Properties of a snow cover in the vicinity of Arctowski Station, King George Island (West Antarctica) were studied in 1991. Variations of snow quality and physical transformations were analysed against changes of atmospheric parameters, basing on water equivalent index and repeatable examination of snow pits. Essential dependence of snow cover distribution and snow structure from local climatic features and terrain morphology was found. Thawing occurs in the whole mass of snow, with its contribution of both liquid and gas water phases.
Mid-winter rapid rise of temperature in the vicinity of Arctowski Station, King George Island (West Antarctica) was studied in 1991. Depending on circumantarctic migration of cyclones, sudden drop in air pressure and foehn-like phenomenon intensified by local topography occurred. Two such events are described on May 13 and June 28, against meteorological conditions during autumn and winter. Extreme intensification of morphogenetic processes caused degradation of a snow cover, immense meltwater discharge, radical transformation of slopes, effective aeolian activity and dynamic modifications in a sea-shore zone.
Peat soils (FAO — Gelic Histosols) in the southern Bellsund coast area occur on slopes and terraces. They are formed in places favourable for plant growth, i.e. adequately moistened and fertilized largely with bird excrements. These formations belong to moss peats which are generally decomposed weakly and moderately to about 0.5 m depth. Their content of organic matter is equal to about 30-90%, but it is higher in terrace peats. The latter are more acidified than slope peats. The reaction both of slope and terrace peat soils is as a rule, slightly acid or neutral, and CaC03 content does not exceed 10%. As regards the content of macroelements, that of Al is the highest followed by Ca, Fe, Mg and P. Little K and Ti, and only traces of Na are found. Microelements occur in the following sequence: Mn, Zn, Cu, Cr, Ni, Pb, Co, Cd. Particularly Mn, Zn as well as Cu and Cd were found in a higher concentration. Slope peat soils are richer in macro- and microelements than terrace ones, e.g. 4 times in the case of Mg. Peat soils poor in ash parts (up to 25% ash), contain the fewest elements. Some regularities concern also a vertical distribution of the particular profiles but only with regard to terrace peat soils.
The paper presents a spatial distribution of changes of air temperature (T) in the Arctic. Estimates of their spatial relations in the study region were based on a correlation analysis. T in the Arctic is most strongly correlated spatially in winter and spring, and least in summer. The radius of extent of statistically significant correlation coefficients of changes of T at the stations Svalbard Lufthavn, Ostrov Kotelny and Resolute A is equal to 2000-2500 km in winter and 1500-2000 km in summer. An attempt was done to delimit the regions of consistent occurrence of the anomalies T with respect to the signs and magnitudes, as well as of the regions with the most coherent T. The Wroclaw dendrite method was used to solve this problem. Relations of the mean areał T of the climatic regions and of the Arctic as a whole, with the northern hemisphere of temperature and selected climatic factors are presented.