Science and earth science

Polish Polar Research


Polish Polar Research | 1993 | vol. 14 | No 3 |

Download PDF Download RIS Download Bibtex


Attempt of correlation of raised marine beaches and glacial episodes in West Spitsbergen is presented for the Middle and the Late Quaternary. A model of predominating Barents Sea shelf ice sheet during the Saalian and of co-existing distinct local ice domes during the Vistulian is postulated on the basis of varying land uplift. Glacial episodes in Spitsbergen are referred to the ones in continental Europe and North America. Rough prognosis of climatic trends is introduced.

Go to article

Authors and Affiliations

Leszek Lindner
Leszek Marks
Download PDF Download RIS Download Bibtex


Geological and geomorphological studies in Kaffiöyra and Hermansenöya (Oscar II Land, northwestern Spitsbergen), completed with radiocarbon datings, indicated that the Early Vistulian (Weichselian) Glaciation of presumable regional significance, occupied the whole area. Marine transgression during and after deglaciation reached at least to 65 m a.s.l. Glacioisostatic uplift and marine regression in Kaffiöyra resulted in development of older raised beaches at 52-65 m a.s.l. During the Late Vistulian, Kaffiöyra was occupied partly by outlet glaciers (Aavatsmark, Elise and Andreas), while the Dahl Glacier covered Hermansenöya. Extents of these glaciers were much greater than during the Little Ice Age. Marine transgression during deglaciation reached to 46-48 m a.s.l. at about 12-11.5 ka B.P. During glacioisostatic emergence at 11.5-9 ka B.P., ten younger raised marine beaches were formed in Kaffiöyra. Traces of a probable glacial episode at 3-2.5 ka B.P. were noted in forefields of the Aavatsmark and the Elise glaciers only. In forefields of all glaciers in Kaffiöyra there are deposits and landforms formed during glacial advances of the Little Ice Age and the following continuous retreat. The Aavatsmark Glacier was the only one to indicate surge type readvances at that time.

Go to article

Authors and Affiliations

Władysław Niewiarowski
Mieczysław F. Pazdur
Mieczysław Sinkiewicz
Download PDF Download RIS Download Bibtex


Relief of Svalbard is an effect of varied morphogenetic, exogenic and endogenic processes. Tectonic and glacioisostatic movements of the Earth crust have occurred many a time in this region. Glacial, marine and periglacial features are particularly common. During the Late Quaternary the western Nordenskiöld Land underwent several sea transgressions, followed by glacier advances. Basing on erratics of crystalline rocks transported by sea ice, past sea levels have been established up to 250 m a.s.l. Marine terraces above 60 m a.s.l. date back to the Late Pleistocene, the lower ones are of the Holocene age.

Go to article

Authors and Affiliations

Andrzej Musiał
Bogdan Horodyski
Krzysztof Kossobudzki
Download PDF Download RIS Download Bibtex


Studies of the Quaternary evolution of the Hornsund Region in Spitsbergen focused in nine key areas, in which detailed fieldworks with mapping and sampling to radiocarbon and thermoluminescence analyses have been done. Glacial history of the Hornsund Region is known from the Torellkjegla (Holsteinian) Interglacial up to the recent times. The Wedel Jarlsberg Land (Saalian) Glaciation was the most widespread in this part of Spitsbergen and consisted of two stades(?). It was followed by considerable glacier retreat during the Bogstranda (Eemian) Interglacial, the latter being represented by development of soils. Four glacier advances (the two younger ones are the Lisbetdalen and the Slaklidalen stages) occurred during the Sörkapp Land (Vistulian) Glaciation. Three glacier advances (Gronfjorden and Revdalen stages, followed by the Little Ice Age) were recognized for the Holocene. The oldest and highest (although somewhat questionable) raised marine beaches come presumably from the Wedel Jarlsberg Land Glaciation. The beaches 80-100 m a.s.l. were formed during the Bogstranda (Eemian) Interglacial. The beaches 20-60 m a.s.l. are correlated with the Sórkapp Land Glaciation. All the lower marine beaches were formed during the Holocene.

Go to article

Authors and Affiliations

Leszek Lindner
Leszek Marks
Download PDF Download RIS Download Bibtex


Marine rock-accumulative terraces at 2-230 m a.s.l. in the southern Sörkapp Land are typical for glacioisostaticly uplifted areas. The Holocene terraces reach up to 19 m a.s.l. An outstanding coastal ridge at 9-10 m a.s.l. was radiocarbon-dated at 6580±160 years B.P. No marine transgression during the Holocene on higher and older terraces was noted, what is also confirmed by well preserved raised storm ridges. Any of glacial advances during the Holocene were more extensive than the one of the Little Ice Age. However the Pleistocene glaciations were more extensive. Among glacial landforms in the area there are: ice-cored frontal and lateral moraines up to 70 m high, plains of ground, ablation and fluted moraines, complexes of glaciofluvial fans. The glaciers retreated 0.3-2 km since 1936 i.e. ca 10 m a year on the average. There are large consequent structural landslides on eastern slopes of Keilhaufjellet.

Go to article

Authors and Affiliations

Antoni Wójcik
Wiesław Ziaja
Download PDF Download RIS Download Bibtex


Reduced ice thickness made the glaciers of the northeastern Sörkapp Land occupy considerably smaller area in 1971 than in 1961. Glacial retreat was however more limited in this area than in a remaining part of the Sörkapp Land. Melting of firn intensified processes on mountain slopes.

Go to article

Authors and Affiliations

Jerzy Sokołowski
Wiesław Ziaja

Editorial office


Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland

Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland

Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland

Associate Editors

Piotr JADWISZCZAK (Białystok),


Krzysztof JAŻDŻEWSKI (Łódź),


Monika KĘDRA (Sopot)


Ewa ŁUPIKASZA (Sosnowiec)


Piotr PABIS (Łódź),


Editorial Advisory Board

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.



phone: (48 22) 697 88 53

Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Social Science and Hummanities
phone: (48 81) 537 68 99

Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej UMCS
Al. Kraśnicka 2D
20-718 Lublin, POLAND

Instructions for authors

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa.
Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffioyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).
WARD B.L. 1984. Distribution of modern benthic foraminifera of McMurdo Sound, Antarctica. M.Sc. Thesis. Victoria University, Wellington (unpublished).

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Open Access policy

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

Additional information

Abstracting & Indexing

Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

This page uses 'cookies'. Learn more