Szczegóły
Tytuł artykułu
Effect of Ni Addition on the Hardness and Impact Resistance of Manganese Cast Steel for Railway Infrastructure CastingsTytuł czasopisma
Archives of Foundry EngineeringRocznik
Accepted articlesAutorzy
Afiliacje
Wróbel, T. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Wróbel, T. : Huta Małapanew Sp. z o.o., Kolejowa 1, 46-040 Ozimek, Poland ; Sobula, S. : AGH University of Science and Technology, Department of Alloys and Cast Composites Engineering, Reymonta 23, 30-059 Kraków, Poland ; Tęcza, G. : AGH University of Science and Technology, Department of Alloys and Cast Composites Engineering, Reymonta 23, 30-059 Kraków, Poland ; Bartocha, D. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Bartocha, D. : Huta Małapanew Sp. z o.o., Kolejowa 1, 46-040 Ozimek, Poland ; Jezierski, J. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Jezierski, J. : Huta Małapanew Sp. z o.o., Kolejowa 1, 46-040 Ozimek, Poland ; Kostrzewa, K. : Huta Małapanew Sp. z o.o., Kolejowa 1, 46-040 Ozimek, PolandSłowa kluczowe
Manganese cast steel ; Nickel ; Railway crossovers ; Hardness ; Impact resistanceWydział PAN
Nauki TechniczneWydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Hadfield R.A. (1888). Hadfield’s manganese steel. Science. 12, 284-286.
- Petrov Y., Gavriljuk V., Berns H. & Schmalt F. (2006). Surface structure of stainless and Hadfield steel after impact wear. Wear. 260(6), 687-691. https://doi.org/10.1016/j.wear.2005.04.009.
- Zhang G., Xing J. & Gao Y. (2006). Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristic. Wear. 260(7-8), 728-734. https://doi.org/10.1016/j.wear.2005.04.010.
- Atabaki M., Jafari S. & Abdollah-Pour H. (2012). Abrasive wear behavior of high chromium cast iron and Hadfield steel - a comparison. Journal of Iron and Steel Research, International. 19(4), 43-50. https://doi.org/10.1016/S1006-706X(12)60086-7.
- Kalandyk B., Tęcza G., Zapała R. & Sobula S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
- Efstathiou C. & Sehitoglu H. (2010). Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Materialia. 58(5), 1479-1488. https://doi.org/10.1016/j.actamat.2009.10.054.
- Jabłońska M. (2016). Structure and properties of a high-manganese austenitic steel strengthened in the result of mechanical twinning in processes of dynamic deformation. Doctoral dissertation, Silesian University of Technology, Gliwice, Poland. (in Polish).
- Głownia J. (2002). Alloy steel castings – application. Kraków: Fotobit. (in Polish).
- Sobczak J. (2013). Foundrymens handbook – Modern foundry engineering. Kraków: STOP. (in Polish).
- Aniołek K. & Herian J. (2013). Burdening and wearing railway switches in exploitation conditions and materials applied for their construction. 2-3, 85-89. (in Polish).
- Havlíček P., Bušová K. (2012). Experience with explosive hardening of railway frogs from Hadfield steel. In Conference Proceedings of 21st International Conference on Metallurgy and Materials METAL, 23 – 25 May 2012 (pp. 705-711). Brno, Czech Republic.
- Dhar S., Danielsen H., Fæster S., Rasmussen C., Zhang Y. & Jensen D. (2019). Crack formation within a Hadfield manganese steel crossing nose. Wear. 438-439, 203049, 1-9. https://doi.org/10.1016/j.wear.2019.203049.
- Ma Y., Mashal A. & Markine V. (2018). Modelling and experimental validation of dynamic impact in 1:9 railway crossing panel. Tribology International. 118, 208-226. https://doi.org/10.1016/j.triboint.2017.09.036.
- Wu T., Ieong H., Hsu W., Chang C. & Lai Y. (2024). Assessment of fatigue crack growth in metro cast manganese steel frogs and inspection strategy. Engineering Failure Analysis. 163(A), 108512, 1-15. https://doi.org/10.1016/j.engfailanal.2024.108512.
- Zambrano O., Tressia G. & Souza R. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621, 1-24. https://doi.org/10.1016/j.engfailanal.2020.104621.
- Machado P., Pereira J., Penagos J., Yonamine T. & Sinatora A. (2017). The effect of in-service work hardening and crystallographic orientation on the micro-scratch wear of Hadfield steel. Wear. 376-377(B), 1064-1073. https://doi.org/10.1016/j.wear.2016.12.057.
- Harzallah R., Mouftiez A., Felder E., Hariri S. & Maujean J. (2010). Rolling contact fatigue of Hadfield steel X120Mn12. Wear. 269(9-10), 647-654. https://doi.org/10.1016/j.wear.2010.07.001.
- Wróbel T., Jezierski J., Bartocha D., Feliks E. & Paleń A. (2024). Quality assessment method for chromite sand to reduce the number of cast steel surface defects. Archives of Foundry Engineering. 24(4), 31-38. https://doi.org/10.24425/afe.2024.151307.