Details

Title

Solution blow spun poly-L-lactic acid/ceramic fibrous composites for bone implant applications

Journal title

Chemical and Process Engineering

Yearbook

2021

Volume

vol. 42

Issue

No 3

Authors

Affiliation

Wojasiński, Michał : Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland ; Ciach, Tomasz : Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland ; Ciach, Tomasz : Warsaw University of Technology, Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland

Keywords

solution blowspinning ; composite fibres ; submicron fibres ; nanofibres ; poly-L-lactic acid ; ceramic particles ; bone implants

Divisions of PAS

Nauki Techniczne

Coverage

275-289

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Bibliography

Abdal-hay A., Hamdy A.S., Khalil K.A., Lim J.H., 2015. A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants. Mater. Sci. Eng., C, 49, 681–690. DOI: 10.1016/j.msec.2015.01.008.
Abdal-hay A., Hasan A., Yu-Kyoung, Lee M.-H., Hamdy A. S., Khalil K.A., 2016. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Mater. Sci. Eng., C, 58, 1232–1241. DOI: 10.1016/j.msec.2015.09.065.
Abdal-hay A., Sheikh F.A., Lim J.K., 2013. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf., B, 102, 635–643. DOI: 10.1016/j.colsurfb.2012.09.017.
Balakrishnan H., Hassan A., Imran M., Wahit M.U., 2012. Toughening of polylactic acid nanocomposites: A short review. Polymer-Plastics Technol. Eng., 51, 175–192. DOI: 10.1080/03602559.2011.618329.
Behrens A.M., Casey B.J., Sikorski M.J., Wu K.L., Tutak W., Sandler A.D., Kofinas P., 2014. In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett., 3, 249–254. DOI: 10.1021/mz500049x.
Bonan R.F., Mota M.F., da Costa Farias R.M., Silva S.D., Bonan P.R.F., Diesel L., Menezes R.R., da Cruz Perez D.E., 2019. In vitro antimicrobial and anticancer properties of TiO2 blow-spun nanofibers containing silver nanoparticles. Mater. Sci. Eng., C, 104, 109876. DOI: 10.1016/j.msec.2019.109876.
Carlsson L., Röstlund T., Albrektsson B., Albrektsson T., Brånemark P.-I., 1986. Osseointegration of titanium implants. Acta Orthop. Scand., 57, 285–289. DOI: 10.3109/17453678608994393.
Civantos A., Martínez-Campos E., Ramos V., Elvira C., Gallardo A., Abarrategi A., 2017. Titanium coatings and surface modifications: Toward clinically useful bioactive implants. ACS Biomater. Sci. Eng., 3, 1245–1261. DOI: 10.1021/acsbiomaterials.6b00604.
Costa R.G.F., Brichi G.S., Ribeiro C., Mattoso L.H.C., 2016. Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polym. Bull., 73, 2973–2985. DOI: 10.1007/s00289-016-1635-1.
Daristotle J.L., Behrens A.M., Sandler A.D. Kofinas P., 2016. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces, 8, 34951–34963. DOI: 10.1021/acsami.6b12994.
Deneff J.I.,Walton K.S., 2019. Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. Chem. Eng. Sci., 203, 220–227. DOI: 10.1016/j.ces.2019.03.012.
Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L.G., Medeiros E.S., Sampaio F.C., Oliveira J.E., Oliveira M.P., Galvão L.S., Bulhões E.O., Santos A.S.F., 2019. Antimicrobial coatings based on poly(dimethyl siloxane) and silver nanoparticles by solution blow spraying. Prog. Org. Coat., 133, 19–26. DOI: 10.1016/j.porgcoat.2019.04.032.
François S., Chakfé N., Durand B., Laroche G., 2009. A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater., 5, 2418–2428. DOI: 10.1016/j.actbio.2009.03.013.
Gregory C.A., Gunn W.G., Peister A., Prockop D.J., 2004. An Alizarin red-based assay of mineralisation by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem., 329, 77–84. DOI: 10.1016/j.ab.2004.02.002.
Huang Y., Song J., Yang C., Long Y., Wu H., 2019. Scalable manufacturing and applications of nanofibers. Mater. Today, 28, 98–113. DOI: 10.1016/j.mattod.2019.04.018.
Jang J.-H., Castano O., Kim H.-W., 2009. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Delivery Rev., 61, 1065–1083. DOI: 10.1016/j.addr.2009.07.008.
Kopec K.,Wojasinski M., Ciach T., 2020. Superhydrophilic polyurethane/polydopamine nanofibrous materials enhancing cell adhesion for application in tissue engineering. Int. J. Mol. Sci., 21, 6798. DOI: 10.3390/ijms21186798.
Latocha J., Wojasinski M., Jurczak K., Gierlotka S., Sobieszuk P., Ciach T., 2018. Precipitation of hydroxyapatite nanoparticles in 3D-printed reactors. Chem. Eng. Process. Process Intensif., 133, 221–233. DOI: 10.1016/j.cep.2018.10.001.
Lewis R.J., Sr (Ed.), 1997. Hawley’s Condensed chemical dictionary. 13th edition. John Wiley & Sons, Inc., New York, NY, p. 88. Li J.P., Habibovic P., van den Doel M., Wilson C.E., de Wijn J.R., van Blitterswijk C.A., de Groot K., 2007. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28, 2810–2820. DOI: 10.1016/j.biomaterials.2007.02.020.
McEvoy G.K. (Ed.), 1992. American hospital formulary service – Drug information 92. American Society of Hospital Pharmacists, Inc., Bethesda, MD (Plus Supplements 1992), 276.
Medeiros E.L.G., Gomes D.S., Santos A.M.C., Vieira R.H., de Lima I.L., Rocha F.S., de S. Castro-Filice L., Medeiros E.S., Neves G.A., Menezes R.R., 2021. 3D nanofibrous bioactive glass scaffolds produced by one-step spinning process. Ceram. Int., 47, 102–110. DOI: 10.1016/j.ceramint.2020.08.112.
Medeiros E.S., Glenn G.M., Klamczynski A.P., Orts W.J., Mattoso L.H.C., 2009. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113, 2322–2330. DOI: 10.1002/app.30275.
Ravichandran R., Ng C.C., Liao S., Pliszka D., Raghunath M., Ramakrishna S., Chan C.K., 2012. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed. Mater., 7, 015001. DOI: 10.1088/1748-6041/7/1/015001.
Reneker D.H., Yarin A.L., 2008. Electrospinning jets and polymer nanofibers. Polymer, 49, 2387–2425. DOI: 10.1016/j.polymer.2008.02.002.
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B., 2017. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng., C, 78, 1246–1262. DOI: 10.1016/j.msec.2017.05.017.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., 2012. Fiji: an opensource platform for biological-image analysis. Nat. Methods, 9, 676–682. DOI: 10.1038/nmeth.2019.
Sharma B., Elisseeff J.H., 2004. Engineering structurally organised cartilage and bone tissues. Ann. Biomed. Eng., 32, 148–159. DOI: 10.1023/b:abme.0000007799.60142.78.
Tammaro L., Vittoria V., Wyrwa R., Weisser J., Beer B., Thein S., Schnabelrauch M., 2014. Fabrication and characterisation of electrospun polylactide/��-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. BioNanoMaterials, 15, 9–20. DOI: 10.1515/bnm-2014-0001.
Tomecka E., Wojasinski M., Jastrzebska E., Chudy M., Ciach T., Brzozka Z., 2017. Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater. Sci. Eng., C, 75, 305–316. DOI: 10.1016/j.msec.2017.02.055.
Tutak W., Sarkar S., Lin-Gibson S., Farooque T.M., Jyotsnendu G., Wang D., Kohn J., Bolikal D., Simon C.G., 2013. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials, 34, 2389–2398. DOI: 10.1016/j.biomaterials.2012.12.020.
Wojasinski M., Pilarek M., Ciach T., 2014. Comparative studies of electrospinning and solution blow spinning processes for the production of nanofibrous poly(L-lactic acid) materials for biomedical engineering. Pol. J. Chem. Technol., 16, 43–50. DOI: 10.2478/pjct-2014-0028.
Zhang L., Kopperstad P.,West M., Hedin N., Fong H., 2009. Generation of polymer ultrafine fibers through solution (air-) blowing. J. Appl. Polym. Sci., 114, 3479–3486. DOI: 10.1002/app.30938.

Date

2022.01.13

Type

Article

Identifier

DOI: 10.24425/cpe.2021.138931

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×