Nauki Techniczne

Archives of Foundry Engineering

Zawartość

Archives of Foundry Engineering | 2025 | Accepted articles

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The study presents a numerical analysis and experimental verification of deflection of the elements of the band that forms the superstructure of a medium-sized fire-fighting and rescue vehicle. The conducted tests were aimed at the selection of the FEM numerical model enabling the identification of the strain of the structure and the determination of the state of deformation under operational loads. The numerical tool used for the analysis was the Ansys software. Based on the conducted tests, it was possible to identify the key areas of the band in which the occurrence of the highest loads is predicted. The use of a numerical solution allows for determining the safe performance level of the designed element before putting it into production. It allows, among other things, to estimate the maximum deflection of a cross-section of a given length loaded perpendicularly and parallel to the direction of extrusion. The cases analyzed in the work are important from the point of view of their application in the construction of a medium rescue and firefighting vehicle.
Przejdź do artykułu

Bibliografia

  1. Miller, W.S., Zhuang, L., Bottema,  J., Wittebrood, A.J., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 1, 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
  2. Fridlyander, N., Sister, V.G., Grushko, O.E., Berstenev, V.V., Sheveleva, L.M. & Ivanova, L.A. (2002). Aluminum alloys: promising materials in the automotive industry. Metal Science and Heat Treatment. 44, 365-370. https://doi.org/10.1023/A:1021901715578.
  3. Nowak, M. (2020). Hard anodic oxide coatings on aluminum and its alloys. Stal, Metale & Nowe Technologie. 1-2, 136-141. (in Polish).
  4. Sheasby, P. G., Pinner, R., & Wernick, S. (2001). The surface treatment and finishing of aluminium and its alloys (Vol. 1, p. 231). Materials Park, OH: ASM International.
  5. Gwóźdź, M. (2007). Design problems of modern aluminum structures. Czasopismo Techniczne. 4-A, 281-286. (in Polish).
  6. Kossakowski, P. (2014). Aluminum facades. Przegląd Budowlany. 2, 39-43. (in Polish). 
  7. Pater, Z., Tomczak, J., Bulzak, T., Knapinski, M., Sawicki, S. & Laber, K. (2021). Determination of the critical damage for 100Cr6 steel under hot forming conditions. Engineering Failure Analysis. 128, 105588, 1-17. https://doi.org/10.1016/j.engfailanal.2021.105588.
  8. Kim, W.J., Kim, H.K., Kim, W.Y. & Han, S.W. (2008) Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys. Materials Science and Engineering: A. 488(1-2), 468-474. https://doi.org/10.1016/j.msea.2007.11.077.
  9. Kim, S.W. & Lee, Y.S. (2014). Comparative study on failure prediction in warm forming processes of Mg alloy sheet by the FEM and ductile fracture criteria. Metallurgical and Materials Transactions B. 45B, 445-453. https://doi.org/10.1007/s11663-013-9886-9.
  10. Jia, W., Ma, L., Le, Q., Zhi, C. & Liu, P., (2019). Deformation and fracture behaviours of AZ31B Mg alloy at elevated temperature under uniaxial compression. Journal of Alloys and Compounds. 783, 863-876. https://doi.org/10.1016/j.jallcom.2018.12.260.
  11. Liu, J., Chen, X., Du, K., Zhou, X, Xiang, N. & Osaka, A. (2020). A modified Bonara damage model for temperature and strain rate-dependent materials in hot forging process. Engineering Fracture Mechanics. 235, 107107. https://doi.org/10.1016/j.engfracmech.2020.107107.
  12. Pater, Z., Tomczak, J. & Bulzak, T. (2020). Establishment of a new hybrid fracture criterion for cross wedge rolling. International Journal of Mechanical Sciences. 167, 105274. https://doi.org/10.1016/j.ijmecsci.2019.105274.
  13. Zhu, Y., Zeng, W., Zhang, F., Zhao, Y., Zhang, X. & Wang, K. (2012). A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy. Materials Science and Engineering: A. A553, 112-118. https://doi.org/10.1016/j.msea.2012.05.100.
  14. Kissel, J.R. & Ferry, R.L. (2002). Aluminium Structures: A Guide to Their Specifications and Design (2nd ed.). John Wiley & Sons, New York. 
  15. Mazzolani, F.M. & Mandara, A. (2002). Modern trends in the use of special metals for the improvement of historical and monumental structures. Engineering Structures. 24(7), 843-856. https://doi.org/10.1016/S0141-0296(02)00023-8.
  16. Kossakowski, P. (2013). Aluminum – an ecological material. Przegląd Budowlany. 10, 36-41. (in Polish).
  17. Lonkwic, P., Usydus, I. & Tofil, A. (2018). Application of the numerical method to determine the deflection of an irregularly shaped aluminum profile. Obróbka metalu, Materiały Eksplatacyjne, Metrologia, Jakość. 3, 38-42. (in Polish).
  18. Dębski, H., Koszałka, G. & Ferdynus, M. (2012). Application of fem in the analysis of the structure of a trailer supporting frame with variable operation parameters. Eksploatacja i Niezawodność – Maintenance and Reliability. 14 (2), 107-114.
  19. Kawałek, A., Bajor, T., Kwapisz, M., Sawicki, S. & Borowski, J. (2021). Numerical modeling of the extrusion process of aluminum alloy 6XXX series section. Journal of Chemical Technology and Metallurgy. 56(2), 375-381.
  20. Bajor, T., Kwapisz, M., Krakowiak, M. & Jurczak, H. (2021). The analysis of the extrusion process of al 6005 alloy section. Journal of Chemical Technology and Metallurgy. 56, 3, 637-642.
  21. Kawałek, A., Rapalska-Nowakowska, J., Dyja, H. & Koczurkiewicz, B. (2013). Physical and numerical modelling of heat treatment the precipitation-hardening complex-phase steel (CP). Metalurgija. 52(1), 23-26.

 

Przejdź do artykułu

Autorzy i Afiliacje

T. Bajor
1
ORCID: ORCID
A. Kułakowska
2
ORCID: ORCID
S. Szkudelski
3
ORCID: ORCID

  1. Czestochowa University of Technology, Czestochowa, Poland
  2. Jan Dlugosz University in Częstochowa, Czestochowa, Poland
  3. Łukasiewicz Research Network - Poznań Institute of Technology, Poznan, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper deals with monitoring the quality of a shaped part of a mould made from H13 tool steel using additive manufacturing. The shaped part of the mould is a key element in the casting of aluminium alloys by high pressure die casting (HPDC) technology and has a major influence on achieving the desired quality of the casting. This paper presents an evaluation methodology which includes the results of surface quality analysis and dimensional accuracy and stability of additively manufactured parts. These analyses were carried out from the production of the mould part to its application in the foundry operating conditions. The comprehensive analyses offer an overall view of the changes caused by individual technological operations. These operations are additive manufacturing, heat treatment, machining, and final coating before implementation into the operating conditions of the foundry. The paper also describes monitoring the quality of the mould part in regular cycles during the production of aluminium castings. This methodology and the results provide new insights in the field of engineering metallurgy.
Przejdź do artykułu

Bibliografia

  1. Hao, B., Lin, G.. (2020). 3D printing technology and its application in industrial manufacturing. In IOP conference series: materials science and engineering, 28-29 December 2019 (pp.022065). Qingdao, China: IOP Publishing. DOI: 10.1088/1757-899X/782/2/022065.
  2. Townsend, A., Senin, N., Blunt, L., Leach, R. & Taylor, ST. (2016). Surface texture metrology for metal additive manufacturing: a review. Precision Engineering. 46, 34-47. DOI: 10.1016/j.precisioneng.2016.06.001.
  3. Djurovic, S., Lazarević, D., Mišić, M., Živče, Š. (2024). 3D printing and CNC machining: materials, technologies, and process parameters. In International Conference of Experimental and Numerical Investigations and New Technologies, June 2023 (pp. 271-276). Springer, Cham.
  4. Li, Z., Zhang, Q., Shi, F., Wang, J., & Pasternak, H. (2024). Geometric properties of steel components with stability and fatigue risks using 3D-laser-scanning. Buildings. 14(1), 168, 1-21. DOI: 10.3390/buildings14010168.
  5. Kongre, V.U., Sherekar, M.R., Akare, D. & Bhagat, P. (2023). Manufacturing of components using rapid prototyping: a review. International Journal of Scientific Research in Science and Technology. 10(2), 739-745. DOI: 10.32628/IJSRST523102102.
  6. Salah, HR, A. (2018). 3D plot mapping of freeform using CNC-CMM: a review. Journal of Applied Physical Science. 10(3), 123-143. https://ikprress.org/index.php/JAPSI/article/view/3183.
  7. Bouguerra, O., Slama, S., Belhadj, A. & Barka, N. (2024). Experimental investigation of SLM parameters effects on roughness of 316L parts. In  Advances in Additive Manufacturing: Materials, Processes and Applications, May 2023 (pp. 228-237). Cham: Springer. DOI: 10.1007/978-3-031-47784-3_27.
  8. Kónya, G. (2024). Investigating the impact of productivity on surface roughness and dimensional accuracy in FDM 3D Printing.  Periodica Polytechnica Transportation Engineering. 52 (2), 128-133. DOI:10.3311/PPtr.22952.
  9. Piscopo, G., Salmi, A. & Atzeni, E. (2023). Investigation of dimensional and geometrical tolerances of laser powder directed energy deposition process. Precision Engineering. 85, 217-225. DOI: 10.1016/j.precisioneng.2023.10.006.
  10. Lin., G. (2021). Application of 3D printing technology in machining and manufacturing. CONVERTER. 1, 79-85
Przejdź do artykułu

Autorzy i Afiliacje

M. Pinta
1 2
ORCID: ORCID
L. Socha
1
ORCID: ORCID
K. Gryc
1
ORCID: ORCID
J. Sviželová
1
ORCID: ORCID
A. Mohamed
1
ORCID: ORCID
K. Koza
1 2
ORCID: ORCID
T. Sellner
1 2
ORCID: ORCID
M. Dvořák
3
M. Roh
4

  1. Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic
  2. Department of Materials and Engineering Metallurgy, Faculty of Mechanical Engineering, University of West Bohemia, Univerzitní 2732/8, 301 00 Plzeň, Czech Republic
  3. Tool Shop Division, MOTOR JIKOV Fostron a.s., Kněžskodvorská 2277, 370 04 České Budějovice, Czech Republic
  4. Tool Shop Division, MOTOR JIKOV Fostron a.s., Kněžskodvorská 2277, 370 04 České Budějovice, Czech Republic`
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Closed cell aluminium foam offers an interesting combination of properties such as high energy absorption, stiffness, strength and low density. These properties give it great potential as an impact absorbing material which can be used in the automotive industry, military, civil engineering and others. To achieve these properties, the structure of the foam is important. The number, shape, regularity and distribution of pores are of great importance. A major disadvantage of aluminium foam is its low viscosity and consequently poor castability.

Casting of aluminium metal foam is achieved by a thermally activated chemical reaction of the foaming agent calcium carbonate (CaCO3). Different amounts of foaming agent and reaction times have been used to achieve defined porosity. With regard to process stability and manufacturing cost, optimal parameters to achieve defined porosity were found using DoE (Design of Experiment) methodology. As a result, longer agitation times were found to produce more homogeneous foams as the calcium carbonate powder was better distributed, consequently more calcium carbonate powder needs to be added as it reacts and is consumed when in contact with the melt. Experiments were performed using gravity casting and simple shapes can be made this way. Efforts are currently being made to establish a manufacturing process that can be used to produce castings with defined geometry.

Przejdź do artykułu

Bibliografia

  1. Rajak, D.K., Gupta, M. (2020). An insight into metal based foams. In Advanced Structured Materials (978-981). Singapore: Springer Singapore.
  2. Costanza, G., Solaiyappan, D. & Tata, M.E. (2023). Properties, applications and recent developments of cellular solid materials: a review. Materials. 16(22), 7076, 1-16. ISSN 1996-1944. DOI:10.3390/ma16227076.
  3. Bhuvanesh, M., Costanza, G. & Tata, M.E. (2023). Research progress on mechanical behavior of closed-cell al foams influenced by different TiH2 and SiC additions and correlation porosity-mechanical properties. Applied Sciences. 13(11), 6755, 1-13. DOI:10.3390/app13116755.
  4. Miyoshi, T., Itoh, M., Akiyama S. & Kitahara, A. (1998). Aluminum foam, “Alporas”: the production process, properties and applications. MRS Proceedings. 521, 133.  ISSN 0272-9172. DOI:10.1557/PROC-521-133.
  5. Ashby, M., Evans, A.G., Flack, N., Gibson, L.J. (2000). Properties of metal foams. In Metal Foams (pp. 40-54). Elsevier. DOI:10.1016/B978-075067219-1/50006-4.
  6. Simancik, F., Rajner W. & Rainhard, LAAG. (2000). Alulight - aluminum foam for lightweight construction. SAE technical paper series. 2000-03-06. DOI:10.4271/2000-01-0337.
  7. Kriszt, B., Kraft, O. & Clemens, H. (2000). Mikrostruktureigenschaften von Alporas Schaum in Abhängigkeit von thermisch mechanischer Belastung. Materialwissenschaft und Werkstofftechnik. 31(6), 478-480. ISSN 0933-5137. DOI:/10.1002/1521-4052(200006)31:6478::AID-MAWE4783.0.CO;2-0.
  8. Kulshreshtha, A. & Dhakad, S.K. (2020). Preparation of metal foam by different methods: a review. Materials Today: Proceedings. 26, 1784-1790. ISSN 22147853. DOI:10.1016/j.matpr.2020.02.375.
  9. Lefebvre, L.P., Banhart J. & Dunard, D.C. (2007). Porous Metals and Metallic Foams. DEStech Publications. ISBN 978-1-932078-28-2.
  10. Rajak, D.K., Gupta, M. (2020). Manufacturing Methods of Metal FoamsAn Insight Into Metal Based Foams: Processing, Properties and Applications. DOI:10.1007/978-981-15-9069-6_3.
  11. Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632. DOI:10.1016/S0079-6425(00)00002-5.
  12. Byakova, A., Gnyloskurenko, S., Vlasov, A., Yevych Y. & Semenov, N. (2022). The mechanical performance of aluminum foam fabricated by melt processing with different foaming agents: a comparative analysis. Metals. 12(8), 1384, 1-10. ISSN 2075-4701. DOI:10.3390/met12081384.
  13. Durakovic, B. (2017). Design of experiments application, concepts, examples: State of the art. Periodicals of Engineering and Natural Sciences (PEN). 5(3). DOI:10.21533/pen.v5i3.145.
  14. Uy, M. & Telford, J.K. (2009). Optimization by Design of Experiment techniques. In 2009 IEEE Aerospace conference proceedings, 7-14 March 2009 (pp. 1-10). DOI:10.1109/AERO.2009.4839625.
Przejdź do artykułu

Autorzy i Afiliacje

Z. Kopanica
1
ORCID: ORCID
A. Herman
1
ORCID: ORCID
A. Kříž
1
ORCID: ORCID

  1. Czech Technical University in Prague, Faculty of Mechanical Engineering, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Oxygen-fuel combustion instead of air combustion for ladle baking has gradually become a new technology for ladle heating in the iron and steel industry. The optimization of oxygen-fuel burner structure is of great significance for the wide application of oxygen-fuel combustion technology in iron and steel enterprises. In this study, a three-dimensional model of 100 ton ladle was established by using the numerical simulation software FLUENT 21.0. The fluid flow, combustion and heat transfer in the process of ladle oxygen baking were studied. The ladle baking effects of four different gas pipeline diameters and four different gas nozzle spacing were compared. The results show that when the gas flow rate and oxygen flow rate are about 1:1, the roasting effect is the best. When the distance between fuel gas nozzle and oxygen nozzle is 150 mm~175 mm, the baking effect of ladle bottom and wall is better. When the diameter of gas pipe is 150 mm, the diameter of oxygen pipe is 60mm, and the distance between gas nozzle and oxygen nozzle is 150mm, the baking efficiency can reach 24.33%. The relevant research provides the basis for the application of oxygen-fuel combustion technology in 100t ladle.
Przejdź do artykułu

Bibliografia

  1. Li, G., Liu, J., Jiang, G. & Liu, H. (2015). Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Advances in Mechanical Engineering. 7(4), 1-13. https://doi.org/10.1177/1687814015575988.
  2. Peng, L., Yu, J., Zhao, H., Zhang, H. & Ziheng, S. (2023). Preliminary Investigation on the application of a semi-lightweight mullite spherical solid waste material in ladle permanent layer. Transactions of the Indian Ceramic Society. 82(4), 287-294. https://doi.org/10.1080/0371750x.2023.2260848.
  3. Yuan, F., He, D., Feng, K., Zhang, M. & Wang, H. (2018). Optimal design and experimental study of ejector for ladle baking. Steel Research International. 89(12), 1800051. https://doi.org/10.1002/srin.201800051.
  4. Deng, S., Xu, A., Yang, G. & Wang, H. (2018). Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle. Steel Research International. 90(3), 18000435. https://doi.org/10.1002/srin.201800435.
  5. Bělohradský, P., Skryja, P. & Hudák, I. (2014). Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics. Energy. 75, 116-126. https://doi.org/10.1016/j.energy.2014.04.026.
  6. Nemitallah, M.A., Habib, M.A., Badr, H.M., Said, S.A., Jamal, A., Ben-Mansour, R., Mokheimer, E.M.A. & Mezghani, K. (2017). Oxy-fuel combustion technology: current status, applications, and trends. International Journal of Energy Research. 41(12), 1670-1708. https://doi.org/10.1002/er.3722.
  7. Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B. & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy. 46(17), 10548-10569. https://doi.org/10.1016/j.ijhydene.2020.12.123.
  8. Xie, W., Ma, J., Wang, D., Liu, Z. & Yang, A. (2024). Research on the carbon reduction technology path of the iron and steel industry based on a multi-objective genetic algorithm. Sustainability. 16(7), 2966, 1-30. https://doi.org/10.3390/su16072966.
  9. Löschau, M. (2018). Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon. Waste Management & Research: The Journal for a Sustainable Circular Economy. 36(4), 342-350. https://doi.org/10.1177/0734242x18755895.
  10. Tian, Y., Yang, S., Le, J., Zhong, F. & Tian, X. (2017). Investigation of combustion process of a kerosene fueled combustor with air throttling. Combustion and Flame. 179, 74-85. https://doi.org/10.1016/j.combustflame.2017.01.021.
  11. Yuan, F., Wang, H.-B., Zhou, P.-L. & Xu, A.-J. (2018). Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity. Journal of Iron and Steel Research International. 25(4), 387-397. https://doi.org/10.1007/s42243-018-0048-9.
  12. Moradi, J., Gharehghani, A. & Mirsalim, M. (2020). Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine. Applied Energy. 276, 115516. https://doi.org/10.1016/j.apenergy.2020.115516.
  13. Shan, S., Chen, B., Zhou, Z. & Zhang, Y. (2022). A review on fundmental research of oxy-coal combustion technology. Thermal Science. 26(2C), 1945-1958. https://doi.org/10.2298/tsci210329238s.
  14. Shi, B., Hu, J. & Ishizuka, S. (2015). Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combustion and Flame. 162(2), 420-430. https://doi.org/10.1016/j.combustflame.2014.07.022.
  15. Wang, H., Lei, Q., Li, P., Liu, C., Xue, Y., Zhang, X., Li, C. & Yang, Z. (2021). Key CO2 capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells. International Journal of Coal Science & Technology. 8(3), 383-393. https://doi.org/10.1007/s40789-021-00445-1.
  16. Toftegaard, M.B., Brix, J., Jensen, P.A. Glarborg, P. & Jensen, A.D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science. 36(5), 581-625. https://doi.org/10.1016/j.pecs.2010.02.001.
  17. Jovanovic, R., Swiatkowski, B., Kakietek, S., Škobalj, P., Lazović, I. & Cvetinovic, D. (2019). Mathematical modelling of swirl oxy-fule burner flame characteristics. Energy Conversion and Management. 191, 193-207. https://doi.org/10.1016/j.enconman.2019.04.027.
  18. Gao, K., Ke, X., Du, B., Wang, Z., Jin, Y., Huang, Z., Li, Y. & Liu, X. (2024). Simulation of gas–solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions. Chinese Journal of Chemical Engineering. 70, 9-19. https://doi.org/10.1016/j.cjche.2024.02.008.
  19. Shi, B., Shimokuri, D. & Ishizuka, S. (2014). Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner. Combustion and Flame. 161(5), 1310-1325. https://doi.org/10.1016/j.combustflame.2013.11.001.
  20. Zhuang, S., Zhan, D., Wang, T., Li, P. & Yang, Y. (2023). Influence of oxy-fuel lance parameters on the scrap pre-heating temperature in the hot metal ladle. Metals. 13(5), 1-19. https://doi.org/10.3390/met13050847.
  21. Zhang, H., Zhou, P. & Yuan, F. (2021). Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel. Energy. 214, 118896. https://doi.org/10.1016/j.energy.2020.118896.
Przejdź do artykułu

Autorzy i Afiliacje

Xiaoyao Wang
1
Guangqiang Liu
1
Yuanxin Liu
1
Jian Wang
2

  1. Liaoning University of Science and Technology, China
  2. Technology Research Center of Bengang, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The intriguing aspect of the research involves acquiring experimental results related to engineering processes at low temperatures. One could mention the demonstrated relationship between the manufacturing method and the enhancement of the metallic component's quality by reducing the resistance at the junction between this front component and the substrate. Investigations were performed into two series of samples, which were applied to two experimental copper pastes for manufacture front metallization. The process of manufacturing front elements was performed at low temperature. The results of the electrical investigations were then compared to those obtained in a high-temperature range using commercial silver pastes. The temperature interval from 500 to 1000 °C can be considered typical for the thick-layer co-firing process, while temperatures lower than 200 °C can be considered typical for hetero-junction technology. TLM method can be used to collect data and information used in the technological process of their production. Based on the conducted experiments, it can be concluded that the test results obtained are comparable. The method of TLM transmission lines applied is of interest to various research centres, groups of specialists, and designers of measuring instruments dealing with monitoring changes in the values of electrical parameters.
Przejdź do artykułu

Bibliografia

  1. Green, M.A. (1986). Solar cells: operating principles, technology and system applications. Englewood Cliffs, N.J.: Prentice-Hall Pub.
  2. Serreze, H.B. (1978). Optimizing solar cell performance by simultaneous consideration of grid pattern design and interconnect configurations. conference record. In Proceedings of 13th IEEE Photovoltaic Specialists Conference, Washington, D.C.
  3. Adamczewska, J. (1980). Technological processes in semiconductor electronics. WNT. (in Polish).
  4. Musztyfaga-Staszuk, M. (2022). Application of the transmission line method (TLM) to measure the resistivity of contacts, Gliwice: Silesian University of Technology Pub.
  5. Alemán, M., Streek. A., Regenfuβ, P., Mette, A., Ebert, R., Exner, H.; Glunz, S.W., Willeke G. (2006). Laser micro-sintering as a new metallization technique for silicon solar cells. In proceedings of the 21st European Photovoltaic Solar Energy Conference, 4 - 8 September 2006 (pp. 1-4). Dresden, Germany.
  6. Dross, F., Van, K.E.; Allebe, C., van der Heide, A., Szlufcik, J. Agostinelli G., Choulat P., Dekkers H.F.W., Beaucarne G. (2006). Impact of rear-surface passivation on MWT performances. Photovoltaic Energy Conversion. In proceedings of Conference Record of the IEEE 4th World Conference, 7 - 12 May 2006 (pp. 1291-1294). , Waikoloa, Hawaii.
  7. Gautero, L., Hofmann, M., Rentsch, J., Lemke, A.; Mack, S., Seiffe, J., Nekarda, J., Biro, D., Wolf, A.; Bitnar, B., Sallese, J.M., Preu R. (2009). All-screen-printed 120-µm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency. In proceedings of Photovoltaic Specialists Conference (PVSC), 34th IEEE, 7-12 June 2009 (pp. 001888-001893). Philadelphia, Pennsylvania.
  8. Ghozati, S.B., Ebong, A.U., Honsberg, C. B. & Wenham, S.R. (1998). Improved fill-factor for the double-sided buried-contact bifacial silicon solar cells. Solar Energy Materials and Solar Cells. 51(2), 121-128. https://doi.org/10.1016/S0927-0248(97)00210-9.
  9. Glunz, S.W. (2007). High-efficiency crystalline silicon solar cells. Advances in Opto-Electrinics. 1, 097370. https://doi.org/10.1155/2007/97370.
  10. Harder, N.P., Hermann, S., Merkle, A., Neubert, T., Brendemühl, T., Engelhart, P., Meyer, R. & Brendel, R. (2009). Laser-processed high-efficiency silicon RISE-EWT solar cells and characterization. Physica Status, Solid, C. 6(3), 736-743. https://doi.org/10.1002/pssc.200880720.
  11. Tepner, S. & Lorenz, A. (2023). Printing technologies for silicon solar cell metallization: Acomprehensive review. Progress in Photovoltaics: Research and Applications. 31(6), 557-590. https://doi.org/10.1002/pip.3674.
  12. Musztyfaga, M. (2011). Laser micromachining of silicon elements photovoltaic cells 2011. Silesian University of Technology, Gliwice.
  13. Hunde, B.R. & Woldeyohannes A.D. (2023). 3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. Results in Optics. 11, 100385, 1-11. https://doi.org/10.1016/j.rio.2023.100385.
  14. Lin, X., Kavalakkatt, J., Lux-Steiner, M.C. Ennaoui, A. (2015). Inkjet-printed Cu2ZnSn (S, Se) 4 solar cells. Advanced Science. 2(6), 1500028.
  15. Mathies, F., Eggers, H., Richards, B.S., Hernandez-Sosa, G., Lemmer, U. & Paetzold, U.W. (2018). Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials. 1(5), 1834-1839. https://doi.org/10.1021/acsaem.8b00222.
  16. Li, Z., Li, P., Chen, G., Cheng, Y., Pi, X., Yu, X. & Song, Y. (2020). Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces. 12(35), 39082-39091. https://doi.org/10.1021/acsami.0c09485.
  17. Nagarajan, B., Raval M., C. & Saravanan, S. (2019). Review on Metallization in Crystalline Silicon Solar Cells. In Solar Cells. (1st). London: The Intechopen Ltd Pub.
  18. Wenham, S.R., Green, MA. (1986). Patent no 4,626,613. US.
  19. Romain, C., Mohamed, A. & Mustapha, L. (2013). Improvement of back surface metallization in a silicon interdigitated back contacts solar cell. Energy Procedia. 38, 684-690. https://doi.org/10.1016/j.egypro.2013.07.333.
  20. Ehling, C., Schubert, M. B., Merz, R., Müller, J., Hlusiak, M., Rostan, P. J., & Werner, J. H. (2009). 4% absolute efficiency gain by novel back contact. Solar Energy Materials & Solar Cells. 93(6-7), 707-709. https://doi.org/10.1016/j.solmat.2008.09.036.
  21. Erath, D., Filipović, A., Retzlaff, M., Goetz, A. K., Clement, F., Biro, D., & Preu, R. (2010). Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Solar Energy Materials & Solar Cells. 94(1), 57-61. https://doi.org/10.1016/j.solmat.2009.05.018.
  22. Kopecek, R., Buchholz, F., Mihailetchi, V.D., Libal, J., Lossen, J., Chen, N., Chu, H., Peter, C., Timofte, T., Halm, A. et al. (2023). Interdigitated back contact technology as final evolution for industrial crystallinesingle-junction silicon solar cell. 3(1), 1-14. https://doi.org/10.3390/solar3010001.
  23. Glunz, S. W., Preu, R., Schaefer, S., Schneiderlochner, E., Pfleging, W., Ludemann, R., & Willeke, G. (2000). New simplified methods for patterning the rear contact of RP-PERC high-efficiency solar cells. In proceedings of 28th IEEE PVSC, Anchorage, Alaska; 15-22 September 2000 (pp. 168-171).
  24. ENF Solar. (2024). Retrieved December, 2022, from https://www.enfsolar.com/directory/material/metallization_paste?tech=408
  25. Retrieved November, 2022, from http://taiyangnews.info/TaiyangNews_Market_Survey_Metallization_Pastes_2019_20_download_v1.pdf.
  26. Musztyfaga-Staszuk, M. (2019). New copper-based composites for silicon photovoltaic cells. Gliwice: Silesian University of Technology Pub.
  27. Goetzberger, A., Scarlett, R. M., & Shockley, W. (1964). Research and investigation of inverse epitaxial UHF power transistors. Air Force Avionics Lab., Wright-Patterson Air Force Base, OH, USA, Rep. AD0605376.
  28. Defense Technical Information Center. (2025). Retrieved November 2022, from https://apps.dtic.mil/sti/citations/AD0605376
  29. Berger, H.H. (1969). Contact resistance on diffused resistors. In IEEE Solid-State Circuits Conference. Digest of Technical Papers (pp.160–161).
  30. Berger H. H. (1972). Models for contacts to planar devices. Solid State Electron. 15(2), 145-158. https://doi.org/10.1016/0038-1101(72)90048-2.
  31. Denhoff, M.W., Droleta, N. (2009). The effect of the front contact sheet resistance on solar cell performance. Solar Energy Materials and Solar Cells. 93(9), 1499-1506. https://doi.org/10.1016/j.solmat.2009.03.028.
  32. Schroder D.K. (2006). Semiconductor material and device characterization (3rd ed.). Arizona State University Tempe, AZ. In IEEE Press and John Wiley & Sons Inc.
  33. Pysch, D.; Mette, A.; Filipovic, A.;. Glunz, S.W.A. (2009). Comprehensive analysis of advanced solar cell contacts consisting of printed fine-line seed layers thickened by silver plating. Progress in photovoltaics: Research and Applications. 17, 101-114. https://doi.org/10.1002/pip.855.
Przejdź do artykułu

Autorzy i Afiliacje

M.M. Musztyfaga-Staszuk
1
ORCID: ORCID
P. Panek
2
ORCID: ORCID
A. Czupryński
1
ORCID: ORCID
C. Mele
3
ORCID: ORCID

  1. Silesian University of Technology, Welding Department, Poland
  2. Institute of Metallurgy and Materials Science PAS, Poland
  3. Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Italy
6
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Solid-solution-strengthened ferritic ductile iron (SSFDI) exhibits superior tensile strength to elongation ratios up to a critical silicon content of 4.3 wt.%. Beyond this threshold, this material experiences a sudden drop in ultimate tensile strength and elongation at breakage. Previous studies indicate that this is may be because of the formation of superstructures like B2 and D03 especially at regions with high silicon content. This study aims to comprehend thermodynamics behind phase transition during solid-state transformation in high silicon ductile iron. Using thermodynamic simulations, this current investigation tries to pinpoint the transition temperature from the ferritic phase to superstructure formation especially B2 superstructure. Additionally, analysis is made to see consequences of quenching above this transition temperature on microstructure, and mechanical properties. The results contribute insights into phase transitions in high silicon ductile iron, offering practical guidance for optimizing heat treatment processes. By isolating the transition temperature and evaluating the impact of quenching, we provide actionable strategies for controlling microstructural evolution and enhancing mechanical performance in SSFDI. In conclusion, this research represents a crucial advancement in realizing the full potential of high silicon ductile iron for engineering applications. The findings deepen our understanding of the material's behavior and furnish practical approaches for improving its mechanical properties through controlled heat treatments and quenching processes.
Przejdź do artykułu

Bibliografia

  1. Björkegren, L.E. (1994). Ferritic ductile iron with higher silicon content. Secondary Ferritic ductile iron with higher silicon content. Swedish Foundry Association (941028).
  2. Alhussein, A., Risbet, M. & Favergeon, J. (2014). Evolution of ferritic iron resistance through silicon content in secondary evolution of ferritic iron resistance through silicon content.
  3. White, W.H., Rice, L.P. & Elsea, A.R. (1951). Influence of silicon content on mechnical and high-temprature properties of nodular cast iron. Secondary Influence of Silicon Content on Mechnical and High-Temprature Properties of Nodular Cast Iron. AFS Transactions. 337-345.
  4. Riebisch, M., Pustal, B. & Bührig-Polaczek, A. (2020). Impact of carbide-promoting elements on the mechanical properties of solid-solutions strengthened ductile iron. International Journal of Metalcasting. 14(2), 365-374. https://doi.org/10.1007/s40962-019-00358-5.
  5. Deutsches Institut für Normung e.V. (2012). DIN EN 1563: Gießereiwesen - Gusseisen mit Kugelgraphit. Deutsche Fassung EN 1563:2011.
  6. de la Torre, U., Loizaga, A., Lacaze, J. & Sertucha, J. (2014). As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties. Materials Science and Technology. 30(12), 1425-1431. https://doi.org/10.1179/1743284713Y.00000004.
  7. Stets, W., Löblich, H., Gassner, G. & Schumacher, P. (2014). Solution strengthened ferritic ductile cast iron properties, production and application. International Journal of Metalcasting. 8, 35-40. https://doi.org/10.1007/BF03355580.
  8. David Joseph, B., Alkhozaae, H., Pustal, B. & Bührig-Polaczek, A. (2023). Impact of quenching and aluminium on si-segregation and B2 superstructure formation in solid solution strengthened ferritic ductile cast iron. International Journal of Metalcasting. 1-11. https://doi.org/10.1007/s40962-023-01238-9.
  9. Weiß, P., Tekavčič, A. & Bührig-Polaczek, A. (2018). Mechanistic approach to new design concepts for high silicon ductile iron. Materials Science and Engineering A. 713, 67-74. https://doi.org/10.1016/j.msea.2017.12.012.
  10. Hasse, S. (1996). Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender in Secondary Duktiles Gußeisen: Handbuch für Gusserzeuger und Gussverwender. Fachverlag Schiele & Schoen.
  11. Retrieved June 10, 2024, from https://micress.rwth-aachen.de/
  12. Retrieved June 10, 2024, from https://thermocalc.com/
  13. Andersson, J. O., Helander, T., Höglund, L., Shi, P., & Sundman, B. (2002). Thermo-Calc and DICTRA, computational tools for material science. 26(2), 273-312. https://doi.org/10.1016/S0364-5916(02)00037-8.
  14. Deutsches Institut für Normung e.V.(2022). DIN 50125: Prüfung metallischer Werkstoffe – Zugproben.
  15. Beckert, M. & Klemm, H. (1962). Handbuch der metallographischen Ätzverfahren.
  16. Deutsches Institut für Normung e.V. (2010). DIN EN ISO 945-1: Mikrostruktur von Gusseisen – Teil 1: Graphitklassifizierung durch visuelle Auswertung.
Przejdź do artykułu

Autorzy i Afiliacje

B. David Joseph
1
B. Pustal
1
T. Weirich
2
A. Bührig-Polaczek
1

  1. Foundry Institute, RWTH Aachen, Germany
  2. Central Facility for Electron Microscopy, RWTH Aachen, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The high pressure die casting technology is characterized by high efficiency, which is given by pressing the liquid metal into the die cavity and the subsequent solidification of the cast in a short period of time. The short casting cycle duration and the rapid temperature conditions alternation at the interface cast – die cavity, as well as in the die volume itself, cause cyclic thermal stress of the die material. The submitted article investigates the influence of gating system volume on the temperature conditions change in the high pressure die casting mold volume. Five gating system variants with different runners volume for specific type of low-weight silumin based cast were used to assess the temperature changes in the high pressure die casting mold volume. The temperature was monitored in two selected places of the gating system, with a distribution of 1mm, 2mm, 5mm, 10mm and 20mm in the direction from the working die cavity face to the volume of the fixed and movable part of the die. As a comparison parameter, the melt temperature in the runner center above the measured point and the melt temperature close to the die face were monitored. Monitoring of the temperature change was performed using the Magmasoft simulation program. It has been proven that the gating system volume affects the thermal stress of the die, the temperature drop in the die volume and the casting cycle duration. In conclussions, proposals for measures to reduce the high thermal stress of the die resulting from the gating system volume and design are presented. These proposals will subsequently be verified in the following research activities and compared with the resulting casts quality.
Przejdź do artykułu

Bibliografia

  1. Takeda, S., Shinmura, N. & Sannakanishi, Sh. (2017). Stress analysis of thin wall core pin in aluminum alloy high pressure die casting. Materials Transactions. 58(1), 85-90. DOI: 10.2320/matertrans.F-M2016836.
  2. Ebrahimi, A., Fritsching, U., Heuser, M., Lehmhus, D., Struß, A., Toenjes, A. & von Hehl, A. (2020). A digital twin approach to predict and compensate distortion in a High Pressure Die Casting (HPDC) process chain. Procedia Manufacturing. 52, 144-149. https://doi.org/10.1016/j.promfg.2020.11.026.
  3. Yu, W. B., Liang, S., Cao, Y. Y., Li, X. B., Guo, Z. P. & Xiong, S. M. (2017). Interfacial heat transfer behavior at metal/die in finger-plated casting during high pressure die casting process. China Foundry. 14(4), 258-264. DOI: 10.1007/s41230-017-6066-6.
  4. Liu, F., Zhao, H., Chen, B. & Zheng, H. (2022). Investigation on microstructure heterogeneity of the HPDC AlSiMgMnCu alloy through 3D electron microscopy. Materials and Design. 218, 110679, 1-11. DOI: 10.1016/j.matdes.2022.110679.
  5. Hamasaiid, A., Dargusch, M.S. & Dour, G. (2019). The impact of the casting thickness on the interfacial heat transfer and solidification of the casting during permanent mold casting of an A356 alloy. Journal of Manufacturing Processes. 47, 229-237. DOI: 10.1016/j.jmapro.2019.09.039.
  6. Navah, F., Lamarche-Garnon, M. & Ilinca, F. (2024). Thermofluid topology optimization for cooling channel design. Applied Thermal Engineering. 236, 121317, 1-17. DOI: 10.1016/j.applthermaleng.2023.121317.
  7. Šeblt, J. (1962). Molds for High Pressure Die Casting (Formy pro lití kovô pod tlakem). Praha: SNTL.
  8. Paško, J., Gašpár, Š. (2014). Technological Factors of Die Casting. Lüdenscheid: RAM-Verlag.
  9. Kırmızıgöl, S.F., Özaydin, O. & Acarer, S. (2024). Improving heat transfer and compressed air consumption in low pressure die casting of aluminum wheels. Applied Thermal Engineering. 251, 123598, 1-23. DOI: 10.1016/j.applthermaleng.2024.123598.
  10. Majernik, J. & Podaril, M. (2019). Evaluation of the temperature distribution of a die casting mold of X38CrMoV5_1 steel. Archives of Foundry Engineering. 19(2), 107-112. DOI: 10.24425/afe.2019.127125.
  11. Ružbarský, J., Paško, J. & Gašpár, Š (2014). Techniques of Die Casting. Lüdenscheid: RAM-Verlag.
  12. Choi, J., Choi, J., Lee, K., Hur, N. & Kim, N. (2022). Fatigue life prediction methodology of hot work tool steel dies for high-pressure die casting based on thermal stress analysis. Metals. 12(10), 1744, 1-18. DOI: 10.3390/met12101744.
  13. Capela, P., Gomes, I. V., Lopes, V., Prior, F., Soares, D. & Teixeira, J. C. (2023). Experimental analysis of heat transfer at the interface between die casting molds and additively manufactured cooling inserts. Journal of Materials Engineering and Performance. 32(23), 10934-10942. DOI: 10.1007/s11665-023-08425-z.
  14. Bohacek, J., Mraz, K., Krutis, V., Kana, V., Vakhrushev, A., Karimi-Sibaki, E. & Kharicha, A (2023). Experimental and numerical investigations into heat transfer using a jet cooler in high-pressure die casting. Journal of Manufacturing and Materials Processing. 7(6), 212. DOI: 3390/jmmp7060212.
  15. Jiao, X., Liu, C., Wang, J., Guo, Z., Wang, J., Wang, Z., Gao, J. & Xiong, S. (2020). On the characterization of microstructure and fracture in a high-pressure die-casting Al-10 wt%Si alloy. Progress in Natural Science: Materials International. 30(2), 221-228. DOI: 10.1016/j.pnsc.2019.04.008.
  16. Majerník, J., Gaspar, S., Podaril, M. & Coranic, T. (2020). Evaluation of thermal conditions at cast-die casting mold interface. MM Science Journal. 2020, 4112-4118. DOI: 10.17973/MMSJ.2020_11_2020041.
  17. Majernik, J., Podaril, M. & Majernikova M. (2024). Evaluation of high pressure die casting mold temperature relations depending on the location of the tempering channels. Archives of Foundry Engineering. 24(1), 115-120. DOI: 10.24425/afe.2024.149258.
  18. Construction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). (1984). Praha: Český normalizační institute, 32.
  19. Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
  20. Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.

 

Przejdź do artykułu

Autorzy i Afiliacje

J. Majernik
1 2
ORCID: ORCID
M. Podaril
1
ORCID: ORCID
M. Majernikova
1
K. Sramhause
2
ORCID: ORCID

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of the study was optimization of the technological parameters of the thermal treatment of EN AC-46000 alloy products made in the vacuum aided HPDC technology in the function of simultaneous maximization of the alloy’s mechanical properties with no deformation of the cast’s surface. The produced casts were subjected to thermal treatment T6 according to the elaborated experiment plan. The samples were examined in respect of selected mechanical properties as well as the presence of deformation on the castings surfaces. Also performed was an analysis of the castings microstructure as well as optimization of the technological parameters of the supersaturation and ageing process by means of statistical methods, i.e. the Box-Wilson optimization method (Stage I) and stepwise multiple regression in the Statgraphics software (Stage II). Also, a simulation was carried out, predicting the mechanical properties for the specific supersaturation and ageing parameters, from which optimized values of the setpoints of both processes were obtained. The study presents the results of validation tests of pressure casts subjected to thermal treatment performed according to the previously determined optimal parameters of supersaturation and ageing. These results confirmed the effectiveness of the conducted precipitation hardening treatment.
Przejdź do artykułu

Bibliografia

  1. Farkoosh, A.R., Chen, X.G. & Pekguleryuz, M. (2015). Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Materials Science and Engineering: A. 620, 181-189. https://doi.org/10.1016/j.msea.2014.10.004.
  2. Kim, H.Y., Han, S.W. & Lee, H.M. (2006). The influence of Mn and Cr on the tensile properties of A356–0.20Fe alloy. Materials Letters. 60(15), 1880-1883. https://doi.org/ 1016/j.matlet.2005.12.042.
  3. Elhadari, H.A., Patel, H.A., Chen, D.L. & Kasprzak, W. (2011). Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions. Materials Science and Engineering: A. 528(24), 8128-8138. https://doi.org/10.1016/j.msea.2011.07.018.
  4. Li, Y., Yang, Y., Wu, Y., Wei, Z. & Liu, X. (2011). Supportive strengthening role of Cr-rich phase on Al–Si multicomponent piston alloy at elevated temperature. Materials Science and Engineering: A. 528(13-14), 4427-4430. https://doi.org/10.1016/j.msea.2011.02.047.
  5. Sjölander, E. & Seifeddine, S. (2010). The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology. 210(10), 1249-1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020.
  6. Sjölander, E. & Seifeddine, S. (2011). Artificial ageing of Al–Si–Cu–Mg casting alloys. Materials Science and Engineering: A. 528(24), 7402-7409. https://doi.org/10.1016/j.msea.2011.06.036.
  7. Sjölander, E. & Seifeddine, S. (2010). Optimisation of solution treatment of cast Al–Si–Cu alloys. Materials and Design. 31(1), 44-S49. https://doi.org/10.1016/ j.matdes.2009.10.035.
  8. Lumley, R.N., Gunasegaram, D.R., Gershenzon, M. & O’Donnell, R.G. (2010). Effect of alloying elements on heat treatment response of aluminium high pressure die castings. International Heat Treatment and Surface Engineering. 4(1), 25-32. https://doi.org/10.1179/174951409X12542264514004.
  9. Bonollo, F., Urban, J., Bonatto, B., & Botter, M. (2005). Gravity and low pressure die casting of aluminium alloys:
    A technical and economical benchmark. La Metallurgia Italiana. 6, 23-32.
  10. Szymczak, T., Gumienny, G. & Pacyniak, T. (2014). Selected aspects of nitrogen refinement of Silumin 226. Archives of Foundry Engineering. 14(3), 99-102. https://doi.org/10.2478/afe-2014-0070.
  11. Ozhoga-Maslovskaja, O., Gariboldi, E. & Lemke, J. N. (2016). Conditions for blister formation during thermal cycles of Al–Si–Cu–Fe alloys for high pressure die-casting. Materials and Design. 92, 151-159. https://doi.org/10.1016/j.matdes.2015.12.003.
  12. Lumley, R.N., O’Donnell, R.G., Gunasegaram, D.R. & Givord, M. (2007). Heat treatment of high-pressure die castings. Metallurgical and Materials Transactions A. 38(12), 2564-2574. https://doi.org/10.1007/s11661-007-9285-4.
  13. Lumley, R.N., Deeva, N. & Gershenzon, M. (2010). The optimization of strength and ductility in heat treated ADC12 alloys. In 12th International Conference on Aluminium Alloys, 5-9 September 2010 (pp. 2197-2202). The Japan Institute of Light Metals.
  14. Yang, H., Ji, S. & Fan, Z. (2015). Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Materials and Design. 85, 823-832. https://doi.org/10.1016/j.matdes.2015.07.074.
  15. PN-EN 1706:2020-10 Aluminium and Aluminium Alloys - Castings - Chemical Composition and Mechanical Properties.
  16. PN-EN ISO 6892-1:2020-05 Metals - Tensile Test - Part 1: Room Temperature Test Method. (in Polish).
  17. PN-EN ISO 6506-1:2014-12 Metallic Materials - Brinell Hardness Test - Part 1: Test Method. (in Polish).
  18. Belov, N.A., Eskin, D.G. & Aksenov, A. (2005) Multicomponent Phase Diagrams. Applications for commercial aluminum alloy. Oxford: Elsevier.
  19. Glazoff, M., V., Khvan, A. & Zolotorevsky, V.S. (2018). Casting Aluminum Alloys. Their physical and mechanical metallurgy. Butterworth-Heinemann.
  20. Belov, N., Aksenov, A.A. & Eskin, D.G. (2002). Iron in Aluminum Alloys: Impurity and alloying elements. London: CRC Press.
  21. Szymczak, T. (2019). The Influence of Cr, Mo, V, and W on the Crystallization Process and Mechanical Properties of Hypoeutectic Silumins. Łódź, Wydawnictwo PŁ. (in Polish).
  22. Callegari, B., Lima, T.N. & Coelho, R.S. (2023). The influence of alloying elements on the microstructure and properties of Al-Si-based casting alloys: A review. 13(7), 1174, 1-36. https://doi.org/10.3390/met13071174.
  23. Kowalczyk, W., Dańko, R., Górny, M., Kawalec, M. & Burbelko, A. (2022). Influence of high-pressure die casting parameters on the cooling rate and the structure of EN-AC 46000 alloy. Materials. 15(16), 5702, 1-16. https://doi.org/10.3390/ma15165702.
  24. Bolibruchová, D., Matejka, M., Michalcová, A., & Kasińska, J. (2020). Study of natural and artificial aging on AlSi9Cu3 alloy at different ratios of returnable material in the batch. Materials. 13(20), 4538, 1-16. https://doi.org/10.3390/ma13204538.
  25. Ruyao Wang, Weihua Lu. (2016). Hypereutectic Al-Si alloy with completely nodular eutectic silicon: microstructure and process. International Journal of Materials Science and Applications. 5(6), 277-283. https://doi.org/10.11648/j.ijmsa.20160506.17.
  26. Jarco, A.; Pezda, J. (2021). Effect of heat treatment process and optimization of its parameters on mechanical properties and microstructure of the AlSi11(Fe) Alloy. Materials. 14(9), 2391, 1-20. https://doi.org/10.3390/ma14092391.
  27. Pietrowski, S. (2001). Al-Si alloys. Łódź: Lodz University of Technology Publishing House. (in Polish).
Przejdź do artykułu

Autorzy i Afiliacje

T. Szymczak
1
ORCID: ORCID
B. Pisarek
2
ORCID: ORCID
B. Januszewicz
3
ORCID: ORCID
M. Różycka
4

  1. Department of Materials Technology and Production Systems, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Łódź, Poland
  2. Department of Materials Technology and Production Systems, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Łódź, Poland
  3. Institute of Materials Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Łódź, Poland
  4. Department of Materials Technology and Production Systems, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Łódź, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Bibliografia

  1. Zhang, H., Zhou, P. & Yuan, F. (2021). Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel. Energy. 214, 118896, 1-11. https://www.sciencedirect.com/science/article/pii/S036054422032003X
  2. Suzukawa, Y., Sugiyama, S., Hino, Y., Isioka, M. & Mori, I. (1997). Heat transfer improvement and NOx reduction by highly preheated air combustion. Energy Conversion and Management. 38(10-13), 1061-1071.https://doi.org/10.1016/S0196-8904(96)00136-7
  3. Yilmaz, E., Ichiyanagi, M., Zheng, Q., Guo, B., Aratake, N., Kodaka, M., Hikaru, S., Okada, T. & Suzuki, T. (2023). Investigation of intake air temperature effect on co-combustion characteristics of nh3/gasoline in naturally aspirated high compression ratio engine with sub-chamber. Scientific Reports. 13(1), 11649, 1-12. https://link.springer.com/article/10.1038/s41598-023-38883-
  4. Semagina, N., Tam, R. & Sawada, J. (2022). Kinetics of low‐temperature catalytic combustion of ethylene at wet conditions for postharvest storage applications. AIChE Journal. 68(8), e17718, 1-9. https://doi.org/10.1002/aic.17718
  5. Weber, R., Gupta, A.K. & Mochida, S. (2020). High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects. Applied Energy. 278, 115551, 1-28.https://www.sciencedirect.com/science/article/pii/S0306261920310631
  6. Kawai, K., Yoshikawa, K., Kobayashi, H., Tsai, J.S., Matsuo, M. & Katsushima, H. (2002). High temperature air combustion boiler for low BTU gas. Energy Conversion and Management. 43(9-12), 1563-1570. https://doi.org/10.1016/S0196-8904(02)00036-5
  7. Jia, L. & Li, J. (2004). The experimental study on regenerative heat transfer in high temperature air combustion. Journal of Thermal Science. 13, 366-370. https://doi.org/10.1007/s11630-004-0056-x
  8. Sánchez, M., Cadavid, F. & Amell, A. (2013). Experimental evaluation of a 20 kW oxygen enhanced self-regenerative burner operated in flameless combustion mode. Applied 111, 240-246. https://www.sciencedirect.com/science/article/pii/S030626191300398X
  9. Weihong, Y. & Blasiak, W. (2004). Combustion performance and numerical simulation of a high-temperature air–LPG flame on a regenerative burner. Scandinavian Journal of Metallurgy. 33(2), 113-120. https://doi.org/10.1111/j.1600-0692.2004.00675.x
  10. Khoshhal, A., Rahimi, M. & Alsairafi, A.A. (2011). Diluted air combustion and NOx emission in a HiTAC furnace. Numerical Heat Transfer, Part A: Applications. 59(8), 633-651. https://doi.org/10.1080/10407782.2011.561117
  11. Haworth, D.C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science. 36(2), 168-259. https://doi.org/10.1016/j.pecs.2009.09.003
  12. Ma, L., Naud, B. & Roekaerts, D. (2016). Transported PDF modeling of ethanol spray in hot-diluted coflow flame. Flow, Turbulence and Combustion. 96, 469-502. https://doi.org/10.1007/s10494-015-9623-3
  13. Fanjie, Y., Hui, Z., Haibin X., Azhar, M.U., Yong, Z. & Fudong, C. (2022). Numerical simulation method for the process of rockburst. Engineering Geology. 306, 106760. https://doi.org/10.1016/j.enggeo.2022.106760
  14. Hosseini, A.A., Ghodrat, M., Moghiman, M. & Pourhoseini, S.H. (2020). Numerical study of inlet air swirl intensity effect of a Methane-Air Diffusion Flame on its combustion characteristics. Case Studies in Thermal Engineering. 18, 100610, 1-10. https://doi.org/10.1016/j.csite.2020.100610
  15. Zhang, R.C., Bai, N.J., Fan, W.J., Yan, W.H., Hao, F. & Yin, C.M. (2018). Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines. Energy. 165, 979-996. https://doi.org/10.1016/j.energy.2018.09.121
  16. Hou, A., Jin, S., Harmuth, H. & Gruber, D. (2018). A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM. 70, 2449-2456. https://link.springer.com/article/10.1007/s11837-018-3063-1
  17. Shuai W., Zhi, W., Dou, R., Yongli, X., Yunze, G. & Liu, X. (2022). Numerical Study on the Mixing Process of Hot Desulfurization Slag and Converter Steel Slag. Case Studies in Thermal Engineering. 40, 102561, 1-13. https://doi.org/10.1016/j.csite.2022.102561
  18. Dai, Y., Li, J., Yan, W. & Shi, C. (2020). Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process. Journal of Materials Research and Technology. 9(3), 4292-4308. https://doi.org/10.1016/j.jmrt.2020.02.055
  19. Fang, L., Su, F., Kang, Z. & Zhu, H. (2023). Numerical simulation on heat transfer of multi-layer ladle in empty and heavy condition. Frontiers in Heat and Mass Transfer (FHMT). 20, 14, 1-9. DOI: 10.5098/hmt.20.14
Przejdź do artykułu

Autorzy i Afiliacje

Jiayang He
1
Guangqiang Liu
1
Yuanxin Liu
1
Zhizhong Cao
2
Junyan Liu
2
ORCID: ORCID

  1. School of Civil Engineering, University of Science and Technology Liaoning, China
  2. Technology Research Center of Bengang, Bengang Group, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The present paper involves studying of the corrosion behaviour of five layers Cu/Ni Functionally Graded Materials (FGMs) in a 3.5 % NaCl solution to examine corrosion potentials (Ecorr.), corrosion current densities (icorr.) and Tafel slope. Three series of FGMs samples, labeled A1-A6, B1-B6, and C1-C6 were prepared using different experimental conditions of compaction pressure (0.7, 1 and 1.3 MPa), sintering temperature (650, 750 and 850oC) and sintering time (1 and 2 hours). The polarisation method was conducted at 3 mV/s of a scan rate, and room temperature. According into the potentiodynamic polarization test, it was found that the sintering time of 2 hrs at constant temperature, and pressure enhances the corrosion potential towards stabilization the protective surface layer. A3, A4 are samples designation corresponding to different experimental settings determined by design of experiments. Corrosion current density measurements showed that A4 sample had the highest (673.20 μA/cm²), while A3 sample had the lowest icorr (0.8508 μA/cm²). Tafel slope analysis revealed that A3 sample had the highest anodic, and cathodic slopes, and was associated with the lowest corrosion rate. The corrosion resistance (Rp) data supported these results, with A3 showing the highest resistance, confirming its superior corrosion resistance (Rp). This behaviour may be related into the noble properties of copper, and the protection of cupric oxide (CuO) compared to (NiO).

Przejdź do artykułu

Bibliografia

  1. El-Galy, I.M., Saleh, B.I. & Ahmed, M.H, (2019). Functionally graded materials classifications and development trends from industrial point of view. SN Applied Sciences. 1, 1378, 1-23. https://doi.org/10.1007/s42452-019-1413-4.
  2. Sahu, S. K., Chugh, R., Sahu, D., Khatri, R., Nagpal, S. & Shekhar, S. (2024). Innovations in functionally graded materials for advanced engineering applications. Tuijin Jishu/Journal of Propulsion Technology. 45(1), 2763 – 2775.
  3. Mohammadi, M., Rajabi, M., & Ghadiri, M. (2021). Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications. Processing and Application of Ceramics. 15(4), 319-343. https://doi.org/10.2298/PAC2104319M.
  4. Mahinzare, M., Ranjbarpur, H. & Ghadir, M. (2018). Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mechanical Systems and Signal Processing. 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.
  5. Alkunte S., Fidan I., Naikwadi V., Gudavasov S., Ali M.A., Mahmudov M., Hasanov S. & Cheepu M. (2024). Advancements and challenges in additively manufactured functionally graded materials: a comprehensive review. Journal of Manufacturing and Materials Processing. 8(1), 23- 1-37. https://doi.org/10.3390/jmmp8010023.
  6. Ge, C-C., Li, J-T., Zhou, Z-J., Cao, W-B., Shen, W-P., Wang, M-X., Zhang, N-M., Liu, X. & Xu, Z-Y. (2000). Development of functionally graded plasma-facing materials. Journal of Nuclear Materials. 283-287(2), 1116-1120. https://doi.org/10.1016/S0022-3115(00)00318-4.
  7. Ling, Y., Ge, C., Li, J. & Huo, C. (2000). Fabrication of Sic/Cu functionally gradient material by graded sintering. Functionally graded materials 2000. 114, 333-340.
  8. Ge C.C., Wu A.H., Ling Y.H., Cao W.B., Li J.T. & Shen W.P. (2002). New progress of ceramic-based functionally graded plasma-facing materials in China. Key Engineering Materials. 224-226, 459-464. https://doi.org/10.4028/www.scientific.net/KEM.224-226.459.
  9. Ling, Y-H., Li, J-T., Ge, C-C. & Bai, X-D. (2002). Fabrication and evaluation of SiC/Cu functionally graded material used for plasma facing components in a fusion reactor. Journal of Nuclear Materials. 303(2-3), 188-195. https://doi.org/10.1016/S0022-3115(02)00801-2.
  10. da Costa, F. A., da Silva, A. G. P., & Gomes, U. U. (2003). The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technology. 134(1-2), 123-132. https://doi.org/10.1016/S0032-5910(03)00123-2.
  11. Ozkal, B., Upadhyaya, A., Ovecoglu, M. L. & German, R. M. (2004). Realtime sintering observations in W-Cu system: accelerated rearrangement densification via copper coated tungsten powders approach. Euro PM Sintering. 1-7.
  12. Jankovic´ Ilic, D., Fiscina, J., Gonzalez-Oliver, C.J.R. & Mucklich, F. (2005). Properties of Cu-W functionally graded materials produced by segregation and infiltration. In Functionally Graded Materials, proceedings of the 8th international symposium on multifunctional and functional graded materials. Materials Science Forum, Vol. 492-493, (pp. 123-128). Belgium.
  13. Zhou, Z. J., Du, J., Song, S. X., Zhong, Z. H., & Ge, C. C. (2007). Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. Journal of Alloys and Compounds. 428(1-2), 146-150. https://doi.org/10.1016/j.jallcom.2006.03.073.
  14. Chong, F.L., Chen, J.L., Zhou, Z.J. & Li, J.G. (2008). Fabrication and plasma exposure of fine-grained tungsten / copper functionally graded materials in the HT-7 tokamak. Fusion Science and Technology. 53(3), 854-859, https://doi.org/10.13182/FST08-A1740.
  15. Stephane Alexis Jacques Forsik, (2009). Mechanical properties of materials for fusion power plants. Ph.D. Thesis, Darwin College, Cambridge, Germany.
  16. Güler, O., Varol, T., Alver, Ü. & Biyik, S. (2021). The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating. Advanced Powder Technology. 32(8), 2873-2890. https://doi.org/10.1016/j.apt.2021.05.053.
  17. Sohail, M.G., Laurens, S., Deby, F., Balayssac, J.P. & Nuaimi, N.A. (2021). Electrochemical corrosion parameters for active and passive reinforcing steel in carbonated and sound concrete. Materials and Corrosion. 72(12), 1854-1871. https://doi.org/10.1002/maco.202112569.
  18. Schultze, J.W. & Lohrengel, M.M. (2000). Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochimica Acta. 45(15-16), 2499-2513. https://doi.org/10.1016/S0013-4686(00)00347-9.
  19. Traldi, S.M., Rossi, J.L. & Costa, I. (2001). Corrosion of spray formed Al-Si-Cu alloys in ethanol automobile fuel. Key Engineering Materials. 189-191, 352-357. https://doi.org/10.4028/www.scientific.net/KEM.189-191.352.
  20. Traldi, S.M, Rossi, J.L. & Costa, I. (2003). An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments. Revista de Metalurgia Supplementos. 86-90.
  21. Stern, M. (1958). Method for determining corrosion rates from linear polarization data. Corrosion. 14(9), 60-64. https://doi.org/10.5006/0010-9312-14.9.60.
  22. Stern, M. & Geary, A.L. (1957). Electrochemical Polarization I: A Theoretical Analysis of the Slope of Polarization Curves. Journal of the Electrochemical Society. 104(1), 59-63. DOI: 10.1149/1.2428496.

 

 

 

Przejdź do artykułu

Autorzy i Afiliacje

Dheya Abdulamer
1
ORCID: ORCID
Noor Sh Ghafil
2
Dhuha Albusalih
3
Alaa Abdulhasan Atiyah
1

  1. University of Technology- Iraq
  2. Ministry of Education, Iraq
  3. University of Al-Qadisiyah Iraq -AL-Diwaniyah
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The Volumetric Multicomponent Multiphase Field model implemented in MICRESS® enables microstructure simulation of spheroidal graphite cast iron in 3D space. In this work, it is combined with the homogenization tool HOMAT to study the correlation between graphite characteristics and effective elastic mechanical properties. In a first step, the microstructure evolution of near-eutectic Fe-C-Si-(Mg) grades is simulated from the pure melt to the as-cast structure. The required thermodynamic and diffusion data are evaluated by run-time coupling to CALPHAD data. Temperature evolution is simulated by balancing latent heat release and heat extraction, considering the casting modulus and the mould diffusivity. During the initial solidification, dendritic austenite and spheroidal graphite nucleate and grow independently in the melt. After encapsulation by austenite, the graphite nodules continue to grow by interstitial diffusion of carbon. The eutectoid decomposition of primary austenite to ferrite and graphite is modelled under assumption of para-equilibrium conditions. The final as-cast structure is characterized by graphite nodules of varying size and morphology distributed in a polycrystalline, fully ferritic matrix. To generate representative volume elements (RVE) with different characteristics of graphite precipitates, a series of simulations are performed under independent variation of chemical composition, casting modulus and nucleation conditions. From each RVE, the graphite fraction, the nodule number, the mean nodule size and the mean sphericity are evaluated. In a second step, the RVEs are transferred to the HOMAT software and homogenized values for the Young's modulus, the shear modulus, and the Poisson's ratio are evaluated and discussed in correlation with the characteristic graphite properties and classic mean field approaches.
Przejdź do artykułu

Bibliografia

  1. Stefanescu, D.M. (2018). A history of cast iron. In George E. Totten (Eds.), ASM Handbook (Vol. 1A, pp. 3–11). ASM International.
  2. Lacaze, J., Sertucha, J., Castro-Román, M. J. (2021). A contemporary monograph on silicon cast irons microstructure-From atom scale to casting (online).
  3. Liu, J. H., Yan, J. S., Zhao, X. B., Fu, B. G., Xue, H. T., Zhang, G. X., & Yang, P. H. (2020). Precipitation and evolution of nodular graphite during solidification process of ductile iron. China Foundry, 17(4), 260-271. DOI:10.1007/s41230-020-0042-2.
  4. Andriollo, T. & Hattel, J. (2016). On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations. Mechanics of Materials. 96, 138-150. DOI: 10.1016/j.mechmat.2016.02.007.
  5. Tourret, D., Liu, H. & Lorca, J. (2022). Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Progress in Materials Science. 123, 100810, 1-19. https://doi.org/10.1016/j.pmatsci.2021.100810.
  6. Chen, L.Q. & Moelans, N. (2024). Phase-field method of materials microstructures and properties. MRS Bulletin. 49(6), 551-555. https://doi.org/10.1557/s43577-024-00724-7.
  7. Steinbach, I., Uddagiri, M., Salama, H., Ali, M.A. & Shchyglo, O. (2024). Highly complex materials processes as understood by phase-field simulations: Additive manufacturing, bainitic transformation in steel and high-temperature creep of superalloys. MRS Bulletin. 49, 583-593. DOI:10.1557/s43577-024-00703-y.
  8. Carré, A., Böttger, B. & Apel, M. (2013). Implementation of an antitrapping current for a multicomponent multiphase-field ansatz. Journal of Crystal Growth. 380, 5-13. DOI: 10.1016/j.jcrysgro.2013.05.032.
  9. Karma, A. (2001). Phase-field formulation for quantitative modeling of alloy solidification. Physical Review Letters. 87(11), 115701, 1-4. DOI:10.1103/PhysRevLett.87.115701.
  10. Eiken, J. (2012). The finite phase-field method - A numerical diffuse interface approach for microstructure simulation with minimized discretization error. Materials Research Society Symposium Proceedings. 1369, 62-68. Materials Research Society. DOI:10.1557/opl.2012.510.
  11. Eiken, J., Böttger, B. & Steinbach, I. (2006). Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 73(6), 066122, 1-9. DOI:10.1103/PhysRevE.73.066122.
  12. Eiken, J. (2009). A Phase-Field Model for Technical Alloy Solidification. Shaker Verlag.
  13. Fries, S.G., Boettger, B., Eiken, J. & Steinbach, I. (2009). Upgrading CALPHAD to microstructure simulation: the phase-field method. International Journal of Materials Research. 100(2), 128-134. DOI: 10.3139/146.110013.
  14. Deepu, M.J. & Phanikumar, G. (2020). ICME Framework for Simulation of Microstructure and Property Evolution During Gas Metal Arc Welding in DP980 Steel. Integrating Materials and Manufacturing Innovation. 9(3), 228-239. DOI:10.1007/s40192-020-00182-4.
  15. Nomoto, S., Oba, M., Mori, K. & Yamanaka, A. (2017). Microstructure-based multiscale analysis of hot rolling of duplex stainless steel using various simulation software. Integrating Materials and Manufacturing Innovation. 6(1), 69-82. DOI:10.1007/s40192-017-0083-6.
  16. Lesoult, G., Castro, M. & Lacaze, J. (1998). Solidification of spheroidal graphite cast irons—I. Physical modelling. Acta materialia. 46(3), 983-995. https://doi.org/10.1016/S1359-6454(97)00281-4.
  17. Lacaze, J., Castro, M., & Lesoult, G. (1998). Solidification of spheroidal graphite cast irons—II. Numerical simulation. Acta materialia. 46(3), 997-1010. https://doi.org/10.1016/S1359-6454(97)00282-6.
  18. Eiken, J. & Böttger, B. (2018). A multi-phase-field Approach for Solidification with Non-negligible Volumetric Expansion—Application to Graphite Growth in Nodular Cast Iron. Transactions of the Indian Institute of Metals. 71(11), 2725-2729. DOI:10.1007/s12666-018-1427-4.
  19. (2024). Multicomponent multi-phase-field software version 7.250. Retrieved February 26, 2024, from https://micress.rwth-aachen.de/.
  20. Eiken, J. (2020). Calphad-based phase-field study of the interplay between spheroidal graphite growth and chemical segregation in ductile cast iron. In IOP Conference Series: Materials Science and Engineering (Vol. 861, No. 1, p. 012055). Institute of Physics Publishing. DOI:10.1088/1757-899X/861/1/012055.
  21. Eiken, J., Subasic, E. & Lacaze, J. (2020). 3D phase-field computations of microsegregation in nodular cast iron compared to experimental data and Calphad-based Scheil-prediction. Materialia. 9, 100538, 1-11. DOI: 10.1016/j.mtla.2019.100538.
  22. Horbach, L., Gebhardt, C., Zhang, J., Joseph, B. D., Bührig-Polaczek, A. & Broeckmann, C. (2024). The effect of silicon microsegregation on the mechanical properties of high silicon alloyed ductile cast iron under monotonous loading. Heliyon. 10(1), e23904, 1-19. DOI: 10.1016/j.heliyon. 2023.e23904.
  23. Eiken, J. & Lacaze, J. (2017). Microsegregation build-up during solidification of nodular cast iron - Phase-field simulation versus experimental information. Microsegregation build-up during solidification of nodular cast iron-Phase-field simulation versus experimental information. In Proceedings of the 5th Decennial International Conference on Solidification Processing, Old Windsor, UK(pp. 25-28).
  24. Access e.V. (1996). HOMAT-Docs. Retrieved from https://docs.micress.rwth-aachen.de/homat/.
  25. Laschet, G. (2002). Homogenization of the thermal properties of transpiration cooled multi-layer plates. Computer Methods in Applied Mechanics and Engineering. 191(41-42), 4535-4554. https://doi.org/10.1016/S0045-7825(02)00319-5.
  26. Zhou, B., Laschet, G., Eiken, J., Behnken, H. & Apel, M. (2020). Multiscale solidification simulation of Sr-modified Al-Si-Mg alloy in die casting. In IOP Conference Series: Materials Science and Engineering, 22-23 June 2020 (Vol. 861, 1-8). Institute of Physics Publishing. DOI:10.1088/1757-899X/861/1/012034.
  27. Laschet, G. & Apel, M. (2010). Thermo-elastic homogenization of 3-D steel microstructure simulated by the phase-field method. Steel Research International. 81(8), 637-643. DOI:10.1002/srin.201000077.
  28. Boccaccini, A.R. (1997). Young’s modulus of cast-iron as a function of volume content, shape and orientation of graphite inclusions. International Journal of Materials Research. 88(1), 23-26. DOI:10.3139/ijmr-1997-0005.
  29. Fernandino, D.O., Cisilino, A.P. & Boeri, R.E. (2015). Determination of effective elastic properties of ferritic ductile cast iron by computational homogenization, micrographs and microindentation tests. Mechanics of Materials. 83, 110-121. DOI: 10.1016/j.mechmat.2015.01.002.
  30. Grimvall, G. (1997). Cast iron as a composite: conductivities and elastic properties. Advanced Materials Research. 4-5, 31-46. DOI: 10.4028/www.scientific.net/amr.4-5.31.
  31. Speich, G.R., Schwoeble, A.J. & Kapadia, B.M. (1980). Elastic moduli of gray and nodular cast iron. Journal of Applied Mechanics. 47(4), 821-826. DOI:10.1115/1.3153797.
  32. Bührig-Polaczek, A., Broeckmann, C. & Eiken, J. (2023). Experimentally supported modelling of the correlation between metallurgical process control, 3D microstructure development and mechanical properties of pearlitic cast iron with spheroidal graphite. DFG Project 504974025. Aachen.
  33. Thermo-Calc. (2023). TCFE9, TCS Steel/Fe -Alloys Database, Version 3.0.
  34. Thermo-Calc. (2023). MOBFE4, TCS Steel/FE Alloys Mobility Database version 4.
  35. Turnbull, D. (1953). Theory of catalysis of nucleation by surface patches. Acta Metallurgica. 1(1), 1953, 8-14. https://doi.org/10.1016/0001-6160(53)90004-2.
  36. Nellissery Rajan, R. (2024). Experiment-based 3-D phase field simulations of nucleation and growth of graphite nodules in SGI alloys and evaluation of homogenized mechanical properties. Master-Thesis. RWTH, Aachen.
  37. Eiken, J., Böttger, B. & Apel, M. (2023). Diffuse modelling of pearlite growth in Calphad-coupled multicomponent multi-phase-field simulations. IOP Conference Series: Materials Science and Engineering. 1281(1), 012051. DOI:10.1088/1757-899x/1281/1/012051.
  38. Fredriksson, H. & Svensson, I.L. (1984). Computer simulation of the structure formed during solidification of cast iron. MRS Proceedings. 34, 273. DOI: 10.1557/PROC-34-273.
  39. Lekakh, S.N., Zhang, X., Tucker, W., Lee, H.K., Selly, T. & Schiffbauer, J.D. (2020). Micro-CT quantitative evaluation of graphite nodules in SGI. International Journal of Metalcasting. 14(2), 318-327. DOI:10.1007/s40962-019-00354-9.
  40. Access e.V. (2024). HOMAT version 6.004.
  41. Bonora, N., & Ruggiero, A. (2005). Micromechanical modeling of ductile cast iron incorporating damage. Part I: Ferritic ductile cast iron. International Journal of Solids and Structures. 42(5), 1401-1424. DOI: https://doi.org/10.1016/j.ijsolstr.2004.07.025.
  42. Kosteski, L., Iturrioz, I., Batista, R.G. & Cisilino, A.P. (2011). The truss-like discrete element method in fracture and damage mechanics. Engineering Computations (Swansea, Wales). 28(6), 765-787. DOI:10.1108/02644401111154664.

 

Przejdź do artykułu

Autorzy i Afiliacje

R. Nellissery Rajan
1
J. Eiken
1
ORCID: ORCID

  1. Access e.V, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents model test results on the flow of liquid steel through a CSC (Continuous Steel Casting) tundish equipped with various TI (Turbulence Inhibitors) designs. The tests were carried out using a physical water model of the CSC device made in accordance with the principles of similarity on a linear scale of 1:2.5 in relation to the industrial device. The tests were conducted in two stages: qualitative - visualization and quantitative - determination of RTD (Residence Time Distribution) curves. A tracer in form of an aqueous solution of KMnO4 was used for visualization, while an aqueous solution of NaCl was used to determine RTD curves. The aim of the tests was to determine the effect of the geometry of four types of turbulence inhibitors (TI) on the formation of the mechanism of model liquid flow in the working space of the water model of the tundish and to interpret the results from the point of view of obtaining specific casting parameters under industrial conditions. The following casting parameters were assumed: risk of dead zones, conditions conducive to the formation of the required primary structure of billets identical in all outlets, the ability to micro-refine and homogenize steel in chemical terms.
Przejdź do artykułu

Bibliografia

  1. Kudliński, Z. (2006). Steel casting technologies (Technologie odlewania stali). University Press of the Silesian University of Technology, Gliwice. (in Polish).
  2. Lis, T. (2009). Metallurgy of high-purity steel (Metalurgia stali o wysokiej czystości). University Press of the Silesian University of Technology, Gliwice. (in Polish).
  3. Irwing, W.R. (1993). Continuous casting of steel. London: Publishing of the Institute of Materials.
  4. Louhenkilpi, S. (2024). Continuous casting of steel. In Treatise on process metallurgy vol. 3: Industrial Processes (pp. 373-434). Publishing of the Royal Institute of Technology, Stockholm, Sweden.
  5. Bulko, B., Priesol, I., Demeter, P., Gašparovic, P., Baricová, D. & Hrubovcáková, M. (2018). Geometric modification of the tundish impact point. Metals. 8(1), 944, 1-11. DOI:10.3390/met8110944.
  6. Cwudziński, A. (2015). Numerical simulation of the liquid steel alloying process in a one-strand tundish with different addition positions and flow control devices. Metallurgical Research & Technology. 112(3), 308. DOI: 1051/metal/2015016.
  7. Zhu, M., Peng, S., Jiang, K., Luo, J., Zhong, Y. & Tang, P. (2022) Fluid flow and heat transfer behaviors under non-isothermal conditions in a four-strand tundish. Metals. 12(5), 840, 1-15. DOI: 3390/met12050840.
  8. Ling, H. & Zhang, L. (2013). Numerical simulation of the growth and removal of inclusions in the molten steel of a two-strand tundish. JOM. 2013. 65(9), 1155-1163. DOI: 1007/s11837-013-0689-x.
  9. Morales, R.D., Guarneros, J., Chattopadhyay, K., Nájera-Bastida, A. & Rodríguez, J. (2019). Fluid flow control in a billet tundish during steel filling operations. Metals. 9(3), 394, 1-13. DOI:10.3390/met9040394.
  10. Wang, K., Tie, Z., Cai, S., Wang, H., Tang, H. & Zhang, J. (2023). Flow control to a t-shaped five strand tundish for ist overall enhanced metallurgical effects with an approachable identical product quality. ISIJ International. 63(8), 1351-1359. DOI: 2355/isijinternational.ISIJINT-2023-008.
  11. Bulko, B., Molnár, M., Demeter, P., Baricová, D., Pribulová, A., Futás, P. (2018). Study of the influence of intermix conditions on steel cleanliness. Metals. 8(10), 852, 1-9. DOI:10.3390/met8100852.
  12. Merder, T. & Pieprzyca, J. (2011). Numerical modeling of the influence subflux controller of turbulence on steel flow in the tundish. Metalurgija. 50(4), 223-226.
  13. Morales, R.D., García-Hernández, S., Barreto Sandoval, J., Ceballos-Huerta, A., Ramos, I.C., Gutiérrez, E. (2016). Multiphase flow modeling of slag entrainment during ladle change operation. Metallurgical and Materials Transactions B. 47(4), 2595-2606. DOI:10.1007/s11663-016-0663-4.
  14. Neumann, S., Asad, A. & Schwarze, R. (2020). Numerical simulation of an industrial-scale prototypical steel melt tundish considering flow control and cleaning strategies. Advanced Engineering Materials. 22(2), 1900658, 1-11. DOI:10.1002/adem.201900658.
  15. Sheng, D.Y. & Windisch, C. (2022). A simulation-based digital design methodology for studying conjugate heat transfer in tundish. Metals. 12 (1), 62, 1-21. DOI:10.3390/met12010062.
  16. Qin, X., Cheng, C., Li, Y., Wu, W. & Jin, Y. (2022). Bubble behaviour under a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. Journal of Materials Research and Technology. 21(10), 3195-3206. DOI: 1016/j.jmrt.2022.10.100.
  17. Yamamoto, T., Suzuki, A., Komarova, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
  18. Saternus, M., Merder, T. & Warzecha P. (2011). Numerical and physical modelling of aluminium barbotage process. Solid State Phenomena. 176, 1-10. https://doi.org/10.4028/www.scientific.net/SSP.176.1.
  19. Li, Z., Ouyang, W., Wang, Z., Zheng, R., Bao, Y. & Gu, C. (2023). Physical simulation study on flow field characteristics of molten steel in 70t ladle bottom argon blowing process. Metals. 13(4), 639, 1-14. DOI:10.3390/met13040639.
  20. Panic, B. & Janiszewski, K. (2014). Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces. Metalurgija. 53(3), 331-334.
  21. Michalek, K. (2001). The use of p hysical modeling and numerical optimization for metallurgical processe Ostrawa: Publishing of the VSB.
  22. Müller, L. (1983). Application of Dimensional Analysis in Model Research (Zastosowanie analizy wymiarowej w badaniach modelowych). Warszawa: PWN, Poland. (in Polish).
  23. Merder, T. (2018). Numerical analysis of the liquid flow structure in the tundish with physical model verification. Archives of Metallurgy and Materials. 63(4), 1895-1901. DOI: 10.24425/amm.2018.125121.
  24. Merder, T., Warzecha, M., Warzecha, P., Pieprzyca, J. & Hutny, A. (2019). Modeling research technique of nonmetallic inclusions distribution in liquid steel during its flow through the tundish water model. Steel Research International. 90(7), 1-10. DOI:1002/srin.201900193.
  25. Jowsa, J. (2008). Engineering of ladle processes in metallurgy (Inżynieria procesów kadziowych w metalurgii). Częstochowa: University of Technology Publishing, Poland. (in Polish).
  26. Falkus J. (1998). Physical and mathematical modeling of metal bath mixing processes in metallurgical reactors (Fizyczne i matematyczne modelowanie procesów mieszania kąpieli metalowej w reaktorach metalurgicznych). Rozprawy i Monografie nr 71. Kraków: Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Poland. (in Polish).
  27. Levenspiel, O. (1999). Chemical reaction engineering. New York: John Wiley & Sons, Inc.
  28. Pieprzyca, J., Merder, T. & Jowsa, J. (2015). Method for determining the time constants characterizing the intensity of steel mixing in continuous casting tundish. Archives of Metallurgy and Materials. 60(1), 245-249. DOI: 10.1515/amm-2015-0039.
  29. Szekely, J., Illegbussi, O.J. (1998). The physical and mathematical modeling of tundish operations. Berlin: Springer-Verlag.
  30. Wen, C.Y., Fan, L.T. (1975). Models for flow systems and chemical reactions. New York: Dekker.
Przejdź do artykułu

Autorzy i Afiliacje

T. Merder
1
ORCID: ORCID
J. Pieprzyca
1
ORCID: ORCID
L. Strózik
2
A. Andrukowicz
2
Z. Czapka
3
M. Saternus
1
ORCID: ORCID
J. Merder
4

  1. Silesian University of Technology, Poland
  2. ArcelorMittal Warszawa Sp. z o.o., Poland
  3. Zakłady Magnezytowe "ROPCZYCE" S.A., Poland
  4. University of Economics in Katowice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Paper presents analysis and results of studies on scandium addition to copper from 0.1 wt. % up to 0.4 wt. % and influence of heat treatment and forging process on alloys mechanical and electrical properties. The studies included the production of CuSc0.1, CuSc0.2, CuSc0.3 and CuSc0.4 alloys with the use of metallurgical synthesis and horizontal continuous casting processes. The continuous casting process is a commonly used method for producing rods from various materials for further processing. The research involved the selection of heat treatment for the produced materials in various states of hardening, i.e. immediately after the casting process, after the cold and hot forging process. The research aimed to obtain the highest possible mechanical and electrical properties of Cu-Sc alloys. The studies showed that for CuSc0.4 alloy hardness was at the level of 216 HV (after cold forging and artificial ageing). In case of electrical conductivity, all Cu-Sc alloys were in the range of 27 - 51 MS/m.
Przejdź do artykułu

Bibliografia

  1. Davis, J.R. (2001). ASM Specialty Handbook: copper and copper alloys. United States of America: ASM International.
  2. Warlimont, H., Martienssen, W. (2018). Springer handbook of materials data. Springer Nature Switzerland AG.
  3. Liu, P., Tong, L., Wang, J., Shi, L. & Tang, H. (2012), Challenges and developments of copper wire bonding technology. Microelectronics Reliability. 52(6), 1092-1098. https://doi.org/10.1016/j.microrel.2011.12.013.
  4. Franczak, K., Sadzikowski, M., Kwaśniewski, P., Kiesiewicz, G., Ściężor, W. & Kordaszewski, S. (2024). Research on alloying elements’ influence on CuETP-grade copper’s mechanical and electrical properties. 17(12), 3020, 1-20. https://doi.org/10.3390/ma17123020.
  5. Zakharov, M.V., Zakharov, A.M., Popov, O.P. & Dashevskaya, N.E. (1970). The effect of scandium on the properties of copper and some copper alloys. Izvest Vuz Tsvetnaya Met. 4, 117-121.
  6. Subramanian, P.R, Laughlin, D.E. & Chakrabarti, D.J. (1988). The Cu-Sc (copper-scandium) system. Bulletin of Alloy Phase Diagrams. 9(3a), 378-382.
  7. Goncharuk, L.V. & Sidorko, V.R. (2006). Thermodynamic properties of scandium – copper compounds. Powder Metallurgy and Metal Ceramics. 45, 72-75. https://doi.org/10.1007/s11106-006-0043-8.
  8. Franczak, K., Kwaśniewski, P., Kiesiewicz, G., Zasadzińska, M., Jurkiewicz, B., Strzepek, P. & Rdzawski, Z. (2020). Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys. Archives of Civil and Mechanical Engineering. 20, 1-15. DOI: 10.1007/s43452-020-00035-z.
  9. Dölling, J., Henle, R., Prahl, U., Zilly, A. & Nandi, G. (2022). Copper-based alloys with optimized hardness and high conductivity: research on precipitation hardening of low-alloyed binary CuSc alloys. Metals. 12(6), 1-24. https://doi.org/10.3390/met12060902.
  10. Hao, Z., Xie, G., Liu, X., Tan, Q. & Wang, R. (2022). The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy. Journal of Materials Science & Technology. 98, 1-13. https://doi.org/10.1016/j.jmst.2020. 12.081.
  11. Dölling, J., Kracun, S.F., Prahl, U., Fehlbier, M., Zilly, A & (2023). A comparative differential scanning calorimetry study of precipitation hardenable copper-based alloys with optimized strength and high conductivity. 13(1), 150, 1-29. https://doi.org/10.3390/met13010150.
  12. Henle, R., Kött, S., Jost, N., Nandi, G., Dölling, J., Zilly, A., & Prahl, U. (2024) Investigation of the solid solution hardening mechanism of low-alloyed copper–scandium alloys. Metals. 14(7), 831, 1-22. https://doi.org/10.3390/met14070831.
  13. Seung, Z. H., Eun-Ae, C., Sung, H. L., Sangshik, K. & Jehyun, L. (2021). Alloy design strategies to Increase strenght and its trade-offs together. Progress in Materials Science. 117, 100720, 1-51. https://doi.org/10.1016/j.pmatsci.2020.100720.
  14. Qingzhong, M., Yanfang, L., Yonghao, Z. (2024). A review on copper alloys with high strength and high electrical conductivity. Journal of Alloys and Compounds. 990, 174456, 1-20. https://doi.org/10.1016/j.jallcom.2024.174456.
  15. Kawecki, A., Sieja-Smaga, E., Kwaśniewski, P., Kiesiewicz, G., & Kretowicz, P. (2022). The influence of heat treatment and plastic deformation on the electrical and mechanical properties of CuAg alloys for the construction of high-field bitter type electromagnets. 61, 745-748.
  16. Kawecki, A., Sieja-Smaga, E., Mamala, A., Kwaśniewski, P., Kiesiewicz, G., Smyrak, B. & Ściężor, W. (2023). Manufacturing and properties of cast Cu-Ag alloys designed for electrotechnical applications. 62, 367-370.
  17. Ściężor, W., Kowal, R., Grzebinoga, J., Kiesiewicz, G., Kwaśniewski, P. & Mamala, A. (2023). Research on the influence of the proportion of nickel and silicon on the mechanical and electrical properties of CuNiSi alloys. 62, 419-422.
  18. Łagoda, M., Głuchowski, W., Maleta, M., Domagała-Dubiel, J. & Sadzikowski, M. (2022). Characteristics of CuCrTiAl alloy after plastic deformation. 61, 831-834.
  19. Mahmoudi, J. (2005). Horizontal continuous casting of copper-based alloys. International Journal of Cast Metals Research. 18(6), 355-369. https://doi.org/10.1179/136404605225023099.
  20. Knych, T., Mamala, A., & Ściężor, W. (2013). Effect of selected alloying elements on aluminium physical properties and its effect on homogenization after casting. Light Metals Technology. 765, 471-475, 10.4028/www.scientific.net/MSF.765.471.
  21. Liu, X.F., Yi, F. & Zhang, M. (2018). Effect of process parameters on the surface quality, microstructure and properties of pure copper wires prepared by warm mold continuous casting. 529, 13-23. https://doi.org/10.1080/00150193.2018.1448178.
  22. Mamala, A., Ściężor, W., Kwaśniewski, P., Grzebinoga, J. & Kowal, R. (2016). Study of the mechanical properties of strips obtained in TRC line. Archives of Metallurgy and Materials. 61, 1101-1108. DOI: 10.1515/amm-2016-0185.
  23. Franczak, K., Kwaśniewski, P., Kiesiewicz, G., Sadzikowski, M., Ściężor, W., Kordaszewski, S. & Kuca, D. (2022). Research on the continuous casting process of CuCrZr alloys with the addition of scandium dedicated for resistance welding electrodes. 61, 631-633.
Przejdź do artykułu

Autorzy i Afiliacje

K. Franczak
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents a comparative analysis of lead-free brass (CB771) and lead-containing brass (CB770). The study aimed to assess shrinkage processes and corrosion resistance. CB771 samples with modified chemical composition, enriched with zinc, aluminum and tin, were compared with CB770 samples in terms of casting shrinkage and susceptibility to dezincification. Dilatometric analysis revealed that different alloying additives affect shrinkage and dimensional stability at high temperatures in various ways. Aluminum and tin significantly improved resistance to dezincification, while the addition of zinc proved to be less effective. Microscopic examinations confirmed that alloys with aluminium and tin additives have a finer structure, which can translate to higher mechanical properties. The results suggest that lead-free alloys can replace traditional alloys in sanitary applications, reducing the negative impact of lead on the environment and public health.
Przejdź do artykułu

Bibliografia

  1. Zoghipour, N., Tascioglu, E., Celik, F. & Kaynak, Y. (2022). The influence of edge radius and lead content on machining performance of brass alloys. Procedia CIRP. 112, 274-279. https://doi.org/10.1016/j.procir.2022.09.084.
  2. Hansen, A. (2019). Bleifreier rotguss als armaturen-und installationswerkstoff in der trink wasser installation. METALL Forschung. 73(11), 452-455.
  3. Stavroulakis, P., Toulfatzis, A., Pantazopoulos, G. & Paipetis A. (2022). Machinable leaded and eco-friendly brass alloys for high performance manufacturing processes: a critical review. 12(2), 246, 1-31. https://doi.org/10.3390/met12020246.
  4. Schultheiss, F., Johansson, D., Bushlya, V., Zhou, J., Nilsson, K. & Ståhl, J-E. (2017). Comparative study on the machinability of lead-free brass. Journal of Cleaner Production. 149, 366-377. https://doi.org/10.1016/j.jclepro.2017.02.098.
  5. Johansson, J., Alm, P., M’Saoubi, R., Malmberg, P., Ståhl, J-E. & Bushlya, V. (2022). On the function of lead (Pb) in machining brass alloys. Journal of Advanced Manufacturing Technology. 120(11), 7263-7275. https://doi.org/10.1007/s00170-022-09205-0.
  6. Umwelt Bundesamt. (2024). Acceptance of metallic materials used for products in contact with drinking water, 4MS Common Approach Part B “4MS Common Composition List”. Retrieved July, 12, 2022 from http://www.umweltbundesamt.de/en/topics/water/drinking-water/distributing-drinking-water/guidelines-evaluation-criteria.
  7. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption, Dz.U.L 435/1 of 23.12.2020.
  8. Studnicki, A., Jura, S. & Kilarski, J. (1998). The investigation of chromium cast iron on casting dilatometer DO-01/P.Śl. Solidification of Metals and Alloys. 38, 223-228 (in Polish).
  9. Jacobsson, D., Däcker, C.-Å., Sundberg R. & Rod, O. (2010). A general guide for failure analysis of brass. Stockholm. Sweden: Swerea KIMAB, 2010.
  10. Jones, D.A. (1992). Dealloying and dezincification. in principles and prevention of CORROSION. New York: Macmillaian Publishing Company.
  11. Claesson, E. & O. Rod, O. (2016). The effect of alloying elements on the corrosion resistance of brass. Materials Science and Technology. 32(17), 1794-1803. https://doi.org/10.1080/02670836.2016.1254925.
  12. Górny, Z. (1992). Non-ferrous metal casting alloys. Wydawnictwa Naukowo Techniczne. ISBN: 83-204-1270-6. (in Polish).
  13. Radzioch, G., Bartocha, D. & Kondracki, M. (2023). Experimental and numerical comparison of lead-free and lead-containing brasses for fixture application. Archives of Foundry Engineering. 23(3), 124-132. DOI: 10.24425/afe.2023.146672.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

G. Radzioch
1 2
D. Bartocha
1
ORCID: ORCID
M. Kondracki
1

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Str. 44-100 Gliwice, Poland
  2. Joint Doctoral School, Silesian University of Technology, 2A Akademicka Str. 44-100 Gliwice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Among all the methods of metal forming, green sand moulding is the most commonly used method due to its low cost and high speed of work. Main constituents of green sand mould are sand, water, coal dust and binder. Mechanical properties like permeability, green compressive strength, mould hardness, compactibility and moisture content of green sand directly affects the quality of castings produced. This research is done to investigate the effect of input parameters (bentonite, garcolap powder, water) on the mechanical properties of green sand mould. Three levels of each input parameter were considered, and the experiments were designed using design expert software version-13. The regression analysis was performed on the experimental results using Minitab software version-21 to evaluate the effect of bentonite, garcolap powder and water on mechanical properties of green sand mould. Twenty experiments were designed by the software. Values of mechanical properties of green sand like compactibility, permeability, mould hardness, green compressive strength and moisture content were measured by performing experiments on specimen prepared from green sand in accordance with the IS: 1918-1966. Measured values were compared with the standard for validation. Results of this research clearly indicate that bentonite is the only input parameter which has the highest effect on mechanical properties of green sand mould.
Przejdź do artykułu

Bibliografia

  1. Khan, M.M., Mahajani, S.M. & Jadhav, G.N. Transformation of bentonite used in green sand molds during metal casting process and its relevance in sand reclamation. Applied Clay Science. 206, 1066072. https://doi.org/10.1016/j.clay.2021.106072.
  2. Sahoo, P.K., Pattnaik, S. & Sutar, M.K. (2021). Investigation of the foundry properties of the locally available sands for metal casting. 13(11), 3765-3775. DOI:10.1007/s12633-020-00677-x.
  3. Kamińska, J., Puzio, S., Angrecki, M. & Stachowicz, M. (2020). The effect of the addition of bentonite clay to traditional sand mixtures on the surface quality of iron castings. Journal of Ecological Engineering. 21(1), 160-167. DOI: 10.12911/22998993/112505.
  4. Muhammad N. & Siddiqua, S. (2019). Stabilization of silty sand using bentonite-magnesium-alkalinization: Mechanical, physicochemical and microstructural characterization. Applied Clay Science. 183, 105325. DOI: 10.1016/j.clay.2019.105325.
  5. Khan, M.M., Mahajani, S.M., Jadhav, G.N., Vishwakarma, R., Malgaonkar, V. & Mandre, S. (2021). Mechanical and thermal methods for reclamation of waste foundry sand. Journal of Environmental Management. 279, 111628. DOI:10.1016/j.jenvman.2020.111628.
  6. Khan, M.M. Singh, M., Jadhav, G.N., Mahajani, S.M. & Mandre, S. (2020). Characterization of waste and reclaimed green sand used in foundry processing. Silicon. 12(3), 677-691. DOI: 10.1007/s12633-019-00146-0.
  7. Reddy, M.A.K. & Rao V. R. (2019). Utilization of Bentonite in Concrete: A Review. International Journal of Recent Technology and Engineering. 7(6C2), 541-545.
  8. Vadlamudi, S. & Mishra, A.K. (2018). Consolidation characteristics of sand–bentonite mixtures and the influence of sand particle size. Journal of Hazardous, Toxic and Radioactive Waste. 22(4), 06018001. DOI: 10.1061/(asce)hz.2153-5515.0000409.
  9. Thakur Y. & Yadav, R.K. (2018). Effect of bentonite clay on compaction, CBR and shear behaviour of narmada sand. International Research Journal of Engineering and Technology. 5(3), 2087-2090.
  10. Paź, S., Drożyński, D., Górny, M. & Cukrowicz, S. (2019). Properties of bentonites and bentonite mixtures used in Casting Processes. Archives of Foundry Engineering. 19(2), 35-40. DOI: 10.24425/afe.2019.127113.
  11. Vinothraj, D., Ragavanantham, S., Saravanakumar, M., Vivekananthan, M. & Sivagnanamani, G.S. (2020). Heat dissipation and inter-relationship between physical properties of moulding sand. Materials Today: Proceedings. 37(2), 1809-1812. DOI:10.1016/j.matpr.2020.07.398.
  12. Sadarang, J., Nayak, R.K. & Panigrahi, I. (2020). Effect of binder and moisture content on compactibility and shear strength of river bed green sand mould. Materials Today: Proceedings, 46(11), 5286-5290. DOI:10.1016/j.matpr.2020.08.640.
  13. Shilpa, M., Prakash, G.S. & Shivakumar, M.R. (2020). A combinatorial approach to optimize the properties of green sand used in casting mould. Materials Today: Proceedings. 39(4), 1509-1514. DOI:10.1016/j.matpr.2020.05.465.
  14. Ochepo, J. (2020). Effect of rice husk ash on the hydraulic conductivity and unconfined compressive strength of compacted bentonite enhanced waste foundry sand. LAUTECH Journal of Civil and Environmental Studies. 5(1), 85-96. DOI: 10.36108/laujoces/0202/50(0190).
  15. Harrou, A., Gharibi, E., Nasri, H., Fagel, N., El Ouahabi, M. (2020). Physico-mechanical properties of phosphogypsum and black steel slag as aggregate for bentonite-lime based materials. Materials Today: Proceedings. 31(1), S51-S55. DOI: 10.1016/j.matpr.2020.05.819.
  16. Kamińska, J., Puzio, S. & Angrecki, M. (2020). Effect of bentonite clay addition on the thermal and mechanical properties of conventional moulding sands. Archives of Foundry Engineering. 20(1), 111-116. DOI:10.24425/afe.2020.131291.
  17. Kumar A. & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings. 22(3), 737-742. DOI: 10.1016/j.matpr.2019.10.037.
  18. Stec, K., Cholewa, M. & Kozakiewicz, Ł. (2020). Technological properties of thermo-insulating moulding sands with organic binder. Archives of Foundry Engineering. 20(2), 105-110. DOI: 10.24425/afe.2020.131311.
  19. Abdulamer, D. (2023). Optimizing sand moulding process through regression models and destructive testing. Archives of Foundry Engineering. 23(4), 163-168. DOI: 10.24425/afe.2023.148959.
  20. IS: 12446-2007 "Bentonite for use in Foundries Specification".
  21. IS: 1918-1966 "Indian Standard Methods of Physical Tests for Foundry Sands".
Przejdź do artykułu

Autorzy i Afiliacje

Arpit H. Modi
1
ORCID: ORCID
Shailee G. Acharya
1
ORCID: ORCID

  1. Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, IndiaLecturer, Department of Diploma Mechanical Engineering, Sardar Vallabhbhai Patel Institute of Technology, Vasad, Anand, Gujarat, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper deals with the issue of inoculation of cast iron with flake graphite. In this paper, two different inoculants were chosen for the inoculation of cast iron with flake graphite and then compared. The first inoculant was the basic inoculant Alinoc, the second inoculant chosen was SB 5, which contains rare earth metals. One of the factors affecting the resulting quality of the structure and the occurrence of undesirable forms of graphite is the fading of the inoculation effect. This is due to the time delay between the time of inoculation and the casting of the metal. In this work, the graphitization effect as a function of the decay time was investigated for two different inoculants. After inoculation, samples were collected at time intervals for chill test piece, thermal analysis and chemical composition analysis using an optical spectrometer. The cast samples were subsequently subjected to metallographic evaluation of the microstructure and its quantification by image analysis of graphite.
Przejdź do artykułu

Bibliografia

  1. Hartung, C., Michels, L. & Logan, R. (2021). The evolution of inoculants. Modern Casting. 111(10), 24-29.
  2. Lia, B.‐G., Sim, K.‐H., & Kim, R.-C. (2019). Effect of Sb–Ba–Ce–Si–Fe post inoculants on microstructural and mechanical properties of As‐cast pearlitic ductile iron. Steel research international. 90(5). https://doi.org/10.1002/srin.201800530.
  3. Dwulat, R., Janerka, K. & Grzesiak, K. (2021). The influence of final inoculation on the metallurgical quality of nodular cast iron. Archives of Foundry Engineering. 21(4), 5-14. https://doi.org/10.24425/afe.2021.138673.
  4. Mrvar, P., Mihalic Pokopec, I., Petrič, M. & Bauer, B. (2018). Effect of Si and Ni addition on graphite morphology in heavy-section spheroidal graphite iron parts. Materials Science Forum. 925, 70-77. https://doi.org/10.4028/www.scientific.net/MSF.925.70.
  5. Nakae, H. (2008). Influence of inoculation on solidification in cast iron. International Journal of Cast Metals Research. 21(1-4), 7-10. https://doi.org/10.1179/136404608X361576.
  6. Stan, S., Firican, C., Stefan, I. & Riposan, I. (2016). Thermal analysis to optimize and control the cast iron solidification process. Solid State Phenomena. 254, 14-19. https://doi.org/10.4028/www.scientific.net/SSP.254.14.
  7. Stefan, E. M. & Chisamera, M. (2015). Solidification control by thermal analysis of la/ba inoculated grey cast iron. Advanced Materials Research. 1128, 35-43. https://doi.org/10.4028/www.scientific.net/AMR.1128.35.
  8. Elkem Foundry Products. (2012). Alinoc Inoculant. YUMPU. Retrieved March 23, 2024, from https://www.yumpu.com/en/document/read/11944545/alinocr-inoculant-elkem.
  9. Foundry Lexicon. (2024). Chill wedge test piece. Retrieved April 23, 2024, from https://www.giessereilexikon.com/en/foundry-lexicon/Encyclopedia/show/chill-wedge-test-piece-3794/?cHash=67a9441603ce8fc97526f4b623629871.
  10. Chyla, O. (2016). Verification of the effect of inoculants on the structure of cast iron using thermal analysis. Diploma thesis, Brno University of Technology, the Czech Republic (in Czech).
  11. Controlling Metallurgy. Retrieved April 23, 2024, from https://www.novacast.se/product/
Przejdź do artykułu

Autorzy i Afiliacje

R. Jelínek
1
ORCID: ORCID
P. Bořil
1
ORCID: ORCID
M. Kaněra
1
J. Doubrava
1
A. Záděra
1
ORCID: ORCID

  1. Brno University of Technology, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the publication of the results of laboratory tests for decoppering metallurgical slag using a variable addition of "LOW GRADE" PCB scrap as a reducer (dates from 10 to 30% of the slag mass). In practical devices, as well as research on decoppering metallurgical slag using coke - a currently used reducer. The tests involved four measurement series differing in the source of the reducer and the variable process involved. The process was carried out at temperatures of 1350 and 1450°C. Two measurements were taken for each variant analysed. The conducted research showed the possibility of effective use of printed circuit board scrap in the slag decoppering process. An additional advantage of its use was the introduction of an additional charge of copper into the process at an average level of 10% by mass, which was recovered during the process in the form of a metal alloy. The metal alloy formed during the slag reduction process acted as a collector for the copper contained in the PCB scrap. Research has shown that as the amount of reducer in the form of PCB scrap increases, the final Cu content in the slag after reduction increases. The highest average degree of slag decopperization was achieved when 10% of PCB scrap was added to the reduction. At the analyzed temperatures it ranged from 95.2 to 97.5%. When coke was used as a reducing agent at a temperature of 1350°C, the average degree of slag decopperization was from about 60 (2 h) to about 75.5% (4 h). Increasing the process temperature to 1450°C resulted in a significant increase in the slag decopperization rate, above 97%, regardless of the process duration.
Przejdź do artykułu

Bibliografia

  1. Sivek, M. & Jirásek, J. (2023). Coking coal - Really a critical raw material of the European Union?. Resources Policy. 83, 103586. DOI: 1016/j.resourpol.2023.103586.
  2. Retrieved June 21, 2024, from https://www.teraz-srodowisko.pl/aktualnosci/wegiel koksowytransformacja-przemysl-stalowy-10696.html
  3. Duda, A. & Valverde, G. (2021). The economics of coking coal mining: a fossil fuel still needed for steel production. Energies. 14(22), 7682, 1-12. DOI: 10.3390/en14227682.
  4. Retrieved June 21, 2024, from https://www.jsw.pl/raportroczny-2018/en/nasze-otoczenie/otoczenie-rynkowe-i-konkurencyjne/
  5. Ozga–Blaszke, U. (2020). Coking coal in the European green deal strategy. Inżynieria Mineralna. 2(2), 87-93. DOI: 10.29227/IM-2020-02-47.
  6. Baruya, P. (2020). Coking coal – the strategic raw material. Clean Coal Centre. ISBN: 978-92-9029-629-4.
  7. Retrieved December 10, 2024, from https://www.crmalliance.eu/coking-coal
  8. Babich, A. & Senk, D. (2019). Coke in the iron and steel industry. New Trends in Coal Conversion. 367-404. DOI: 10.1016/B978-0-08-102201-6.00013-3.
  9. Heo, J., Kim, B. & Park, J.H. (2013). Effect of CaO addition on iron recovery from copper smelting slags by carbon. Metallurgical and Materials. Transactions B. 44, 1352-1363. DOI: 10.1007/s11663-013-9908-7.
  10. Matyjaszek, M., Wodarski, K., Krzemień, A. Garcia–Miranda, C.E. & Suárez Sánchez A. (2018). Coking coal mining investment: Boosting European Union's raw materials initiative. Resources Policy. 57, 88-97. DOI: 10.1016/j.resourpol.2018.01.012.
  11. Smalcerz, A., Matula, T., Slusorz, M., Wojtasik, J., Chaberska, W., Kluska, S., Kortyka, L., Mycka, L., Blacha, L. & Labaj, J. (2023). The use of PCB scrap in the reduction in metallurgical copper slags. Materials. 16(2), 625, 1-15. DOI: 10.3390/ma16020625.
  12. Kaya, M. (2020). Electronic waste and printed circuit board. recycling technologies. Switzerland: Springer Nature AG. ISBN: 978-3-030-26592-2.
  13. Forti, V., Balde, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020. Quantities, flows, and the circular economy potential. Bonn, Geneva and Rotterdam: United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association.
  14. Neves, S.A., Marques, A.C. & Batista de Sá Lopes L. (2024). Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union. Ecological Economics. 216(C), 108031, 1-8. DOI: 10.1016/j.ecolecon.2023.108031.
  15. Retrieved June 21, 2024, from https://www.europarl.europa.eu/topics/pl/article/20201208STO93325/zuzyty-sprzet-elektryczny-i-elektroniczny-w-ue-fakty-i-liczby-infografika
  16. Hagelüken, C. (2006). Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World of Metallurgy – ERZMETALL. 59(3), 152-161.
  17. Birloaga, I., De Michelis, I., Ferella, F., Buzatu, M. & Vegliò, F. (2013). Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management. 33(4), 935-941. DOI: 10.1016/j.wasman.2013.01.003.
  18. Yang, T., Xu, Z., Wen, J. & Yang, L. (2009). Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy. 97(1-2), 29-32. DOI:10.1016/j.hydromet.2008.12.011.
  19. Oishi, T., Koyama, K., Alam, S., Tanaka, M. & Lee, J.C. (2007). Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. 89(1-2), 82-88. DOI: 10.1016/j.hydromet.2007.05.010.
  20. Behnamfard, A., Salarirad, M.M. & Veglio F. (2013). Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management. 33(11), 2354-2363. DOI: 10.1016/j.wasman.2013.07.017.
  21. Mir, S. & Dhawan N. (2022). A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resources, Conservation and Recycling. 178, 106027, 1-21. DOI: 10.1016/j.resconrec.2021.106027.
  22. Retrieved December 16, 2024, from https://elemental-asia.biz/segmenty-dzialalnosci/recycling-obwodow-drukowanych.
  23. J., Wang, Y., Wu, Y. & Guo F. (2020). Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resources, Conservation and Recycling. 157, 104787, 1-15. DOI: 10.1016/j.resconrec.2020.104787.
  24. Retrieved December 16, 2024, from https://www.genoxtech.com/en/news_i_understanding-pcb-recycling.html
  25. Kozłowski, J., Mikłasz, W., Lewandowski, D. & Czyżyk H. (2013). Research on hazardous waste management – part I. Archives of Waste Management and Environmental Protection. 15(2), 69-76. ISSN 1733-4381. (in Polish).
  26. Wołczyński, W. & Bydałek, A.W. (2016). Sedimentation of copper droplets after their coagulation and growth – Laboratory Scale. Archives of Foundry Engineering. 16(1), 95-98. DOI: 10.1515/afe-2016-0010.
Przejdź do artykułu

Autorzy i Afiliacje

Ł. Kortyka
1
ORCID: ORCID
J. Łabaj
2
ORCID: ORCID
P. Madej
1
ORCID: ORCID
Ł. Myćka
1
ORCID: ORCID
M. Lewandowska
1
T. Matuła
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Poland
  2. Silesian University of Technology, Poland

Instrukcja dla autorów

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Zasady etyki publikacyjnej


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Procedura recenzowania


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Recenzenci

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji