Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research

Zawartość

Polish Polar Research | 2011 | No 2 |

Abstrakt

This review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorga nisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further , only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
Przejdź do artykułu

Abstrakt

A new species of lichenized ascomycete, Massalongia olechiana Alstrup et Søchting, sp. nov. (Massalongiaceae) is described from the South Shetland Islands and the Antarctic Peninsula. The species is distinguished by laminal isidia and 5–7−septate ascospores. The relationships with the other species of the genus are discussed. From Massalongia carnosa , recorded from both the Arctic and the Antarctic, the new species is distinguished by its lack of isidioid squamules and in having pluriseptate ascospores instead of 1−septate ascospores
Przejdź do artykułu

Abstrakt

Lichens of relict penguin colonies and sites affected by active penguin colonies were investigated in Victoria Land, Ross Sea sector, continental Antarctica. A total of 17 coastal sites, seven in northern and ten in southern Victoria Land, have been investigated across 7 ° of latitude from 71 ° to 78 ° S. Altogether 40 taxa of lichens have been identified. Four of the recorded species are new to the Antarctic – Caloplaca erecta , C. soropelta , C. tominii and Physcia tenella ; two species are new to the Victoria Land area – Lecania nylanderiana and Lecanora polytropa . The first lichen records from Beaufort Island are also provided. Data presented here expand the knowledge on the occurrence, diversity and distribution of Victoria Land lichens.
Przejdź do artykułu

Abstrakt

Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the reproduction biology of Colobanthus quitensis (Caryophyllaceae) growing in natural conditions in the Antarctic and in a greenhouse in Olsztyn (northern Poland) showed that this plant develops two types of bisexual flowers: opening, chasmogamous flowers and closed, cleistogamous ones. Cleistogamy was caused by a low temperature, high air humidity and strong wind. A small number of microspores differentiated in the microsporangia of C. quitensis , which is typical of cleistogamous species. Microsporocytes, and later micro − spores, formed very thick callose walls. More than twenty spheroidal, polypantoporate pollen grains differentiated in the microsporangium. They germinated on the surface of receptive cells on the dry stigma of the gynoecium or inside the microsporangium. A monosporic embryo sac of the Polygonum type differentiated in the crassinucellar ovule. During this differentiation the nucellus tissue formed and stored reserve materials. In the development of generative cells, a male germ unit (MGU) with differentiated sperm cells was observed. The smaller cell contained mainly mitochondria, and the bigger one plastids. In the process of fertilization in C. quitensis only one nucleus of the sperm cell, without cytoplasm fragments, entered the egg cell, and the proembryo developed according to the Caryophyllad type. Almost all C. quitensis ovules developed and formed perispermic seeds with a completely differentiated embryo both under natural conditions in the Antarctic and in a greenhouse in Olsztyn.
Przejdź do artykułu
Słowa kluczowe: Antarctic plants fungi

Abstrakt

This paper recapitulates Polish botanical and mycological research on terrestrial and freshwater Antarctic ecosystems carried out between 1977 and 2009. The main results are briefly summarized. The references encompass nearly 200 papers on floristics, taxonomy, biogeography, ecology, cytology, bioc hemistry, physiology and genetics of lichens, mosses, fungi, algae and vascular plants inhabiting soils, rocks and inland waters in the Antarctic.
Przejdź do artykułu

Abstrakt

The only record of the Paleogene Antarctic Sphenisciformes comes from the Eocene La Meseta Formation (Seymour Island, Antarctic Peninsula). The analysis of tarso− metatarsi attributed to the genus Anthropornis (“giant” penguins) from the Argentine, Polish and Swedish collections revealed an intriguing heterogeneity within these taxonomically important elements of the skeleton. The unique hypotarsal morphology challenges the current systematics of large−bodied penguins and sheds new light on their evolution.
Przejdź do artykułu

Abstrakt

The paper presents the first physicochemical and microbiological studies conducted in the northern area of Svalbard (Spitsbergen). Ten sediment samples were collected from the bottom of the longest fjord in the region, Wijdef jorden. Bottom sediments from ten lakes located along the shores of Wijdefjorden and Woodfjorden were also sampled. Organic matter content (LOI), water content, temperature, pH, and salinity of the sediments were determined. The quantity of aerobic bacteria cultured on various growth media at 4 ° C, 14 ° C, and 37 ° C ranged from 10 2 to 10 6 cfu/g of wet sediment mass, depending on the type of sampling station (fjord or lake). The number of bacteria did not co rrelate with organic matter content. Out of the 37 bacterial strains isolated from Wijdefjorden, 48% and 70% revealed ureolytic and proteolytic activity, respectively. The proportion of freshwater strains with ureolytic and proteolytic activity was 32% and 55%, respectively. Antibiotic resistance testing indicated that bacterial strains from the bottom sediments of the lakes were resistant to 8 antibiotics (out of the 18 investigated). Possible sources of this resistance are discussed. Using 16S DNA analysis, bacterial isolates from the lakes were identified as Pseudomonas sp., whereas frequently occurring strains in bottom sediment of the fjord were Pseudoalteromonas sp.
Przejdź do artykułu

Redakcja

Editors-in-Chief

Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail: wmaj@twarda.pan.pl

Associate Editors
Krzysztof HRYNIEWICZ (Warszawa),
e-mail:krzyszth@twarda.pan.pl
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Piotr Pabis (Łódź),
e-mail: cataclysta@wp.pl
Krzysztof Jażdżewski (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl

Editorial Advisory Board


Krzysztof BIRKENMAJER (Kraków),

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Marek GRAD (Warszawa),

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków) - President,

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot)

Technical Editors
Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Kontakt

Geosciences
Wojciech MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone: (48 22) 697 88 53

Instytut Paleobiologii
Polska Akademia Nauk
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
Magdalena BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Instrukcje dla autorów

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers, dealing with all aspects of polar research. The journal aims to provide a forum for publication of high quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should be not longer than 30 typescript pages, including tables, figures and references. All papers are peer-reviewed. With the submitted manuscript authors should provide the names, addresses and e-mail addresses of three suggested reviewers.

Submission of an article implies that the work described has not been published previously nor is under consideration by another journal.

The contribution should be submitted as Word file. It should be prepared in single- column double-spaced format and 25 mm margins. Consult a recent issue of the journal for layout and conventions (journals.pan.pl/ppr). Prepare figures and tables as separate files. For computer-generated graphics, editor Corel Draw is preferred. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126 × 196 mm. Limited number of color reproductions in print is fee of charge. Color artwork in PDF is free of charge.

Title should be concise and informative, no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. References in the text to papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

 

Examples:
ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge: 289 pp.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffi oyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).

The journal does not have article processing charges (APCs) nor article submission charges.

Twenty-five reprints of each article published are supplied free of charge. Additional charged reprints can be ordered.

 

Please submit your manuscripts to Polish Polar Research via email to Editors-in-Chief:

Magdalena BŁAŻEWICZ (Life Sciences) magdalena.blazewicz@biol.uni.lodz.pl

Wojciech MAJEWSKI (Geosciences) wmaj@twarda.pan.pl

 

Abstracting & Indexing

Polish Pola r Research is covered by the following services:

    AGRICOLA (National Agricultural Library)

    AGRO

    Arianta

    Baidu Scholar

    Cabell's Directory

    CABI (over 50 subsections)

    Celdes

    CNKI Scholar (China National Knowledge Infrastructure)

    CNPIEC

    Cold Regions Bibliography

    Current Antarctic Literature

    DOAJ (Directory of Open Access Journals)

    EBSCO (relevant databases)

    EBSCO Discovery Service

    Elsevier - Geobase

    Elsevier - Reaxys

    Elsevier - SCOPUS

    Genamics JournalSeek

    Google Scholar

    J-Gate

    JournalTOCs

    Naviga (Softweco)

    Polish Scientific Journals Contents

    Primo Central (ExLibris)

    ProQuest (relevant databases)

    ReadCube

    ResearchGate

    SCImago (SJR)

    Summon (Serials Solutions/ProQuest)

    TDOne (TDNet)

    Thomson Reuters - Biological Abstracts

    Thomson Reuters - BIOSIS Previews

    Thomson Reuters - Journal Citation Reports/Science Edition

    Thomson Reuters - Science Citation Index Expanded

    Thomson Reuters - Zoological Record

    Ulrich's Periodicals Directory/ulrichsweb

    WorldCat (OCLC)

 

Technical Editors

Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact:

 

Geosciences

Wojciech MAJEWSKI

e-mail: wmaj@twarda.pan.pl

phone: (48 22) 697 88 53

Instytut Paleobiologii

Polska Akademia Nauk

ul. Twarda 51/55

00-818 Warszawa, POLAND

 

Life Sciences

Magdalena BŁAŻEWICZ

e-mail: magdalena.blazewicz@biol.uni.lodz.pl

phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki

ul. S. Banacha 12/16

90-237 Łódź, POLAND

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji