Details

Title

Review on the structured light properties: rotational features and singularities

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

2

Authors

Affiliation

Angelsky, Oleg V. : Taizhou Research Institute of Zhejiang University, Taizhou, China ; Angelsky, Oleg V. : Chernivtsi National University, Chernivtsi, Ukraine ; Bekshaev, Aleksandr Ya. : Physics Research Institute, Odessa I. I. Mechnikov National University, Odessa, Ukraine ; Mokhun, Igor I. : Chernivtsi National University, Chernivtsi, Ukraine ; Vasnetsov, Mikhail V. : Department of Optical Quantum Electronics, Institute of Physics of the NAS of Ukraine, Kyiv, Ukraine ; Zenkova, Claudia Yu. : Taizhou Research Institute of Zhejiang University, Taizhou, China ; Zenkova, Claudia Yu. : Chernivtsi National University, Chernivtsi, Ukraine ; Hanson, Steen G. : DTU Fotonik, Department of Photonics Engineering, DK-4000 Roskilde, Denmark ; Zheng, Jun : Taizhou Research Institute of Zhejiang University, Taizhou, China

Keywords

singularity spin and orbital angular momentum ; energy flow ; structured light ; optical vortices

Divisions of PAS

Nauki Techniczne

Coverage

e140860

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Descartes, R. Principia Phylosophiae. (Amsterdam, 1644); Dioptrique, Meteores. (Leyden, 1637).
  2. Descartes, R. [The World]. Le Monde, Ou Traité De La Lumière. (Abaris Books, 1979).
  3. Fresnel, A. Œuvres Complètes. (Imprimerie Imperiale, France, 1866–1870). (In French)
  4. Faraday, M. Experimental Researches in Chemistry and Physics. (Taylor & Francis, 1859). https://doi.org/10.5962/bhl.title.30054
  5. Maxwell, J. C. Treatise on Electricity and Magnetism. (Cambridge University Press, 1873). https://doi.org/10.1017/CBO9780511709333
  6. Sadowsky, A. Acta et Commentationes Imp. Universitatis Jurievensis (olim Dorpatensis) 7, 1–3 (1899). (In Russian)
  7. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. R. Soc. Lond. A 82, 560–567 (1909). https://doi.org/10.1098/rspa.1909.0060
  8. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Rev. 50, 115–125 (1939). https://doi.org/10.1103/PhysRev.50.115
  9. Ignatowski, W. S. Diffraction by a lens of arbitrary aperture. Opt. Inst. I, 1–36 (1919). https://doi.org/10.1017/9781108552264.019
  10. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. Opt. Soc. Am. 57, 1171–1176 (1967). https://doi.org/10.1364/JOSA.57.001171
  11. Baranova, N.B. et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. Opt. Soc. Am. 73, 525–528 (1983). https://doi.org/10.1364/JOSA.73.000525
  12. Angelsky, O. V., Maksimyak, P. P., Magun, I. I. & Perun, T. O. On spatial stochastiation of optical fields and feasibilities of optical diagnostics of objects with large phase inhomogeneities. Spectr. 71, 123–128 (1991).
  13. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6
  14. Gottfried, K. Quantum Mechanics. (Benjamin, 1966).
  15. Simmonds, J. W. & Guttmann, M. J. States, Waves and Photons. (Addison-Wesley, 1970).
  16. Berestetskii, V. B., Lifshits, E. M. & Pitaevskii, L. P. Quantum Electrodynamics. (Butterworth-Heinemann, 1982). https://doi.org/10.1016/C2009-0-24486-2
  17. Allen, L., Beijersbergen, M. V., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  18. Bazhenov, V. Yu., Vasnetsov, M. V. & Soskin M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431(1990).
  19. Soskin, M. S. & Vasnetsov, M. V. Nonlinear singular optics. Pure Appl. Opt. 7, 301–311 (1998). https://doi.org/10.1088/0963-9659/7/2/019
  20. Soskin, M. S. & Vasnetsov, M. V. Chapter 4–Singular optics. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4
  21. Nye, J. F. & Berry, M. V. Dislocations in wave trains. R. Soc. Lond. 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012
  22. Berry, M. V. Singularities in Waves and Rays. in Physics of Defects. (eds. Balian, R., Klaeman, M. & Poirier, J. P.) 453–549 (North Holland Publishing Company, 1981).
  23. Nye, J. F. Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations. (Institute of Physics Publishing: Bristol and Philadelphia, 1999).
  24. Gbur, G., Tyson, R. K., Vortex beam propagation through atmospheric turbulence and topological charge conservation. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25, 225–230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  25. Angelsky, O. V. et al. Structured light: ideas and concepts. Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114
  26. Andrews, D. L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374027-4.X0001-1
  27. Bekshaev, A., Bliokh, K. & Soskin, M. Internal flows and energy circulation in light beams. J Opt. 13, 053001 (2011). https://doi.org/10.1088/2040-8978/13/5/053001
  28. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Opt. 19, 013001 (2017).
    https://doi.org/10.1088/2040-8978/19/1/013001
  29. Rotenberg, N. & Kuiper, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285
  30. Aiello, A. & Banzer, P. The ubiquitous photonic wheel. Opt. 18, 085605 (2016). http://dx.doi.org/10.1088/2040-8978/18/8/085605
  31. Aiello, A. et al. From transverse angular momentum to photonic wheels. Photonics 9, 789–795 (2015). https://doi.org/10.1038/nphoton.2015.203
  32. Bekshaev, A. & Soskin, M. S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–348 (2007). https://doi.org/10.1016/j.optcom.2006.10.057
  33. Bliokh, K. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/j.physrep.2015.06.003
  34. Dennis, M. , O’Holleran, K. & Padgett, M. J. Chapter 5 Singular optics: optical vortices and polarization singularities. Prog. opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9
  35. Basisty, I. , Soskin, M. S. & Vasnetsov, M. V. Optical wavefront dislocations and their properties. Opt. Comm. 119, 604–612 (1995). https://doi.org/10.1016/0030-4018(95)00267-C
  36. Soskin, M. , Vasnetsov, M. V. & Basisty, I. V. Optical wavefront dislocations. Proc. SPIE 2647, 57–62 (1995). https://doi.org/10.1117/12.226741
  37. White, A. et al. Interferometric measurements of phase singulari­ties in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651
  38. Heckenberg, N. , McDuff, R., Smith, C. P. & White, A. G. Generation of optical singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). https://doi.org/10.1364/OL.17.000221
  39. Angelsky, O. Optical Correlation Techniques and Applications. (Bellingham: SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999
  40. Allen, L., Padgett, M. & Babiker, M. IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999). https://doi.org/10.1016/S0079-6638(08)70391-3
  41. Bekshaev, A., Soskin, M. & Vasnetsov M. Paraxial Light Beams with Angular Momentum. (New York: Nova Science Publishers, 2008). https://arxiv.org/abs/0801.2309
  42. Gbur, G. Singular Optics. (CRC Press, 2016). https://doi.org/10.1201/9781315374260
  43. Senthilkumaran, P. Singularities in Physics and Engineering. (IOP Publishing,2018). https://doi.org/10.1088/978-0-7503-1698-9
  44. Yao, A. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). https://doi.org/10.1364/AOP.3.000161
  45. Barnett, S. , Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 375, 0444 (2017). http://doi.org/10.1098/rsta.2015.0444
  46. Habraken, S. M. Light with A Twist: Ray Aspects (Leiden University, Netherlands, 2010).
  47. Alexeyev, C. N. Propagation of optical vortices in periodically perturbed weakly guiding optical fibres. (Institute of Physical Optics of the Ministry of Education and Science of Ukraine, Lviv, 2010). (in Russian)
  48. Ruchi, Senthilkumaran P. & Pal, S. Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020). https://doi.org/10.1155/2020/2812803
  49. Born, M. & Wolf, E. Principles of Optics. (Pergamon, 1968).
  50. Landau, L. & Lifshitz, E. M. The classical theory of fields. Course of theoretical physics Vol. 2. (Pergamon, 1975). https://doi.org/10.1016/C2009-0-14608-1
  51. Berry, M. Optical currents. J. Opt. A: Pure Appl. Opt. 11, 11094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001
  52. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  53. Bekshaev, A. & Karamoch, A. I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281, 1366–1374 (2008). https://doi.org/10.1016/j.optcom.2007.11.032
  54. Bekshaev, A. , Karamoch, A. I., Khoroshun, G. M., Masajada, J. & Ryazantsev, O. I. Special features of a functional beam splitter: diffraction grating with groove bifurcation. in Advances in Engineering Research vol. 28. (ed. Petrova, V. M.) 1–86 (Nova Science Publishers New York, 2019).
  55. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Phys. 46, 15–28 (2005). https://doi.org/10.1080/0010751042000275259
  56. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Lett. 32, 3053–3055 (2007). https://doi.org/10.1364/OL.32.003053
  57. Abramovitz, M. & Stegun, I. Handbook of Mathematical Functions (National Bureau of Standards, 1964)
  58. Berry, M. Paraxial beams of spinning light. SPIE 3487, 6–11 (1998). https://doi.org/10.1117/12.317704
  59. Roux, F. Distribution of angular momentum and vortex morphology in optical beams. Opt. Commun. 242, 45–55 (2004). https://doi.org/10.1016/j.optcom.2004.08.006
  60. Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Commun. 283, 2006–2016 (2010). https://doi.org/10.1016/j.optcom.2010.01.012
  61. Baranova, N. , Zel’dovich, B. Ya., Mamaev, A. V., Philipetskii, N. F. & Shkunov, V. V. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett. 33, 195–199 (1981).
  62. Beijersbergen, M. , Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D
  63. Bekshaev, A. & Popov, A. Optical system for Laguerre-Gaussian / Hermite-Gaussian mode conversion. SPIE 4403, 296–301 (2001). https://doi.org/10.1117/12.428283
  64. Soroko, L. Holography and Coherent Optics. (Springer, Boston, 1980). https://doi.org/10.1007/978-1-4684-3420-0
  65. Petrov, D. Vortex–edge dislocation interaction in a linear medium. Opt.Commun.188, 307–312 (2001). https://doi.org/10.1016/S0030-4018(01)00993-2
  66. Cheng, S. et al. Composite spiral zone plate. IEEE Photon. J. 11, 1–11(2018). https://doi.org/10.1109/JPHOT.2018.2885004
  67. Sabatyan, A. & Behjat, Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Quantum Electron. 49, 371 (2017).
    https://doi.org/10.1007/s11082-017-1211-4
  68. Bekshaev, A. & Karamoch, A. I. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281, 3597–3610 (2008). https://doi.org/10.1016/j.optcom.2008.03.070
  69. Anan'ev, Y. & Bekshaev, A. Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994).
  70. Bekshaev, A. , Mohammed, K. A. & Kurka, I. A. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt. 53, B27–B37 (2014). https://doi.org/10.1364/AO.53.000B27
  71. Oemrawsingh, S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). https://doi.org/10.1364/AO.43.000688
  72. Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. Opt. A Pure Appl. Opt. 6, 259 (2004). https://doi.org/10.1088/1464-4258/6/2/018
  73. Kotlyar, V. V. et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.  Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(5), 849–861(2005). https://doi.org/10.1364/JOSAA.22.000849
  74. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Lett. 27, 1141–1143 (2002). https://doi.org/10.1364/OL.27.001141
  75. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Let. 27, 1875–1877 (2002). https://doi.org/10.1364/OL.27.001875
  76. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Express 14, 4208–4220 (2006). https://doi.org/10.1364/OE.14.004208
  77. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Rev. Lett. 96, 163905 (2006). https://doi.org/10.1103/PhysRevLett.96.163905
  78. Basistiy, I. , Pas’ko, V. A., Slyusar, V. V., Soskin, M. S & Vasnetsov, M. V. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). https://doi.org/10.1088/1464-4258/6/5/003
  79. Gbur, G. Fractional vortex Hilbert’s hotel. Optica 3, 222–225 (2016). https://doi.org/10.1364/OPTICA.3.000222
  80. Freund, I. & Shvartsman, N. Wave-field phase singularities: the sign principle. Rev. A 50, 5164 (1994). https://doi.org/10.1103/PhysRevA.50.5164
  81. Soskin, S., Gorshkov, V. N., Vasnetsov, M. V., Malos, J. T. & Heckenberg, N. R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  82. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Rotational frequency shift. Rev. Lett. 78, 2539–2542 (1997). https://doi.org/10.1103/PhysRevLett.78.2539
  83. Garetz, B. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981). https://doi.org/10.1364/JOSA.71.000609
  84. Garetz, B. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave plate. Opt. Commun. 31, 1–3 (1979).
    https://doi.org/10.1016/0030-4018(79)90230-X
  85. Simon, R., Kimble, H. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys. Rev. Lett. 61, 19–22 (1988). https://doi.org/10.1103/PhysRevLett.61.19
  86. Bretenaker, F.& Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Rev. Lett. 65, 2316 (1990). https://doi.org/10.1103/PhysRevLett.65.2316
  87. Courtial, J., Dholakia, K., Robertson, D. , Allen, L. & Padgett, M. J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 80, 3217–3219 (1998). https://doi.org/10.1103/PhysRevLett.80.3217
  88. Courtial, J., Robertson, D. , Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998). https://doi.org/10.1103/PhysRevLett.81.4828
  89. Bekshaev, A. et al. Observation of rotational Doppler effect with an optical-vortex one-beam interferometer. Ukr. J. Phys. 47, 1035–1040 (2002). http://archive.ujp.bitp.kiev.ua/files/journals/47/11/471105p.pdf
  90. Basistiy, I.V., Bekshaev, A. , Vasnetsov, M. V., Slyusar, V. V. & Soskin, M. S. Observation of the rotational Doppler effect for optical beams with helical wave front using spiral zone plate. JETP Lett. 76, 486–489 (2002). https://doi.org/10.1134/1.1533771
  91. Basistiy, I. , Slyusar, V. V., Soskin, M. S., Vasnetsov, M. V. & Bekshaev, A. Ya. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. Opt. Lett. 28, 1185–1187 (2003). https://doi.org/10.1364/OL.28.001185
  92. Bekshaev, A. & Popov, A. Non-collinear rotational Doppler effect. SPIE 5477, 55–66 (2004). https://doi.org/10.1117/12.558759
  93. Bekshaev, A. & Grimblatov, V. M. Energy method of analysis of optical resonators with mirror deformations. Opt. Spectrosc. 58, 707–709 (1985).
  94. Bekshaev, A. , Grimblatov, V. M. & Kalugin, V. V. Misaligned Ring Resonator with A Lens-Like Medium. (Odessa University, 2016). https://doi.org/10.48550/arXiv.1612.01407
  95. Bekshaev, A. Manifestation of mechanical properties of light waves in vortex beam optical systems. Opt. Spectrosc. 88, 904–910 (2000). https://doi.org/10.1134/1.626898
  96. Bekshaev, A. Mechanical properties of the light wave with phase singularity. Proc. SPIE 3904, 131–139 (1999). https://doi.org/10.1117/12.370396
  97. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M.V. Rotation of arbitrary optical image and the rotational Doppler effect. Ukr. J. Phys. 49, 490–495 (2004). http://archive.ujp.bitp.kiev.ua/files/journals/49/5/490512p.pdf
  98. Vinitskii, S. I., Derbov, V. L, Dubovik, V. M., Markovski, B. & Stepanovskii, Yu. P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Usp. 33, 403–429 (1990). https://doi.org/10.1070/PU1990v033n06ABEH002598
  99. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. An optical vortex as a rotating body: mechanical features of a singular light beam. J. Opt. A Pure Appl. Opt. 6, S170–S174 (2004). https://doi.org/10.1088/1464-4258/6/5/004
  100. Allen, L. & Padgett, M. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000). https://doi.org/10.1016/S0030-4018(00)00960-3
  101. Bekshaev, A. Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam. J. Opt. A Pure Appl. Opt. 11, 094004 (2009). https://doi.org/10.1088/1464-4258/11/9/094004
  102. Bekshaev, A. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 51, C13–C16 (2012). https://doi.org/10.1364/AO.51.000C13
  103. Lekner, J. TM, TE, and ‘TEM’ beam modes: exact solutions and their problems. Opt. A Pure Appl. Opt. 3, 407–412 (2001). https://doi.org/10.1088/1464-4258/3/5/314
  104. Lekner, J. Phase and transport velocities in particle and electromagnetic beams. Opt. A Pure Appl. Opt. 4, 491–499 (2002). https://doi.org/10.1088/1464-4258/4/5/301
  105. Lekner, J. Polarization of tightly focused laser beams. Opt. A Pure Appl. Opt. 5, 6–14 (2003). https://doi.org/10.1088/1464-4258/5/1/302
  106. He, H., Friese, M. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995). https://doi.org/10.1103/PhysRevLett.75.826
  107. Rubinsztein-Dunlop, H., Nieminen, T. , Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998). https://doi.org/10.1016/S0065-3276(08)60523-7
  108. Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996). https://doi.org/10.1364/OL.21.000827
  109. Gahagan, K. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524
  110. Simpson, N. , McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998). https://doi.org/10.1080/09500349808231712
  111. Simpson, N. , Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996). https://doi.org/10.1080/09500349608230675
  112. O’Neil, A. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000). https://doi.org/10.1016/S0030-4018(00)00989-5
  113. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Rev. E 59, 3676–3681 (1999). https://doi.org/10.1103/PhysRevE.59.3676
  114. Friese, M. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001). https://doi.org/10.1063/1.1339995
  115. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). https://doi.org/10.1126/science.1058591
  116. Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935
  117. Bowman, R. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401
  118. Padgett, M. & Bowman, R. Tweezers with a twist. photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
  119. Jack, Ng., Lin, Zh. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601
  120. Yuehan, T. et al. Multi-trap optical tweezers based on composite vortex beams. Commun. 485, 126712 (2021). https://doi.org/10.1016/j.optcom.2020.126712
  121. Chun-Fu, K. & Chu, S.-Ch. Numerical study of the properties of optical vortex array laser tweezers. Express 21, 26418–26431 (2013). https://doi.org/10.1364/OE.21.026418
  122. Mokhun, I. Introduction to Linear Singular Optics. in Optical Correlation Techniques and Applications (ed. Angelsky, O.) 1–132 (Bellingham, SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999.ch1
  123. Mokhun, I .I. Introduction to Linear Singular Optics (Chernivtsi National University, 2012) (In Russian)
  124. Angelsky, O. , Besaga, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Proc. SPIE 3317, 97–100 (1997). https://doi.org/10.1117/12.295666
  125. O’Holleran, K., Padgett, M. & Dennis, M.  R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 14, 3039–3044 (2006). https://doi.org/10.1364/OE.14.003039
  126. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves. Opt. 51, 1872–1878 (2012). https://doi.org/10.1364/AO.51.001872
  127. Kapoor, A., Kumar, M., Senthilkumaran, P. & Joseph, J. Optical vortex array in spatially varying lattice. Commun. 365, 99–102 (2016). https://doi.org/10.1016/j.optcom.2015.11.074
  128. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Complex 3D vortex lattice formation by phase-engineered multiple beam interference. J. Opt. 2012, 863875 (2012). https://doi.org/10.1155/2012/863875
  129. Galvez, E. , Rojec, B. L., Beach, K. & Cheng, X. C-point Singularities in Poincaré Beams (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1192&rep=rep1&type=pdf
  130. Mokhun, A. , Soskin, M. S. & Freund, I. Elliptic critical points in paraxial optical fields. Opt. Commun. 208, 223–253 (2002). https://doi.org/10.1016/S0030-4018(02)01585-7
  131. Mokhun, I., Galushko, Yu., Kharitonova, Ye., Viktorovskaya, Yu. & Khrobatin, R. Elementary heterogeneously polarized field modeling. Lett. 36, 2137–2139 (2011). https://doi.org/10.1364/OL.36.002137
  132. Angelsky, O. , Dominikov, N. N., Maksimyak, P. P. & Tudor, T. Experimental revealing of polarization waves. Appl. Opt. 38, 3112–3117 (1999). https://doi.org/10.1364/AO.38.003112
  133. Angelsky, O. , Hanson, S. G., Zenkova, C. Yu., Gorsky, M. P. & Gorodin’ska, N. V. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express, 17, 15623–15634 (2009). https://doi.org/10.1364/OE.17.015623
  134. Mokhun, I., Khrobatin, R. & Viktorovskaya, Ju. The behavior of the Poynting vector in the area of elementary polarization singularities. Appl. 37, 261–277 (2007).
  135. Khrobatin, R. & Mokhun, I. Shift of application point of angular momentum in the area of elementary polarization singularity. Opt. A Pure Appl. Opt. 10, 064015 (2008).
    https:/doi.org/10.1088/1464-4258/10/6/064015
  136. Angelsky, O. , Besaga, R. N., Mokhun, I. I., Soskin, M. S. & Vasnetsov, M. V. Singularities in vectoral fields. Proc. SPIE 3904, 40–55 (1999). https://doi.org/10.1117/12.370443
  137. Mokhun, I. , Arkhelyuk, A., Galushko, Yu., Kharitonova, Ye., & Viktorovskaya, Ju. Experimental analysis of the Poynting vector characteristics. Appl. Opt. 51, C158–C162 (2012). https://doi.org/10.1364/AO.51.00C158
  138. Mokhun, I., Arkhelyuk, A. , Galushko, Yu., Kharitonova, Ye. & Viktorovskaya, Yu. Angular momentum of an incoherent Gaussian beam. Appl. Opt. 53, B38–B42 (2014). https://doi.org/10.1364/AO.53.000B38
  139. Andronov, A. , Vitt, A. A. & Khaikin, S. E. Theory of Oscillators (Pergamon Press, 1966).
  140. Bekshaev, A. Spin angular momentum of inhomogeneous and transversely limited light beams. Proc. SPIE 6254, 56–63 (2006). https://doi.org/10.1117/12.679902
  141. O’Neil, A. , MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601
  142. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Amer. A 20, 1635–1643 (2003). https://doi.org/10.1364/JOSAA.20.001635
  143. Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
  144. Bliokh, K. , Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
  145. Angelsky, O. et al. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express 19, 660–672 (2011). https://doi.org/10.1364/OE.19.000660
  146. Zenkova, C. Yu., Gorsky, M. , Maksimyak, P. P. & Maksimyak, A. P. Optical currents in vector fields. App. Opt. 50, 1105–1112 (2011) https://doi.org/10.1364/AO.50.001105
  147. Angelsky, V., Zenkova, C. Yu., Hanson, S. G. & Zheng, J. Extraordinary manifestation of evanescent wave in biomedical application. Front. Phys. 8, 159 (2020). https://doi.org/10.3389/fphy.2020.00159
  148. Angelsky, O., Bekshaev. A., Dragan, G., Maksimyak, P., Zenkova, C.Y. & Zheng, J., Structured light control and diagnostics using optical crystals. Phys. 9, 368 (2021). https://doi.org/10.3389/fphy.2021.715045
  149. Angelsky, O. Introduction to Singular Correlation Optics. (SPIE Press, 2019).
  150. Allen, L. & Padgett, M. Response to question #79. Does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002). https://doi.org/10.1119/1.1456075
  151. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. Opt. 13, 044017 (2011). https://doi.org/10.1088/2040-8978/13/4/044017
  152. Stewart, A. M. Angular momentum of the electromagnetic field: the plane wave paradox resolved. J. Phys. 26, 635–641 (2005). https://doi.org/10.1088/0143-0807/26/4/008
  153. Bekshaev, A. “Spin” and “Orbital” Flows in A Circularly Polarized Paraxial Beam: Orbital Rotation Without Orbital Angular Momentum. https://arxiv.org/ftp/arxiv/papers/0908/0908.2526.pdf (2009).
  154. Bekshaev, A. & Vasnetsov, M. Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam. in Twisted Photons. Applications of Light with Orbital Angular Momentum (eds. Torres, J. & Torner, L.) chapter 2 (Weinheim: Wiley-VCH, 2011). https://doi.org/10.1002/9783527635368.ch2
  155. Bekshaev, A. & Soskin, M. Transverse energy flows in vectorial fields of paraxial light beams. SPIE 6729, 67290G (2007). https://doi.org/10.1117/12.751952
  156. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. Nanophotonics 2, 021875 (2008). https://doi.org/10.1117/1.2992045
  157. Gouesbet, G. T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. Quant. Spectrosc. Radiat. Transf. 230, 247–281 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.004
  158. Nieminen, T. , Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011). https://doi.org/10.1080/09500340.2010.528565
  159. Bekshaev, A. , Bliokh, K. Y. & Nori, F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt. Express 21, 7082–7095 (2013). https://doi.org/10.1364/OE.21.007082
  160. Аngelsky, O., Bekshaev, A., Maksimyak, P., Maksimyak, A. & Hanson, S. Measurement of small light absorption in microparticles by means of optically induced rotation. Express 23, 7152–7163 (2015). https://doi.org/10.1364/OE.23.007152
  161. Bekshaev A. , Angelsky O. V., Sviridova S. V. & Zenkova C. Yu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011, 723901 (2011). https://doi.org/10.1155/2011/723901
  162. Bekshaev, A. , Angelsky, O. V., Hanson, S. G. & Zenkova, C. Yu. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847-10 (2012). https://doi.org/10.1103/PhysRevA.86.023847
  163. Bohren, C. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. (Wiley-VCH, 1983).
  164. Bekshaev, A. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013). https://doi.org/10.1088/2040-8978/15/4/044004
  165. Bliokh, K. Y., Bekshaev, A.Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Commun. 5, 3300 (2014). https://doi.org/10.1038/ncomms4300
  166. Liberal, I., Ederra, I., Gonzalo, R. & Ziolkowski, R. W. Electromagnetic force density in electrically and magnetically polarizable media. Rev. A 88, 053808 (2013). https://doi.org/10.1103/PhysRevA.88.053808
  167. Nieto-Vesperinas, M., Saenz, J. , Gomez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428
  168. Canaguier-Durand, A., Cuche, A., Cyriaque, G. & Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Rev. A 88, 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831
  169. Bliokh, K. , Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phy. 15, 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
  170. Xu, X. & Nieto-Vesperinas, M. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett. 123, 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902
  171. Nieto-Vesperinas, M. & Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Rev. Res. 3, 043080 (2021). https://doi.org/10.1103/PhysRevResearch.3.043080
  172. Bekshaev, A., Kontush, S., Popov, A. & Van Grieken, R. Application of light beams with non-zero angular momentum in optical study of micrometer-size aerosol particles. SPIE 4403, 287–295 (2001). https://doi.org/10.1117/12.428282
  173. Bekshaev, A. Abraham-Based Momentum and Spin of Optical Fields Under Conditions of Total Reflection. https://arxiv.org/ftp/arxiv/papers/1710/1710.01561.pdf (2017).
  174. Angelsky, O. V. et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Express 20, 3563–3571 (2012). https://doi.org/10.1364/OE.20.003563
  175. Angelsky, O.V. et al. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Express 20, 11351–11356 (2012). https://doi.org/10.1364/OE.20.011351
  176. Angelsky, O. V., Bekshaev, A.  Ya., Maksimyak, P.  P. & Polyanskii, P. V. Internal energy flows and optical trapping. Photonic  News 25, 20–21 (2014).
  177. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Rev. X 5, 011039 (2015). https://doi.org/10.1103/PhysRevX.5.011039
  178. Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Phys. 12, 731–735 (2016). https//doi.org/10.1038/nphys3732
  179. Bekshaev, A. Y. Dynamical characteristics of an electromagnetic field under conditions of total reflection. Opt. 2, 045604 (2018). https://doi.org/10.1088/2040-8986/aab035
  180. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801
  181. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). https://doi.org/1126/science.aaa9519
  182. Bliokh, K. Y. Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Photonics 9, 796 (2015). https://doi.org/10.1038/nphoton.2015.201
  183. Skelton, S. E. et al. Evanescent wave optical trapping and transport of micro and nanoparticles on tapered optical fibers. Quant. Spectrosc. Radiat. Transf. 113, 2512–2520 (2012). https://doi.org/10.1016/j.jqsrt.2012.06.005
  184. Chang, S., Kim, J. T., Jo, J. H. & Lee, S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt. Commun. 139, 252–261 (1997). https://doi.org/10.1016/S0030-4018(97)00144-2
  185. Song, Y. G., Han, B. M. & Chang, S. Force of surface plasmon-coupled evanescent fields on Mie particles. Commun. 198, 7–19 (2001). https://doi.org/10.1016/S0030-4018(01)01484-5
  186. Angelsky, O. V. et al. Influence of evanescent wave on birefringent microplates. Express 25, 2299–2311 (2017). https://doi.org/10.1364/OE.25.002299
  187. Zenkova C. Yu., Ivanskyi, D. I. & Kiyashchuk, T. V. Optical torques and forces in birefringent microplate. Appl. 47, 1–11 (2017). https://doi.org/10.5277/oa170313
  188. Angelsky, O. V., Zenkova, C. Yu. & Ivansky, D. I. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. Optoelectron. Adv. Mater. 20, 217–226 (2018).
  189. Angelsky, O.V. et al. Controllying and manipulation of red blood cells by evanescent waves. Appl. 49, 597–611 (2019). https://doi.org/10.37190/oa190406
  190. Angelsky,  V. et al. Peculiarities of control of erythrocytes moving in an evanescent field. J. Biomed. Opt. 24, 055002 (2019). https://doi.org/10.1117/1.JBO.24.5.055002
  191. Angelsky, O.V. et al. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Mem. Neural Netw. (Inf. Opt.) 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028
  192. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. R. Soc. Lond. 459, 1261 (2003). https://doi.org/10.1098/rspa.2003.1155
  193. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Rev. A 83, 021803(R) (2011). https://doi.org/10.1103/PhysRevA.83.021803
  194. Desyatnikov, A. S., Sukhorukov, A. A. & Kivshar, Y. S. Azimuthons: spatially modulated vortex solitons. Rev. Lett. 95: 20, 203904 (2005). https://doi.org/10.1103/PhysRevLett.95.203904
  195. Kivshar, Y. S. Vortex solitons and rotating azimuthons in nonlinear media. Topologica 2, 005 (2009). https://doi.org/3731/topologica.2.005
  196. Bekshaev, A., Angelsky, O. & Hanson, S.G. Transformations and Evolution of Phase Singularities in Diffracted Optical Vortices. in Advances in Optics: Reviews, Book Series Vol. 1 (ed. Yurish, S. Y.) 345–385 (International Frequency Sensor Association (IFSA), Spain, 2018). http://www.sensorsportal.com/HTML/BOOKSTORE/Advances_in_Optics_Vol_1.pdf
  197. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Commun. 397, 72–83 (2017). https://doi.org/10.1016/j.optcom.2017.03.062
  198. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Localization and migration of phase singularities in the edge-diffracted optical-vortex beams. Opt. 18 024011 (2016). https://doi.org/10.1088/2040-8978/18/2/024011
  199. Bekshaev, A., Khoroshun, A. & Mikhaylovskaya, L. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. Opt. 21, 084003 (2019). https://doi.org/10.1088/2040-8986/ab2c5b
  200. Bekshaev, A. Spin-orbit interaction of light and diffraction of polarized beams. Opt. 19, 085602 (2017). https://doi.org/10.1088/2040-8986/aa746a
  201. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Commun. 193, 9–18 (2001). https://doi.org/10.1016/S0030-4018(01)01262-7
  202. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. Opt. Am. A: Opt. Image Sci. Vis. 25, 881–890 (2008). https://doi.org/10.1364/JOSAA.25.000881
  203. Bekshaev, A. Ya. & Popov, A. Yu. Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. J. Phys. Opt. 3, 249–257 (2002). https://doi.org/10.3116/16091833/3/4/249/2002
  204. Bekshaev, A. Ya. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. Opt. A Pure Appl. Opt. 11, 094003 (2009). https://doi.org/10.1088/1464-4258/11/9/094003
  205. Bekshaev, A. Ya. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. J. Phys. Opt. 12, 10–18 (2011). https://doi.org/10.3116/16091833/12/1/10/2011
  206. Bekshaev, A. Ya. Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach. Rev. A 85, 023842 (2012). https://doi.org/10.1103/PhysRevA.85.023842
  207. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013). https://doi.org/10.1088/2040-8978/15/1/014001

Date

25.03.2022

Type

Reviews

Identifier

DOI: 10.24425/opelre.2022.140860
×