Details

Title

Morphology and Distribution of α-Al and Mn-rich Phases in Al-Si-Mn Alloys under an Electromagnetic Stirring

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 3

Affiliation

Mikolajczak, P. : Poznan University of Technology, Poland

Authors

Keywords

Casting microstructure ; aluminum alloys ; Electromagnetic stirring ; Solidification ; Manganese phases

Divisions of PAS

Nauki Techniczne

Coverage

74-87

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Mondolfo, L.F. (1976). Aluminium alloys: structure and properties. Butterworths & Co.: London, UK.
[2] Glazoff, M.V., Zolotorevsky, V.S., Belov, N.A. (2007). Casting aluminum alloys. Elsevier Science Pub Co.: Amsterdam, The Netherlands. ISBN-10:0080453708, ISBN-13:978-0080453705. https://doi.org/10.1016/B978-0-08-045370-5.X5001-9.
[3] Mikolajczak P., Ratke L. (2014). Three dimensional morphology of mn rich intermetallics in AlSi alloys investigated with X-Ray tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335
[4] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical. Transaction. B. 22, 269-293. https://doi.org/10.1007/BF02651227.
[5] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8(4), 245, 1-23. https://doi.org/10.3390/met8040245.
[6] Nafisi, S., Ghomashchi, R. (2016). Semi-Solid Processing of Aluminum Alloys. Springer: Berlin, Germany. ISBN: 978-3-319-40333-5, DOI: 10.1007/978-3-319-40335-9.
[7] Beil, W.L., Brollo, G.L. & Zoqui, E.J. (2021). A continuous casting device with electromagnetic stirring for production of ssm feedstock using Al-Si alloys. Materials Research. 24(3). https://doi.org/10.1590/1980-5373-MR-2020-0584.
[8] Pacheco, M.G. (2017). Electromagnetic processing of molten light alloys reinforced by micro/nanoparticles. Ph.D. Thesis, Universite Grenoble Alpes UGA, Grenoble, France, 13 March.
[9] Lazaro-Nebreda, J., Patel, J.B. & Fan, Z. (2021). Improved degassing efficiency and mechanical properties of A356 aluminum alloy castings by high shear melt conditioning (HSMC) technology. Journal of Materials Processing Technology. 294, 117146, 1-12. https://doi.org/10.1016/j.jmatprotec.2021.117146.
[10] Li, M., Murakami, Y., Matsui, I., Omura, N. & Tada, S. (2018). Imposition time dependent microstructure formation in 7150 aluminum alloy solidified by an electromagnetic stirring technique. Materials Transactions. 59(10), 1603-1609. https://doi.org/10.2320/matertrans.M2017357.
[11] Jin, C.K. (2018). Microstructure of semi-solid billets produced by electromagnetic stirring and behavior of primary particles during the indirect forming process. Metals. 8(4), 271, 1-15. https://doi.org/10.3390/met8040271.
[12] Mikolajczak, P., Janiszewski, J., Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.). Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
[13] Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si–Fe alloys under an electromagnetic field. Materials. 16(9), 3304, 1-31. https://doi.org/10.3390/ma16093304.
[14] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
[15] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-23. https://doi.org/10.3390/met11111804.
[16] Mikolajczak, P., Genau, A. & Ratke, L. (2017). mushy zone morphology calculation with application of CALPHAD technique. Metals. 7(9), 363, 1-19. https://doi.org/10.3390/met7090363.
[17] Mikolajczak, P., Genau, A., Janiszewski, J. & Ratke, L. (2017). Thermo-Calc prediction of mushy zone in AlSiFeMn alloys. Metals. 7(11), 506, 1-21. https://doi.org/10.3390/met7110506.
[18] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). iron in aluminium alloys—impurity and alloying element. 1st ed., Taylor and Francis Group: London, UK,. https://doi.org/10.1201/9781482265019.
[19] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383, 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
[20] Thermo-Calc 4.1—Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved 5 May 2023 from: www.thermocalc.se.
[21] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
[22] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54(18), 4815-4824. https://doi.org/10.1016/j.actamat.2006.06.013.
[23] Martinez. R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactins A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
[24] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering: A. 283(1-2), 70-75.
[25] Mendoza, R., Alkemper, J., Voorhees, P. (2003). The morphological evolution of dendritic microstructures during coarsening. Metallurgical and Materials Transactions A. 34, 481-489. https://doi.org/10.1007/s11661-003-0084-2.
[26] Kurz, W.D. Fisher, (1992). Fundamentals of Solidification. Trans Tech Public: Bäch, Switzerland, 85-90.
[27] Dantzig, J.A., Rappaz, M. (2009). Solidification. EPFL Press: Lausanne, Switzerland. ISBN 9780849382383.
[28] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Springer: Boston, MA, USA. ISBN 978-0-387-74609-8. https://doi.org/10.1007/b135947.
[29] Wang, C.Y. & Beckermann, C. (1996). Equiaxed dendritic solidification with convection: Part II. numerical simulations for an Al-4 Wt Pct Cu Alloy. Metallurgical and Materials Transactions A. 27A, 2765-2783. https://doi.org/10.1007/BF02652370.
[30] Kattamis, T.Z., Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
[31] Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
[32] Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28, 651-663. https://doi.org/10.1007/s11663-997-0039-x.
[33] Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 22, 569-574. https://doi.org/10.1007/BF02656824.
[34] Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics. Metallurgical Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
[35] Ferreira, A.F., Castro, J.A., Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.
[36] Mullis, A.M. (2003). The effects of fluid flow on the secondary arm coarsening during dendritic solidification. Journal of Materials Science. 38, 2517-2523. https://doi.org/10.1023/A:1023977723475.
[37] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
[38] Ratke, L. & Thieringer, W.K. (1985). The influence of particle motion on ostwald ripening in liquids. Acta Matallurgica. 33, 1793-1802. https://doi.org/10.1016/0001-6160(85)90003-3.
[39] Kasperovich, G., Genau, A., Ratke, L. (2011). Mushy zone coarsening in an AlCu30 alloy accelerated by a rotating magnetic field. Metallurgical and Materials Transactions A. 42, 1657-1666. https://doi.org/10.1007/s11661-010-0542-6.
[40] Diepers, H.J., Beckerman, C. & Steinbach, I. (1999). Simulation of convection and ripening in a binary alloy mush using the phase field method. Acta Materialia. 47(13), 3663-3678. https://doi.org/10.1016/S1359-6454(99)00239-6.
[41] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
[42] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and Engineering: A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
[43] Jackson, K.A. & Hunt, J.D. (1966). Lamellar and rod eutectic growth. Transactions of the Metallurgical Society of AIME. 236, 1129-1142.
[44] Sous, S. (2000). Instationäre Erstarrung Eutektischer Al-Si Legierungen. Ph.D. Thesis, RWTH, Aachen, Germany,
[45] Ren Z. & Junze J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
[46] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of foundry Engineering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
[47] Fang, X., Shao, G., Liu, Y.Q. & Fan, Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Material Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
[48] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
[49] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141.
[50] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069. [51] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. Supplemental Proceedings: General Paper Selections. 3, 825- 832. DOI: 10.1002/9781118062173.ch104 .

Date

2023.09.15

Type

Article

Identifier

DOI: 10.24425/afe.2023.146665
×