melted on a copper plate and observed while cooling using a mid-wave infra-red camera. The alloy was then melt-spun in a helium atmosphere. The microstructure of the ingot as well as the melt-spun ribbon was studied using light microscopy and scanning electron microscopy with energy dispersive spectrometry. Phase identification was performed by means of X-ray diffraction. The observations confirmed an amorphous/crystalline microstructure of the ribbon where the predominant constituent of the microstructure was an amorphous phase enriched with Ni, Si, and B, while the minor constituent was an Ag-rich crystalline phase distributed in a film along the melt-spinning direction.

Go to article

Authors and Affiliations

M. Wojciechowska
K. Ziewiec
D. Mucha
Download PDF Download RIS Download Bibtex

Abstract

The basic objective of the research is to construct a difference model of the melt motion. The existence of a solution to the problem is proven in the paper. It is also proven the convergence of the difference problem solution to the original problem solution of the melt motion. The Rothe method is implemented to study the Navier–Stokes equations, which provides the study of the boundary value problems correctness for a viscous incompressible flow both numerically and analytically.
Go to article

Bibliography

[1] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier–Stokes equations. Journal of Physics Communications, 3(10), (2019), 13–18, DOI: 10.1088/2399-6528/ab4b86.
[2] S.Sh. Kazhikenova, S.N. Shaltaqov, D. Belomestny, and G.S. Shai- hova: Finite difference method implementation for Numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(33), (2020), 50–56.
[3] C. Bardos: A basic example of non linear equations: The Navier– Stokes equations. Mathematics: Concepts and Foundations, III (2002), http://www.eolss.net/sample-chapters/c02/e6-01-06-02.pdf.
[4] J.XuandW.Yu:ReducedNavier–Stokes equations with streamwise viscous diffusion and heat conduction terms. AIAA Pap., 1441 (1990), 1–6, DOI: 10.2514/6.1990-1441.
[5] Y. Seokwan and K. Dochan: Three-dimensional incompressible Navier– Stokes solver using lower-upper symmetric Gauss–Seidel algorithm. AIAA Journal, 29(6), (1991), 874–875, DOI: 10.2514/3.10671.
[6] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annual Review of Fluid Mechanics, 23, (1991), 413–453, DOI: 10.1146/annurev.fl.23.010191.002213.
[7] S.E. Rogers, K. Dochan, and K. Cetin: Steady and unsteady solutions of the incompressible Navier–Stokes equations. AIAA Journal, 29(4), (1991), 603–610, DOI: 10.2514/3.10627.
[8] S. Masayoshi, T. Hiroshi, S. Nobuyuki, and N. Hidetoshi: Numerical simulation of three-dimensional viscous flows using the vector potential method. JSME International Journal, 34(2), (1991), 109–114, DOI: 10.1299/jsmeb1988.34.2_109.
[9] E. Sciubba: A variational derivation of the Navier–Stokes equations based on the exergy destruction of the flow. Journal of Mathematical and Physical Sciences, 25(1), (1991), 61–68.
[10] A. Bouziani and R. Mechri: The Rothe’s method to a parabolic integrodifferential equation with a nonclassical boundary conditions. International Journal of Stochastic Analysis, Article ID 519684, (2010), DOI: 10.1155/2010/519684.
[11] N. Merazga and A. Bouziani: Rothe time-discretization method for a nonlocal problem arising in thermoelasticity. Journal of Applied Mathematics and Stochastic Analysis, 2005(1), (2005), 13–28, DOI: 10.1080/00036818908839869.
[12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180–1186, http://umj.imath.[K]iev.ua/index.php/umj/article/view/1768.
[13] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176–91, http://umj.imath.[K]iev.ua/index.php/ umj/article/view/1508.
[14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr-Sommerfeld type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022–1039, DOI: 10.7868/S0044466918060133.
Go to article

Authors and Affiliations

Saule Sh. Kazhikenova
1
ORCID: ORCID
Sagyndyk N. Shaltakov
1
ORCID: ORCID
Bekbolat R. Nussupbekov
2
ORCID: ORCID

  1. Karaganda Technical University, Kazakhstan
  2. Karaganda University E.A. Buketov, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The article presents "-approximation of hydrodynamics equations’ stationary model along with the proof of a theorem about existence of a hydrodynamics equations’ strongly generalized solution. It was proved by a theorem on the existence of uniqueness of the hydrodynamics equations’ temperature model’s solution, taking into account energy dissipation. There was implemented the Galerkin method to study the Navier–Stokes equations, which provides the study of the boundary value problems correctness for an incompressible viscous flow both numerically and analytically. Approximations of stationary and non-stationary models of the hydrodynamics equations were constructed by a system of Cauchy–Kovalevsky equations with a small parameter ". There was developed an algorithm for numerical modelling of the Navier– Stokes equations by the finite difference method.
Go to article

Bibliography

[1] C. Conca: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Purs at Appl., 64(1), (1985), 31–35.
[2] M.R. Malik, T.A. Zang, and M.Y. Hussaini:Aspectral collocation method for the Navier–Stokes equations. J. Comput. Phys., 61(1), (1985), 64–68.
[3] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, Palo Alto, Calif., (1991), 413-453.
[4] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier–Stokes equations. J. Phys. Commun., 3(10), (2019), 13– 18, DOI: 10.1088/2399-6528/ab4b86.
[5] S.Sh. Kazhikenova, S.N. Shaltakov, D. Belomestny, and G.S. Shai- hova: Finite difference method implementation for numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(1), (2020), 50–56.
[6] O.A. Ladijenskaya: Boundary Value Problems of Mathematical Physics. Nauka, Moscow, 1973.
[7] Z.R. Safarova: On a finding the coefficient of one nonlinear wave equation in the mixed problem. Archives of Control Sciences, 30(2), (2020), 199–212, DOI: 10.24425/acs.2020.133497.
[8] A. Abramov and L.F. Yukhno: Solving some problems for systems of linear ordinary differential equations with redundant conditions. Comput. Math. and Math. Phys., 57 (2017), 1285–1293, DOI: 10.7868/ S0044466917080026.
[9] K. Yasumasa and T. Takahico: Finite-element method for three-dimensional incompressible viscous flow using simultaneous relaxation of velocity and Bernoulli function. 1st report flow in a lid-driven cubic cavity at Re = 5000. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2640–2647.
[10] H. Itsuro, Î. Hideki, T. Yuji, and N. Tetsuji: Numerical analysis of a flow in a three-dimensional cubic cavity. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2627–2631.
[11] X. Yan, L. Wei, Y. Lei, X. Xue, Y.Wang, G. Zhao, J. Li, and X. Qingyan: Numerical simulation of Meso-Micro structure in Ni-based superalloy during liquid metal cooling. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering. The Minerals, Metals & Materials Series. Ð. 249–259, DOI: 10.1007/978-3-319-57864-4_23.
[12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact Solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180–1186, http://umj.imath.kiev.ua/index.php/umj/article/view/1768.
[13] S. Tleugabulov, D. Ryzhonkov, N. Aytbayev, G. Koishina, and G. Sul- tamurat: The reduction smelting of metal-containing industrial wastes. News of the Academy of Sciences of the Republic of Kazakhstan, 1(433), (2019), 32–37, DOI: 10.32014/2019.2518-170X.3.
[14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022–1039, DOI: 10.7868/S0044466918060133.
[15] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176–1191, http://umj.imath.kiev.ua/index.php/ umj/article/view/1508.
[16] S.Sh. Kazhikenova, M.I. Ramazanov, and A.A. Khairkulova: epsilon- Approximation of the temperatures model of inhomogeneous melts with allowance for energy dissipation. Bulletin of the Karaganda University- Mathematics, 90(2), (2018), 93–100, DOI: 10.31489/2018M2/93-100.
[17] J.A. Iskenderova and Sh. Smagulov: The Cauchy problem for the equations of a viscous heat-conducting gas with degenerate density. Comput. Maths Math. Phys. Great Britain, 33(8), (1993), 1109–1117.
[18] A.M. Molchanov: Numerical Methods for Solving the Navier–Stokes Equations. Moscow, 2018.
[19] Y. Achdou and J.-L. Guermond: Convergence Analysis of a finite element projection / Lagrange-Galerkin method for the incompressible Navier–Stokes equations. SIAM Journal of Numerical Analysis, 37 (2000), 799–826.
[20] M.P. de Carvalho, V.L. Scalon, and A. Padilha: Analysis of CBS numerical algorithm execution to flow simulation using the finite element method. Ingeniare Revista chilena de Ingeniería, 17(2), (2009), 166–174, DOI: 10.4067/S0718-33052009000200005.
[21] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, and Z-Q. Wang: Numerical solution of the Navier–Stokes equations using multigrid methods with HSS-based and STS-based smoother. Symmetry, 12(2), (2020), DOI: 10.3390/sym12020233.
[22] M. Rosenfeld and M. Israeli: Numerical solution of incompressible flows by a marching multigrid nonlinear method. AIAA 7th Comput. Fluid Dyn. Conf.: Collect. Techn. Pap., New-York, (1985), 108–116.92.


Go to article

Authors and Affiliations

Saule Sh. Kazhikenova
1
ORCID: ORCID

  1. Head of the Department of Higher Mathematics, Karaganda Technical University, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

In Poland, the mineral sector generates 110–130 million tons of wastes annually (in the last 20 years), and metal ore mining alone was responsible for 31.2 million tons of wastes in 2017. The slags deposited at the Polkowice were investigated. This waste may be a potential source of many valuable metals (Zn, Pb, Cu, Sb, Sn, Se). The tailings dump in Polkowice contains approximately 80,000 tons of slag. The material contains primary phases formed by pyrometallurgical processes and secondary phases, which are the result of transformation of primary components. The primary phases are represented by sulfides: sphalerite [ZnS]; wurtzite [(Zn,Fe)S]; pyrite [FeS2]; sulfates: beaverite-(Zn) [Pb(Fe3+ 2Zn)(SO4)2(OH)6]; palmierite [(K,Na)2Pb(SO4)2]; oxides and hydroxides: goethite [Fe3+O(OH)]; wüestite [FeO]; hematite [Fe2O3]; magnetite [Fe2+Fe3+ 2O4]; chromian spinel [Fe2+Cr3+ 2O4]; silicates: petedunnite [Ca(Zn,Mn2+,Mg,Fe2+)Si2O6]; quartz [SiO2]; and microcline [KAlSi3O8]. Additionally, SEM -BSE observations revealed that oxidized native metals (Cu, Pb, As) and metal alloys and semi-metals appear. The slag consists mainly of SiO2 (13.70–20.60 wt%), Fe2O3 (24.90–39.62 wt%) and subordinately of CaO (2.71–6.94 wt%) and MgO (1.34–4.68 wt%). High contents are formed by Zn (9.42–17.38 wt%), Pb (5.13–13.74 wt%) and Cu (1.29–2.88 wt%). The slag contains trace elements Mo (487.4–980.1 ppm), Ni (245.3–530.7 ppm), Sn (2380.0–4441.5 ppm), Sb (2462.8–4446.0 ppm), Se (168.0–293.0 ppm). High concentrations are formed by toxic elements, such as e.g. As (13 100–22 600 ppm) and Cd (190.5–893.1 ppm). It is estimated that the tailings dump has accumulated about 80,000 t of slag, which may contain about 10,000 t of Zn, about 6,700 t of Pb, and 1,500 t of Cu.
Go to article

Authors and Affiliations

Karol Zglinicki
1
ORCID: ORCID
Krzysztof Szamałek
2
ORCID: ORCID
Anna Czarnecka-Skwarek
2
ORCID: ORCID
Katarzyna Żyłka
2 1

  1. Polish Geological Institute – Polish Research Institute, Warszawa, Poland
  2. University of Warsaw, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 oC with NaCl-KCl-Na3AlF6 salt flux.

Go to article

Authors and Affiliations

P. Palimąka
Download PDF Download RIS Download Bibtex

Abstract

Recyclability is one of the great features of aluminium and its alloys. However, it has been typically considered that the secondary aluminium quality is low and bad. This is only because aluminium is so sensitive to turbulence. Uncontrolled transfer and handling of the liquid aluminium results in formation of double oxide defects known as bifilms. Bifilms are detrimental defects. They form porosity and deteriorate the properties. The detection and quantification of bifilms in liquid aluminium can be carried out by bifilm index measured in millimetres as an indication of melt cleanliness using Reduced Pressure Test (RPT). In this work, recycling efficiency and quality change of A356 alloy with various Ti additions have been investigated. The charge was recycled three times and change in bifilm index and bifilm number was evaluated. It was found that when high amount of Ti grain refiner was added, the melt quality was increased due to sedimentation of bifilms with Ti. When low amount of Ti is added, the melt quality was degraded.

Go to article

Authors and Affiliations

O. Gursoy
E. Erzi
K. Tur
D. Dispinar
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The removal of inclusions is a major challenge prior to the casting process, as they cause a discontinuity in the cast material, thereby lowering its mechanical properties and have a negative impact on the feeding capability and fluidity of the liquid alloys. In order to achieve adequate melt quality for casting, it is important to clean the melts from inclusions, for which there are numerous methods that can be used. In the course of the presented research, the inclusion removal efficiency of rotary degassing coupled with the addition of different fluxes was investigated. The effects of various cleaning fluxes on the inclusion content and the susceptibility to pore formation were compared by the investigation of K-mold samples and the evaluation of Density Index values at different stages of melt preparation. The chemical composition of the applied fluxes was characterized by X-ray powder diffraction, while the melting temperature of the fluxes was evaluated by derivatographic measurements. It was found that only the solute hydrogen content of the liquid metal could be significantly reduced during the melt treatments, however, better inclusion removal efficiency could be achieved with fluxes that have a low melting temperature.

Go to article

Authors and Affiliations

M. Máté
M. Tokár
G. Fegyverneki
G. Gyarmati
Download PDF Download RIS Download Bibtex

Abstract

The naturally pressurized gating system was used for reoxidation suppression during aluminium alloy casting. A naturally pressurized gating system appears to be a suitable solution to reduce reoxidation processes, which was proven by our previous works. The disadvantage of this system is that without inserting deceleration elements, the melt velocity is supercritical. Therefore, the aim of paper is to find a proper way to reduce the melt velocity, which is the main parameter affecting the scale of reoxidation processes. For the purpose of the melt velocity reduction, labyrinth filters, foam filters and flat filters effect on the melt velocity and the number of oxides were investigated by numerical simulation software in the first stage of the experiment. After simulations observation, the effect of filters on the mechanical properties was investigated by experimental casts. The simulations and experimental casts proved that filters had a positive effect on the melt velocity reduction and it was associated with increased mechanical properties of castings. The best results were achieved by the foam filter.
Go to article

Bibliography

[1] Campbell, J. (2015). Complete Casting Handbook. (2nd ed.). Oxford: Elsevier Ltd.
[2] Dobosz, St.M., Grabarczyk, A., Major-Gabrys, K. & Jakubski, J. (2015). Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Archives of Foundry Engineering. 15(2), 9-12. ISSN (1897-3310)
[3] Lakoma, R., Camek, L., Lichý, P., Kroupová, I., Radkovský, F. & Obzina, T. (2021). Some possibilities of using statistical methods while solving poor quality production. Archives of Foundry Engineering. 21(1), 18-22. DOI: 10.24425/afe.2021.136073
[4] Baghani, A., Kheirabi, A., Bahmani, A. & Khalilpour, H. (2012). Removal of double oxide film defects by ceramic foam filters. Journal of Materials Engineering and Performance. 21(7), 1352-1362. DOI: 10.1007/s11665-011-9991-3
[5] Jezierski, J., Dojka, R. & Janerka, K. (2018). Optimizing the Gating System for Steel Castings. Metals. 8(266), 1-13. DOI: 10.3390/met804026
[6] Pastirčák, R. & Ščury, J. (2016). Effect of technological parameters on microstructure in alloy AlCu4Ti using squeeze casting technology. The application of experimental and numerical methods in fluid mechanics and energy. ISBN 978-0-7354-1402-0.
[7] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. 2019. Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925.
[8] Remišová, A. & Brůna, M. (2019). Analysis of reoxidation processes with aid of computer simulation. Archives of Foundry Engineering. 19(4), 55-60.
[9] Brůna, M., Galčík, M., Sládek, A. & Martinec, D. (2021). Possibilities of bifilm amount reduction in Al castings by gating system design optimization. Archives of Metallurgy and Materials. 66(2), 549-559. ISSN 1733-3490

Go to article

Authors and Affiliations

M. Bruna
1
ORCID: ORCID
M. Galčík
1

  1. University of Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The solubility of Fe in aluminium alloys is known to be a problem in the casting of aluminium alloys. Due to the formation of various intermetallic phases, the mechanical properties decrease. Therefore, it is important to determine the formation mechanisms of such intermetallic. In this work, A360 alloy was used, and Fe additions were made. The alloy was cast into the sand and die moulds that consisted of three different thicknesses. In this way, the effect of the cooling rate was investigated. The holding time was selected to be 5 hours and every hour, a sample was collected from the melt for microstructural analysis. Additionally, the melt quality change was also examined by means of using a reduced pressure test where the bifilm index was measured. It was found that the iron content was increased after 2 hours of holding and the melt quality was decreased. There was a correlation between the duration and bifilm index. The size of Al-Si-Mn-Fe phases was increased in parallel with the bifilm content regardless of the iron content.
Go to article

Bibliography

[1] Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A.K. (2019). The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Materials Science and Engineering: A. 756, 502-507. DOI:10.1016/j.msea.2018.07.044
[2] Ferraro, S. & Timelli, G. (2015). Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys. Metallurgical and Materials Transactions B. 46(2), 1022-1034. DOI:10.1007/s11663-014-0260-3
[3] Ma, Z., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2008). A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science and Engineering: A. 490(1-2), 36-51. https://doi.org/10.1016/j.msea.2008.01.028
[4] Zahedi, H., Emamy, M., Razaghian, A., Mahta, M., Campbell, J. & Tiryakioğlu, M. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38(3), 659-670. DOI: 10.1007/s11661-006-9068-3
[5] Tunçay, T., Özyürek, D., Dişpinar, D. & Tekeli, S. (2020). The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy. Transactions of the Indian Institute of Metals. 73(5), 1273-1285. DOI: 10.1007/s12666-020-01970-4
[6] Gao, T., Hu, K., Wang, L., Zhang, B. & Liu, X. (2017). Morphological evolution and strengthening behavior of α-Al (Fe, Mn) Si in Al–6Si–2Fe–xMn alloys. Results in physics. 7, 1051-1054. https://doi.org/10.1016/j.rinp.2017.02.040
[7] Gorny, A., Manickaraj, J., Cai, Z. & Shankar, S. (2013). Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. Journal of Alloys and Compounds. 577, 103-124. DOI: 10.1016/j.jallcom.2013. 04.139
[8] Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[9] Khalifa, W., Samuel, F. & Gruzleski, J. (2003). Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A. 34(13), 807-825. DOI:10.1007/s11661-003-1009-9
[10] Liu, L., Mohamed, A., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys. Metallurgical and Materials Transactions A. 40(10), 2457-2469. DOI:10.1007/s11661-009-9944-8
[11] Tupaj, M., Orłowicz, A., Mróz, M., Trytek, M. & Markowska, O. (2016). Usable properties of AlSi7Mg alloy after sodium or strontium modification. Archives of Foundry Engineering. 16(3), 129-132. DOI:10.1515/afe-2016-0064
[12] Dinnis, C.M., Taylor, J.A. & Dahle, A. (2006). Iron-related porosity in Al–Si–(Cu) foundry alloys. Materials Science and Engineering: A. 425(1-2), 286-296. DOI: 10.1016/j.msea.2006.03.045
[13] Mikołajczak, M. & Ratke, L. (2015). Three dimensional morphology of β-Al5FeSi intermetallics in AlSi alloys. Archives of Foundry Engineering. 15(1), 47-50. DOI:10.1515/afe-2015-0010
[14] Tunçay, T., Tekeli, S., Özyürek, D. & Dişpinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30(1), 20-29. https://doi.org/10.1080/13640461.2016.1192826
[15] Cao, X. & Campbell, J. (2000). Precipitation of primary intermetallic compounds in liquid Al 11.5 Si 0.4 Mg alloy. International Journal of Cast Metals Research. 13(3), 175-184. https://doi.org/10.1080/13640461.2000.11819400
[16] Cao, X. & Campbell, J. (2003). The nucleation of Fe-rich phases on oxide films in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 34(7), 409-1420.
[17] Cao, X. & Campbell, J. (2004). Effect of precipitation and sedimentation of primary α-Fe phase on liquid metal quality of cast Al–11.1 Si–0.4 Mg alloy. International Journal of Cast Metals Research. 17(1), 1-11. https://doi.org/10.1179/136404604225014792
[18] Cao, X. & Campbell, J. (2004). The solidification characteristics of Fe-rich intermetallics in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 35(5), 1425-1435. DOI:10.1007/s11661-004-0251-0
[19] Bjurenstedt, A., Casari, D., Seifeddine, S., Mathiesen, R.H. & Dahle, A.K. (2017). In-situ study of morphology and growth of primary α-Al (FeMnCr) Si intermetallics in an Al-Si alloy. Acta Materialia. 130, 1-9.
[20] Shabestari, S. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022
[21] Ferraro, S., Fabrizi, A. & Timelli, G. (2015). Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Materials Chemistry and Physics. 153, 168-179. DOI:10.1016/j.matchemphys. 2014.12.050
[22] Dispinar D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. In: Tiryakioğlu, M., Campbell, J., Byczynski, G. (eds) Shape Casting: 5th International Symposium 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48130-2_30.
[23] Gyarmati G. et al., (2021). Controlled precipitation of intermetallic (Al, Si) 3Ti compound particles on double oxide films in liquid aluminum alloys. Materials Characterization. 181, 111467. https://doi.org/10.1016/j.matchar.2021.111467
[24] Podprocká, R., Malik, J. & Bolibruchová, D. (2015). Defects in high pressure die casting process. Manufacturing technology. 15(4), 674-678. DOI: 10.21062/ujep/x.2015/a/ 1213-2489/MT/15/4/674
[25] Samuel, A. Samuel, F. & Doty, H. (1996). Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys. Journal of Materials Science. 31(20), 5529-5539. DOI:10.1080/13640461.2001.11819429
[26] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI:10.1016/j.matchar. 2019.109925
[27] Liu, K., Cao, X. & Chen, X.-G. (2011). Solidification of iron-rich intermetallic phases in Al-4.5 Cu-0.3 Fe cast alloy. Metallurgical and Materials Transactions A. 42(7), 2004-2016. DOI: 10.1007/s11661-010-0578-7
Go to article

Authors and Affiliations

E.N. Bas
1
S. Alper
1
T. Tuncay
2
ORCID: ORCID
D. Dispinar
3
ORCID: ORCID
S. Kirtay
1
ORCID: ORCID

  1. Istanbul University-Cerrahpasa, Turkey
  2. Karabuk University, Turkey
  3. Foseco, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The article describes the influence of optimization parameters on the efficiency of aluminium melt refining by using physical modelling. The blowing of refining gas, through a rotating impeller into the ladle is a widely used operating technology to reduce the content of impurities in molten aluminium, e.g. hydrogen. The efficiency of this refining process depends on the creation of fine bubbles with a high interphase surface, wide-spread distribution, the residence time of its effect in the melt, and mostly on the wide-spread dispersion of bubbles in the whole volume of the refining ladle and with the long period of their effect in the melt. For physical modelling, a plexiglass model on a scale of 1:1 is used for the operating ladle. Part of the physical model is a hollow shaft used for gas supply equipped with an impeller and also two baffles. The basis of physical modelling consists in the targeted utilization of the similarities of the processes that take place within the actual device and its model. The degassing process of aluminium melt by blowing inert gas is simulated in physical modelling by a decrease of dissolved oxygen in the model liquid (water).
Go to article

Bibliography

[1] Michalek, K., Tkadlečková, M., Socha, L., Gryc, K., Saternus, M., Pieprzyca, J. & Merder, T. (2018). Physical modelling of degassing process by blowing of inert gas. Archives of Metallurgy and Materials. 63(2), 987-992. DOI: 10.24425/122432.
[2] Hernández-Hernández, M., Camacho-Martínez, J., González-Rivera, C. & Ramírez-Argáez, M.A. (2016). Impeller design assisted by physical modelling and pilot plant trials. Journal of Materials Processing Technology. 236, 1-8. DOI: 10.1016/j.jmatprotec.2016.04.031.
[3] Mostafei, M., Ghodabi, M., Eisaabadi, G.B., Uludag, M. & Tiryakioglu, M. (2016). Evaluation of the effects rotary degassing process variables on the quality of A357 aluminium alloy castings. Metallurgical and Materials Transactions B. 47(6), 3469-3475. DOI: 10.1017/s11663-016-0786-7.
[4] Merder, T., Saternus, M. & Warzecha, P. (2014). Possibilities of 3D Model application in the process of aluminium refining in the unit with rotary impeller. Archives of Metallurgy and Materials. 59(2), 789-794. DOI: 10.2478/amm-2014-0134.
[5] Saternus, M., Merder, T. & Pieprzyca, J. (2015). The influence of impeller geometry on the gas bubbles dispersion in URO-200 reactor – RTD curves. Archives of Metallurgy and Materials. 60(4), 2887-2893. DOI: 10.1515/amm-2015-0461.
[6] Yamamoto, T., Suzuki, A., Komarov, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminium. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
[7] Gao, G., Wang, M., Shi, D. & Kang, Y. (2019). Simulation of bubble behavior in a water physical model of an aluminium degassing ladle unit employing compound technique of rotary blowing and ultrasonic. Metallurgical and Materials Transactions B. 50(4), 1997-2005. DOI: 10.1017/j.s11663-019-01607-y. [8] Yu, S., Zou, Z.-S., Shao, L. & Louhenkilpi, S. (2017). A theoretical scaling equation for designing physical modelling of gas-liquid flow in metallurgical ladles. Steel Research International. 88(1), 1600156. DOI: 10.1002/srin.201600156.
[9] Abreu-López, D., Dutta, A., Camacho-Martínez, J.L., Trápaga-Martínez, G. & Ramírez-Argáez, M. A. (2018). Mass transfer study of a batch aluminium degassing ladle with multiple designs of rotating impellers. JOM. 70, 2958-2967. DOI: 10.1007/s11837-018-3147-y.
[10] Walek, J., Michalek, K., Tkadlečková, M. & Saternus, M. (2021). Modelling of technological parameters of aluminium melt refining in the ladle by blowing of inert gas through the rotating impeller. Metals. 11(2), 284. DOI: 10.3390/met11020284.
[11] Saternus, M. & Merder, T. (2018). Physical modelling of aluminium refining process conducted in batch reactor with rotary impeller. Metals. 8(9), 726. DOI: 10.3390/met8090726.
[12] Lichý, P., Bajerová, M., Kroupová, I. & Obzina, T. (2020). Refining aluminium-alloy melts with graphite rotors. Materiali in Technologije. 54(2), 263-265. DOI: 10.17222/mit.2019.147.
[13] Lichý, P., Kroupová, I., Radkovský, F. & Nguyenová, I. (2016). Possibilities of the controlled gasification of aluminium alloys for eliminating the casting defects. 25th Anniversary International Conference on Metallurgy and Materials, May 25th - 27th 2016 (1474-1479). Hotel Voroněž I, Brno, Czech Republic, EU: Lichý, P.

Go to article

Authors and Affiliations

J. Walek
1
ORCID: ORCID
K. Michalek
1
ORCID: ORCID
M. Tkadlečková
1
ORCID: ORCID

  1. VŠB - Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the influence of 1%, 2% and 3% zirconia (ZrO2) nanoparticles to the melting, microstructural and mechanical properties of the Sn58Bi solder. Melting temperatures of 145.11°C, 140.89°C and 143.84°C were attained correspondingly for the 1%, 2% and 3% ZrO2 reinforced Sn58Bi solder. The microstructures especially the spacing between the lamellar structures of the Sn58Bi solder alloy was narrower for 1% ZrO2 added with Sn58Bi solder alloy. The highest and lowest hardness value of 32.28 HV and 27.62 HV was recorded for 1% and 2% ZrO2 additions respectively. Highest shear strength value was noted for the 3% ZrO2 added SnBi/Copper joint with 0.8712 kN, while the lowest value of 0.4380 kN noted for the 1% ZrO2 added SnBi/Copper joint. The presence of small-sized ZrO2 nanoparticles can be seen to be properly dispersed at the solder joint to increase the shear load at maximum joint stress.
Go to article

Authors and Affiliations

S. Amares
1 2
R. Durairaj
2
S.H. Kuan
2

  1. Universiti Tunku Abdul Rahman, Lee Kong Chian Faculty of Engineering and Science, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
  2. Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Taman Sains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya , Selangor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 = 1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
Go to article

Bibliography

[1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
[2] Pasko, J., Gaspar, S. (2014). T echnological factors of die casting. Lüdenscheid: RAM-Verlag.
[3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
[4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
[5] ČSN 22 8601. C onstruction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
[6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
[7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
[8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
[9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
[10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
[11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
[12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
[13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. C omputational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
[14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. A rchives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
[15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
[16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. A rchives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024
Go to article

Authors and Affiliations

J. Majerník
1
ORCID: ORCID
M. Podařil
1
D. Gojdan
2

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Go to article

Bibliography

[1] Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., Smet, P. De., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 37-49. DOI: 10.1016/S0921-5093(99)00653-X
[2] Cagan, S.C., Venkatesh, B. & Buldum, B.B. (2020). Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings. 27, 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
[3] Naumova, E.A., Belov, N.A. & Bazlova, T.A. (2015). Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg. Metal Science and Heat Treatment. 57, 5-6. DOI: 10.1007/s11041-015-9874-6
[4] Krolo, J., Gudić, S., Vrsalović, L., Branimir, L., Zvonimir, D. (2020). Fatigue and corrosion behavior of solid-state recycled aluminum alloy EN AW 6082. Journal of Materials Engineering and Performance. 29(7), 4310-4321. DOI: 10.1007/s11665-020-04975-8
[5] TMMOB Metalurji Mühendisleri Odası, Alüminyum Komisyonu, Alüminyum Raporu.
[6] Dhindaw, B.K., Aditya, G.S.L. & Mandal, A. (2020). Recycling and downstream processing of aluminium alloys for automotive applications. In Saleem Hashmi and Imtiaz Ahmed Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials. 3 (pp.154-161). Elsevier Inc.
[7] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J. (1982). Aluminium electrolysis: Fundamentals of the Hall-Heroult Process. 2nd Edition. University of California.
[8] Peng, T., Ou, X., Yan, X. & Wang, G. (2019). Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia. 158, 3937- 3943. DOI: 10.1016/j.egypro.2019.01.849
[9] Prasada Rao, A. K. (2011). An approach for predicting the composition of a recycled Al-Alloy. Transactions of the Indian Institute of Metals. 64, 615-617. DOI: 10.1007/s12666-011-0084-7
[10] Capuzzi, S. & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A Review. Metals. 8(4), 249. DOI: 10.3390/met8040249
[11] Khalid, S.N.A.B. (2013). Mechanical strength of ascompacted aluminium alloy waste chips. Malaysia: MSc Thesis, Universiti Tun Hussein Onn Malaysia.
[12] Bjurenstedt, A. (2017). On the influence of imperfections on microstructure and properties of recycled Al-Si casting alloys. Sweden: PhD. Thesis, Jönköping University Jönköping.
[13] Bogdanoff, T., Seifeddine, S. & Dahle, A. K. (2016). The effect of Si content on microstructure and mechanical properties of Al-Si alloy. La Metallurgia Italiana. 108(6), 65- 69.
[14] Wang, Y., Liao, H., Wu, Y. & Yang, J. (2014). Effect of Si content on microstructure and mechanical properties of Al– Si–Mg alloys. Materials & Design. 53, 634-638.
[15] Ozaydin, O. & Kaya, A. (2019). Influence of different Si levels on mechanical properties of aluminium casting alloys. European Journal of Engineering And Natural Sciences. 3(2), 165-172.
[16] Zhang, X., Ahmmed, K., Wang, M. & Hu, H. (2012). Influence of aging temperatures and times on mechanical properties of vacuum high pressure die cast aluminum alloy A356. Advanced Materials Research. 445, 277-282. DOI: 10.4028/www.scientific.net/AMR.445.277
[17] Ozaydin, O., Dokumaci, E., Armakan, E., Kaya, A. (2019). The effects of artificial ageing conditions on a356 aluminum cast alloys. In ECHT 2019 - European Conference on Heat Treatment. Bardolino, Italy.
[18] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferous Met. Soc. Chinea. 21, 1950-1956. DOI: 10.1016/S1003-6326(11)60955-2
[19] Wang, L., Makhlouf, M. & Apelian, D. (2013). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-238. DOI: 10.1179/imr.1995.40.6.221
[20] Yuksel, C.K., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M. & Dispinar, D. (2016). Quality evaluation of remelted A356 scraps. Archives of Foundry Engineering. 16(3), 151-156. DOI: 10.1515/afe-2016-0069
[21] Hu, M., Ji, Z., Chen, X. & Zhang, Z. (2007). Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization. 59(4), 385-389. DOI: 10.1016/j.matchar.2007.02.002
[22] Testing Of Metallic Materials – Tensile Test Pieces, Prüfung Metallischer Werkstoffe – Zugproben Deutsche Norm DIN 50125, 2016.
[23] Metallic Materials - Tensile Testing - Part 1:Method Of Test at Room Temperature, PN-EN ISO 6892-1: 2020-05
[24] Taylor J.A. (2012). Iron-containing intermetallic phases in AlSi based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004
[25] Eisaabadi, G.B., Davami, P., Kim, S.K., Varahram, N., Yoon, Y.O. & Yeom, G.Y. (2012). Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al–Si– Mg alloys: Statistical and image analysis. Materials Science and Engineering: A 558, 134-143. DOI: 10.1016/j.msea.2012.07.101
[26] Schlesinger, M.E. (2013). Aluminum Recycling. CRC Press. 2nd Edition. CRC Press
[27] Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M. Di. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(17), 3719-3725. DOI: 10.1016/j.msea.2010.01.088
[28] Akhtar, S., Dispinar, D., Arnberg, L. & Sabatino, M.Di. (2009). Effect of hydrogen content melt cleanliness and solidification conditions on tensile properties of A356 alloy. International Journal of Cast Metals Research. 22(4), 22-25. DOI: 10.1179/136404609X367245
[29] Bösch, D., Pogatscher, S., Hummel, M., Fragner, W., Uggowitzer, P.J., Göken, M. & Höppel, H.W. (2015). Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions A. 46(3), 1035-1045.
[30] Taylor, J.A. (2004). The effect of iron in Al-Si casting alloys. In 35th Australian Foundry Institute National Conference, 31 Oct - 3 Nov 2004 (148-157). Australia: Australian Foundry Institute (AFI).
[31] Campbell, J. (1993). Castings, 2nd Edition. Elsevier
Go to article

Authors and Affiliations

A.Y. Kaya
1
O. Özaydın
1
T. Yağcı
2
A. Korkmaz
2
E. Armakan
1
O. Çulha
2

  1. Cevher Alloy Wheels Co. / R&D Dept., İzmir, Turkey
  2. Manisa Celal Bayar University, Engineering Faculty, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The high pressure die casting technology allows the production of complex casts with good mechanical properties, with high production repeatability within narrow tolerance limits. However, the casts are somewhat porous, which may reduce their mechanical properties. There are several recommendations for reducing the porosity of casts, which are aimed at setting the technological parameters of the casting cycle. One of the primary and important ways to reduce the porosity and air entrapment in the melt is a suitable gating system design. Submitted contribution is devoted to assessing the influence of the runner branching geometry on the air entrapment within the cast volume during the filling phase of the casting cycle. Four variants of the gating system for a particular cast are compared with different design of main runner branching. The initial design is based on a real gating system where the secondary runner is connected to the main runner at an angle of 90 °. The modified designs are provided with a continuous transition of the main runner into the secondary ones, with the change in the branching runner radius r1 = 15 mm, r2 = 25 mm and r3 = 35 mm. The air entrapment in the melt is assessed within the cast volume behind the cores, which have been evaluated as a critical points with respect to further mechanical treatment. When designing the structural modification of geometry it was assumed that by branch changing using the radius value r3 = 35 mm, the melt flows fluently, and thus the value of the entrapped air in the volume of the cast will be the lowest. This assumption was disproved. The lowest values of entrapped air in the melt were found in the casts with runner transition designed with radius r1 = 15 mm. The conclusion of the contribution explains the causes of this phenomenon and from a designing point of view it presents proposal for measures to reduce the entrapment of the air in casts.

Go to article

Authors and Affiliations

J. Majerník
ORCID: ORCID
M. Podařil

This page uses 'cookies'. Learn more