Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, variations in the contact resistance of electroplated Au-Fe alloy layers with Fe content were investigated. The contact resistance of electroplated Au-Fe alloy layers that were subject to thermal aging at 260°C in the atmosphere, tended to increase significantly with an increase in the Fe content. Through an analysis method employing X-ray photoelectron spectroscopy (XPS/ ESCA) and Auger electron spectroscopy (AES), Ni oxides, such as NiO and Ni2O3, on the surface of the thermally aged electroplated Au-Fe alloy layers were observed. It is believed that the Ni oxide existing on the surface diffused from the underlying electroplated Ni layers to the surface through the grain boundaries in the electroplated Au-Fe layers during the thermal aging. As the Fe content in the electroplated Au-Fe layers increased, the grain size decreased. As the grain size decreases, more Ni oxide was detected on the surface. Therefore, with a rise in the Fe content, more Ni diffuses to the surface via grain boundaries, and more Ni oxide is formed on the surface of the electroplated Au-Fe layers, increasing the contact resistance of the electroplated Au-Fe alloy layers.

Go to article

Authors and Affiliations

H.-S. Park
I. Son
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.
Go to article

Authors and Affiliations

Kyong-Su Ri
1
Myong-Jin Kim
1
Se-Hyon Son-U
1

  1. Institute of Acoustics, Department of Physics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of electroless Pd-P plating on the bonding strength of the Bi-Te thermoelectric elements was investigated. The bonding strength was approximately doubled by electroless Pd-P plating. Brittle Sn-Te intermetallic compounds were formed on the bonding interface of the thermoelectric elements without electroless Pd-P plating, and the fracture of the bond originated from these intermetallic compounds. A Pd-Sn solder reaction layer with a thickness of approximately 20 µm was formed under the Pd-P plating layer in the case of the electroless Pd-P plating, and prevented the diffusion of Bi and Te. In addition, the fracture did not occur on the bonding interface but in the thermoelectric elements for the electroless Pd-P plating because the bonding strength of the Pd-Sn reaction layer was higher than the shear strength of the thermoelectric elements.

Go to article

Authors and Affiliations

Sung Hwa Bae
Se Hun Han
Injoon Son
Kyung Tae Kim
Download PDF Download RIS Download Bibtex

Abstract

Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sections of the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25℃, 300℃, and 600℃ revealed that it had a higher hardness than the conventional annealed SKD61.

Go to article

Authors and Affiliations

Jong-Youn Son
Gwang-Yong Shin
Ki-Yong Lee
Hi-Seak Yoon
Do-Sik Shim
Download PDF Download RIS Download Bibtex

Abstract

Trace elements Co, Cr were added to investigate their influence on the microstructure and physical properties of Al-Si extruded alloy. The Co, Cr elements were randomly distributed in the matrix, forms intermetallic phase and their existence were confirmed by XRD, EDS and SEM analysis. With addition of trace elements, the microstructure was modified, Si particle size was reduced and the growth rate of β-(Al5FeSi) phase limited. Compared to parent alloy, hardness and tensile strength were enhanced while the linear coefficient of thermal expansion (CTE) was significantly reduced by 42.4% and 16.05% with Co and Cr addition respectively. It is considered that the low CTE occurs with addition of Co was due to the formation of intermetallic compound having low coefficient of thermal expansion. The results suggested that Co acts as an effective element in improving the mechanical properties of Al-Si alloy.

Go to article

Authors and Affiliations

S.S. Ahn
P. Sharief
C.H. Lee
H.T. Son
Y.H. Kim
Y.C. Kim
S. Hong
S.J. Hong
Download PDF Download RIS Download Bibtex

Abstract

In this study, energetic behaviors of polyvinylidene fluoride (PVDF)-coated zirconium (Zr) powders were investigated using thermogravimetric analyzer-differential scanning calorimetry (TGA-DSC). PVDF-coated Zr powder had 1.5 times higher heat flow than ZrO2-passivated Zr powder. PVDF-coated Zr powder had a Zr-F compound formed on its surface by its strong chemical bond. This compound acted as an oxidation-protecting layer, providing an efficient combustion path to inner pure Zr particle while thermal oxidation was progressing at the same time. PVDF coating layers also made thermal reaction start at a lower temperature than ZrO2-passivated Zr powder. It was obtained that the surface PVDF coating layer evaporated at approximately 673 K, but the surface oxide layer fully reacted at approximately 923 K by DSC analysis. Hence, Zr powders showed enhanced energetic properties by the PVDF-coated process.
Go to article

Bibliography

[1] Y. Cao, H. Su, L. Ge, Y. Li, Y. Wang, L. Xie, B. Li, J. Hazard. Mater. 365, 413–420 (2019).
[2] K.R. Overdeep, H. Joress, L. Zhou, K.J.T. Livi, S.C. Barron, M.D. Grapes, K.S. Shanks, D.S. Dale, M.W. Tate, H.T. Philipp, S.M. Gruner, T.C. Hufnagel, T.P. Weihs, Combust. Flame. 191, 442–452 (2018).
[3] H. Nersisyan, B.U. Yoo, S.C. Kwon, D.Y. Kim, S.K. Han, J.H. Choi, J.H. Lee, Combust. Flame. 183, 22–29. (2017)
[4] K.R. Overdeep, K.J.T. Livi, D.J. Allen, N.G. Glumac, T.P. Weihs, Combust. Flame. 162, 2855-2864 (2015).
[5] D.W. Kim, K.T. Kim, G.H. Kwon, K. Song, I. Son, Sci. Rep. 9, 1-8 (2019).
[6] D.W. Kim, K.T. Kim, T.S. Min, K.J. Kim, S.H. Kim, Sci. Rep. 7, 1-9 (2017).
[7] K.T. Kim, D.W. Kim, C.K. Kim, Y.J. Choi, Mater. Lett. 167, 262- 265 (2016).
[8] J . Dai, D.M. Sullivan, M.L. Bruening, Ind. Eng. Chem. Res. 39, 3528-3535 (2000).
[9] C.A. Crouse, C.J. Pierce, J.E. Spowart, ACS Appl. Mater. Interfaces 2, 2560-2569 (2010).
[10] O . V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, J. Alloys Compd. 397, 58-62 (2005).
[11] C.E. Bunker, M.J. Smith, K.A. Shiral Fernando, B.A. Harruff, W.K. Lewis, J.R. Gord, E.A. Guliants, D.K. Phelps, ACS Appl. Mater. Interfaces 2, 11-14 (2010).
[12] T. Otsuka, Y. Chujo, Polymer (Guildf) 50, 3174-3181 (2009).
[13] D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.C. Lavalley, C. Legein, J.Y. Buzaré, F. Fayon, A. Tressaud, Chem. Mater. 20, 1459-1469 (2008).
[14] J . McCollum, M.L. Pantoya, S.T. Iacono, ACS Appl. Mater. Interfaces 7, 18742-18749 (2015).
[15] D.T. Osborne, M.L. Pantoya, Combust. Sci. Technol. 179, 1467- 1480 (2007).
Go to article

Authors and Affiliations

Won Young Heo
1
ORCID: ORCID
Sung Hwa Bae
2
ORCID: ORCID
Injoon Son
1
ORCID: ORCID

  1. Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu 41566, Republic of Korea
  2. Kyushu University, Department of Materials Process Engineering, Graduate School of Engineering, Fukuoka, Japan
Download PDF Download RIS Download Bibtex

Abstract

To improve the mechanical performance of BiTe-based thermoelectric modules, this study applies anti-diffusion layers that inhibit the generation of metal intercompounds and an electroless nickel/electrode palladium/mission gold (ENEPIG) plating layers to ensure a stable bonding interface. If a plated layer is formed only on BiTe-based thermoelectric, the diffusion of Cu in electrode substrates produces an intermetallic compound. Therefore, the ENEPIG process was applied on the Cu electrode substrate. The bonding strength highly increased from approximately 10.4 to 16.4 MPa when ENEPIG plating was conducted to the BiTe-based thermoelectric element. When ENEPIG plating was performed to both the BiTe-based thermoelectric element and the Cu electrode substrate, the bonding strength showed the highest value of approximately 17.6 MPa, suggesting that the ENEPIG process is effective in ensuring a highly reliable bonding interface of the BiTe-based thermoelectric module.
Go to article

Bibliography

[1] L.D. Hicks, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727-12731 (1993).
[2] H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, J. Appl. Phys. 5, 386 (1954).
[3] F.J. Isalro, Thermoelectric cooling and power generation, Science 285, 703-706 (1999).
[4] K.T. Kim, S.Y. Choi, E.H. Shin, K.S. Moon, H.Y. Koo, G.G. Lee, G.H. Ha, The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite, Carbon 52, 541-549 (2013).
[5] F.D. Rosi, Thermoelectricity and thermoelectric power generation, Solid State Electron. 11, 833-868 (1968).
[6] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thinfilm thermoelectric devices with high room-temperature figures of merit, Nature 413, 597-602 (2001).
[7] R.C. Sharma, Y.A. Chang, The Se-Sn (selenium-tin) system, Bull. Alloy Phase Diagr. 7, 68-72 (1986).
[8] C. Chiu, C. Wang, S. Chen, Interfacial reactions in the Sn-Bi/Te couples. J. Electron. Mater. 37, 40-44 (2008).
[9] L. Lo, A. Wu, Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing, J. Electron. Mater. 41, 3325-3330 (2012).
[10] I . Kato, T. Kato, H. Terashima, H. Watanabe, H. Honma, Influences of electroless nickel film conditions on electroless Au/ Pd/Ni wire bondability, Trans. JIEP. 3, 78-85 (2010).
[11] S.H. Bae, J.Y. Choi, I. Son, Effect of electroless Ni-P plating on the bonding strength of PbTe thermoelectric module using silver alloy-based brazing, Mater. Sci. Forum 985, 16-22 (2020).
[12] S. Bae, S. Kim, S. Yi, I. Son, K. Kim, H. Chung, Effect of surface roughness and electroless Ni-P plating on the bonding strength of Bi-Te-based thermoelectric modules, Coatings 9, 213-221 (2019).
[13] Y.T. Choi, S.H. Bae, I. Son, H.S. Sohn, K.T. Kim, Y.W. Ju, fabrication of aluminum-based thermal radiation plate for thermoelectric module using aluminum anodic oxidization and copper electroplating, J Nanosci. Nanotechnol. 18, 6404-6409 (2018).
[14] J . Yoon, S.H. Bae, H.S. Sohn, I. Son, K. Park, S. Cho, K.T. Kim, Fabrication of a Bi2Te3-based thermoelectric module using tin electroplating and thermocompression bonding, J Nanosci. Nanotechnol. 19, 1738-1742 (2019).
[15] K.H. Kim, I. Seo, S,H. W. Kwon, J. K. Kim, J.W. Yoon, S. Yoo, Effects of Ni-P bath on the brittle fracture of Sn-Ag-Cu solder/ ENEPIG solder joint, J. Welding and Joining. 35, 97-202 (2017).
[16] J .H. Back, S. Yoo, D.G. Han, S.B. Jung, J.W. Yoon, Effect of thin ENEPIG plating thickness on interfacial reaction and brittle fracture rate of Sn-0.3Ag-0.5Cu solder joints, Weld. Join. 36, 52-60 (2018).
Go to article

Authors and Affiliations

Subin Kim
1
ORCID: ORCID
Sung Hwa Bae
2
ORCID: ORCID
Injoon Son
1
ORCID: ORCID

  1. Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea
  2. Kyushu University Graduate School of Engineering, Department of Materials Process Engineering, Fukuoka, Japan
Download PDF Download RIS Download Bibtex

Abstract

The Sn-Ag-Cu-based solder paste screen-printing method has primarily been used to fabricate Bi2Te3-based thermoelectric (TE) modules, as Sn-based solder alloys have a low melting temperature (approximately 220℃) and good wettability with Cu electrodes. However, this process may result in uneven solder thickness when the printing pressure is not constant. Therefore, we suggested a novel direct-bonding method between the Bi2Te3-based TE elements and the Cu electrode by electroplating a 100 µm Sn/ 1.3 µm Pd/ 3.5 µm Ni bonding layer onto the Bi2Te3-based TE elements. It was determined that there is a problem with the amount of precipitation and composition depending on the pH change, and that the results may vary depending on the composition of Pd. Thus, double plating layers were formed, Ni/Pd, which were widely commercialized. The Sn/Pd/Ni electroplating was highly reliable, resulting in a bonding strength of 8 MPa between the thermoelectric and Cu electrode components, while the Pd and Ni electroplated layer acted as a diffusion barrier between the Sn layer and the Bi2Te3 TE. This process of electroplating Sn/Pd/Ni onto the Bi2Te3 TE elements presents a novel method for the fabrication of TE modules without using the conventional Sn-alloy-paste screen-printing method.
Go to article

Bibliography

[1] L.D. Hicks, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727-12731 (1993).
[2] R .J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca- Tascuic, G. Ramanath, Nature Mater. 11, 233 (2012).
[3] K .T. Kim, I.J. Son, G.H. Ha, Synthesis and thermoelectric properties of carbon nanotube-dispersed Bi2Te3 matrix composite powders by chemical routes, J. Korean Powder Metall. Inst. 20, 345-349 (2013).
[4] Y. Gelbstein, Z. Dashevsky, M.P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B 363, 196-205 (2005).
[5] D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287, 1024-1027 (2000).
[6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Sci. Express 320, 634-638 (2008).
[7] C. Wood, Materials for thermoelectric energy conversion, Rep. Prog. Phys. 51, 459-539 (1988).
[8] G .J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7, 105-114 (2008).
[9] H. Wada, K. Takahashi, T. Nishizaka, Electroless nickel plating to Bi-Te sintered alloy and its properties, J. Mater. Sci. Lett. 9, 810-812 (1990).
[10] S.H. Bae, H.J., Jo, I. Son, H.S. Sohn, K.T. Kim, Wet Etching Method for Electroless Ni-P Plating of Bi-Te Thermoelectric Element, J. Nanosci. Nanotechnol. 19, 1749-1754 (2019).
[11] S. Han, I. Son, K.T. Kim, Effect of pd-p layer on the bonding strength of bi-te thermoelectric elements, Arch. Metall. Mater. 64, 963-968 (2019).
[12] J. Yoon, S.H. Bae, H.S. Sohn, I. Son, K.T. Kim, Y.W. Ju, A Novel Fabrication Method of Bi2Te3-Based Thermoelectric Modules by Indium Electroplating and Thermocompression Bonding, J. Nanosci. Nanotechnol. 18, 6515-6519 (2018).
[13] J. Yoon, S.H. Bae, H.S. Sohn, I. Son, K. Park, S. Cho, K.T. Kim, Fabrication of a Bi2Te3-Based Thermoelectric Module Using Tin Electroplating and Thermocompression Bonding. J. Nanosci. Nanotechnol. 19, 1738-1742 (2019).
[14] S. Chen, C. Chiu, Unusual cruciform pattern interfacial reactions in Sn/Te couples, Scr. Mater. 56, 97-99 (2007).
[15] P.A. Villars, three-dimensional structural stability diagram for 998 binary AB intermetallic compounds, J. Less-Common Met. 92, 215-238 (1983).
[16] Y. Lan, D. Wang, G. Chen, Z. Ren, Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials, Appl. Phys. Lett. 92, 101910 (2008).
[17] W .P. Lin, D.E. Wesolowski, C.C. Lee, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, J. Mater. Sci. Mater. Electron. 22, 1313-1320 (2011).
Go to article

Authors and Affiliations

Seok Jun Kang
1
ORCID: ORCID
Sung Hwa Bae
2
ORCID: ORCID
Injoon Son
1
ORCID: ORCID

  1. Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea
  2. Kyushu University, Graduate School of Engineering, Department of Materials Process Engineering, Fukuoka, Japan
Download PDF Download RIS Download Bibtex

Abstract

In this study, stainless steel 316L and Inconel 625 alloy powders were additively manufactured by using directed energy deposition process. And heat treatment effect on hardness and microstructures of the bonded stainless steel 316L/Inconel 625 sample was investigated. The microstructures shows there are no secondary phases and big inclusions near interfacial region between stainless steel 316L and Inconel 625 except several small cracks. The results of TEM and Vickers Hardness show the interfacial area have a few tens of micrometers in thickness. Interestingly, as the heat treatment temperature increases, the cracks in the stainless steel region does not change in morphology while both hardness values of stainless steel 316L and Inconel 625 decrease. These results can be used for designing pipes and valves with surface treatment of Inconel material based on stainless steel 316L material using the directed energy deposition.
Go to article

Bibliography

[1] G .H. Shin, J.P. Choi, K.T. Kim, B.K. Kimm, J.H. Yu, J. Korean Powder Metall. Inst. 24, 210 (2017).
[2] A. Ambrosi, M. Pumera, Chem. Soc. Rev. 45, 2740 (2016).
[3] G .S. Lee, Y.S. Eom, K.T. Kim, B.K. Kim, J. H. Yu, J. Korean Powder Metall. Inst. 26, 138 (2019).
[4] Y.S. Eom, D.W. Kim, K.T. Kim, S.S. Yang, J. Choe, I. Son, J.H. Yu, J. Korean Powder Metall. Inst. 27, 103 (2020).
[5] J. Hwang, S. Shin, J. Lee, S. Kim, H. Kim, Journal of Welding and Joining 35, 28 (2017).
[6] I . Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, 245 (2015).
[7] A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7, 883 (2017).
[8] J.S. Park, M.-G. Lee, Y.-J. Cho, J. H. Sung, M.-S. Jeong, S.-K. Lee, Y.-J. Choi, D.H. Kim, Met. Mater. Int. 22, 143 (2016).
[9] R . Koike, I. Unotoro, Y. Kakinuma, Y. Oda, Int. J. Autom. Techno. 13, 3 (2019).
[10] D.R. Feenstra, A. Molotnikov, N. Birbilis, J. Mater. Sci. 55, 13314- 13328 (2020).
[11] B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A. M. Beese, Acta Mater. 108, 46 (2016).
[12] T. Abe, H. Sasahara, Precis. Eng. 45, 387 (2016).
[13] G.H. Aydoğdu, M.K. Aydinol, Corros. Sci. 48, 3565 (2006).
[14] H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, B.S. Yilbas, Surf. Coat. Technol. 200, 20 (2006).
[15] Y.S. Eom, K.T. Kim, S. Jung, J.H. Yu, D.Y. Yang, J. Choe, C.Y. Sim, S.J. An, J. Korean Powder Metall. Inst. 27, 219 (2020).
Go to article

Authors and Affiliations

Yeong Seong Eom
1 2
Kyung Tae Kim
1
Dong Won Kim
1
Ji Hun Yu
1
Chul Yong Sim
3
Seung Jun An
3
Yong-Ha Park
4
Injoon Son
2
ORCID: ORCID

  1. Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Republic of Korea
  2. Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
  3. Insstek, Daejeon, Republic of Korea
  4. Samsung Heavy Industries, Geoje-si, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Irrigation and hydropower are among the most important sectors in the construction industry that propel the economic needs of a developing country like Vietnam. The construction of these projects often suffers from severe delays, leading to financial losses and other negative impacts on the economy. This paper aims to determine delay factors in the construction of these projects. Among many, 39 most important candidates of delay causes were identified from the literature review. Further surveys on project participants were conducted for the severity of these causes. An exploratory factor analysis was utilized to identify latent factors that cause delays in construction projects. The analysis result categorized a few groups of factors such as abnormal factors on the construction site (e.g., labor accidents, hydrology, water flow, extreme weather) and technical factors related to the construction contractor (e.g., unsuitable schedule, outdated construction technology, unprofessional workers) that have the greatest impact on the delay in construction of irrigation and hydropower projects in Vietnam. These findings contribute to the body of knowledge of project management and risk management, hence an improvement in the efficiency of the project sectors’ performance.
Go to article

Authors and Affiliations

Van Son Nguyen
1
ORCID: ORCID
Huu-Hue Nguyen
1
ORCID: ORCID
Duc Anh Nguyen
2
ORCID: ORCID
Dinh Tuan Hai
3
ORCID: ORCID

  1. ThuyLoi University, Faculty of Civil Engineering, No. 175 Tay Son Road, Dong Da District, Hanoi City, Vietnam
  2. Hanoi University of Civil Engineering, Faculty of Department of Building and Industrial Construction, No. 55 Giai Phong Street, Hai Ba Trung District, Hanoi City, Vietnam
  3. Hanoi Architectural University, Faculty of Civil Engineering, Km 10, Nguyen Trai Street, Thanh Xuan District, Hanoi City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

In this study, the extrusion characteristics of Al-2Zn-1Cu-0.5Mg-0.5RE alloys at 450, 500, and 550℃ were investigated for the high formability of aluminum alloys. The melt was maintained at 720℃ for 20 minutes, then poured into the mold at 200℃ and hot-extruded with a 12 mm thickness bar at a ratio of 38:1. The average grain size was 175.5, 650.1, and 325.9 μm as the extrusion temperature increased to 450, 500 and 550℃, although the change of the phase fraction was not significant as the extrusion temperature increased. Cube texture increased with the increase of extrusion temperature to 450, 500 and 550℃. As the extrusion temperature increased, the electrical conductivity increased by 47.546, 47.592 and 47.725%IACS, and the tensile strength decreased to 92.6, 87.5, 81.4 MPa. Therefore, the extrusion temperature of Al extrusion specimen was investigated to study microstructure and mechanical properties.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Kyu-Seok Lee
Sung-Ho Lee
Hyeon-Taek Son
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, we investigated the effect of Fe addition (0, 0.25, 0.50 and 0.75 wt.%) on the microstructure, mechanical properties and electrical conductivity of as-cast and as-extruded Al-RE alloys. As the Fe element increased by 0 and 0.75wt.%, the phase fraction increased to 5.05, 5.76, 7.14 and 7.38 %. The increased intermetallic compound increased the driving force for recrystallization and grain refinement. The electrical conductivity of Al-1.0 wt.%RE alloy with Fe addition decreased to 60.29, 60.15, 59.58 and 59.13 %IACS. With an increase in the Fe content from 0 to 0.75 wt.% the ultimate tensile strength (UTS) of the alloy increased from 74.3 to 77.5 MPa. As the mechanical properties increase compared to the reduction of the electrical conductivity due to Fe element addition, it is considered to be suitable for fields requiring high electrical conductivity and strength.

Go to article

Authors and Affiliations

Hyo-Sang Yoo
ORCID: ORCID
Yong-Ho Kim
ORCID: ORCID
Hyeon-Taek Son
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In order to the long-term stability of DSE for electroplating process, the lifetime equations were calculated from the results of the accelerated life testing, and the lifetime of DSE was predicted. The nano-embossing pre-treatment led to 2.65 times in the lifetime of DSE. The degradation mechanism of DSE with a thick metal oxide layer for applied highly current density process condition was identified. The improvement of durability of DSE seems to be closely related to adhesion between titanium plate and mixed metal oxide layer.
Go to article

Bibliography

[1] S.R. Park, J.S. Park, J. Korean Electrochem. Soc. 23, 1 (2020).
[2] J.E. Park, H. Kim, E.S. Lee, Materials 13, 1969 (2020).
[3] A.N.S. Rao , V. T. Venkatarangaiah, Environ. Sci. Pollut. Res. 21, 3197 (2014).
[4] J.Y. Lee, D.K. Kang, K.H. Lee, D.Y. Chang, Mater. Sci. Appl. 2, 237(2011).
[5] S.H. Son, S.C. Park, M.S. Lee, Arch. Metall. Mater. 62, 1019 (2017).
[6] Z. Yan, Y. Zhao, Z. Zhang, G. Li, H. Li, J. Wang, Z. Feng, M. Tang, X. Yuan, R. Zhang, Y. Du, Electrochimica Acta 157, 345 (2015).
[7] D.S. Kim, Y.S. Park, Electrode. J. Environ. Sci. Int. 27, 467 (2018).
[8] S.C. Park , Y.B. Park, J. Electron. Mater. 37, 1565 (2008).
Go to article

Authors and Affiliations

Sung Cheol Park
1 2
ORCID: ORCID
Yeon Jae Jung
1
ORCID: ORCID
SeokBon Koo
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seong Ho Son
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Functional Technology R&D Department, Incheon, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This research describes effects of Si addition on microstructure and mechanical properties of the Al-Cr based alloys prepared manufactured using gas atomization and SPS (Spark Plasma Sintering) processes. The Al-Cr-Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). Microstructure of the as-atomized Al-Cr-Si alloys with high contents of Cr and Si was composed multi-phases with hard and thermally stable such as Al13Cr4Si4, AlCrSi, Al8Cr5 and Cr3Si intermetallic compounds. The average hardness values were 703 Hv for S5, 698 Hv for S10 and 824 Hv for S20 alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with hard and thermally stable and fine microstructure by the addition of high Cr and Si using rapid solidification and SPS process.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Ik-Hyun Oh
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Hyun-Kuk Park
ORCID: ORCID
Jung-Han Lee
Hyeon-Taek Son
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of heat-treatment conditions of Fe powder compacts on densification, microstructure, strength and magnetic properties were investigated. The prepared Fe powder was compressed in a mold of diameter 20 mm at a pressure of 800 MPa for 30 sec. This Fe powder compact was heat-treated under different atmospheres (air and 90% Ar + 10% H2 and heat-treatment temperatures (300 and 700℃). The Fe powder compacts heat-treated in an Ar+H2 mixed gas atmosphere showed a denser microstructure and higher density than the Fe powder compacts heat-treated in an air atmosphere. Oxygen content in the heat-treatment conditions played a significant role in the improvement of the densification and magnetic properties.
Go to article

Authors and Affiliations

Hyo-Sang Yoo
1
ORCID: ORCID
Yong-Ho Kim
1
ORCID: ORCID
Cheol-Woo Kim
1
ORCID: ORCID
Hyeon-Taek Son
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Automotive Materials & Components R&D Group, 1110-9 Oryong-dong, Buk-gu, Gwangju 61012, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The austenitic stability and strain-induced martensitic transformation behavior of a nanocrystalline FeNiCrMoC alloy were investigated. The alloy was fabricated by high-energy ball milling and spark plasma sintering. The phase fraction and grain size were measured using X-ray diffraction. The grain sizes of the milled powder and the sintered alloy were confirmed to be on the order of several nanometers. The variation in the austenite fraction according to compressive deformation was measured, and the austenite stability and strain-induced martensitic transformation behavior were calculated. The hardness was measured to evaluate the mechanical properties according to compression deformation, which confirmed that the hardness increased to 64.03 HRC when compressed up to 30%.
Go to article

Authors and Affiliations

Jungbin Park
1
ORCID: ORCID
Junhyub Jeon
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Gwanghun Kim
1
ORCID: ORCID
Seung Bae Son
1
ORCID: ORCID
Jae-Gil Jung
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID

  1. Jeonbuk National University, Research Center for Advanced Materials Development, Division of Advanced Materials Engineering, Jeonju 54896, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the recovery behavior of valuable metals (Co, Ni, Cu and Mn) in spent lithium ion-batteries based on Al2O3-SiO2-CaO-Fe2O3 slag system via DC submerged arc smelting process. The valuable metals were recovered by 93.9% at the 1250℃ for 30 min on the 20Al2O3-40SiO2-20CaO-20Fe2O3 (mass%) slag system. From the analysis of the slag by Fourier-transform infrared spectroscopy, it was considered that Fe2O3 and Al2O3 acted as basic oxides to depolymerize SiO4 and AlO4 under the addition of critical 20 mass% Fe2O3 in 20Al2O3-40SiO2-CaO-Fe2O3 (CaO + Fe2O3 = 40 mass%). In addition, it was observed that the addition of Fe2O3 ranging between 20 and 30 mass% lowers the melting point of the slag system.
Go to article

Bibliography

[1] S. Al-Thyabat, T. Nakamura, E. Shibata, A. Iizuka, Minerals Engineering 45, 4-17 (2013).
[2] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, Journal of Power Sources 226, 272-288 (2013).
[3] X. Wang, G. Gaustad, C.-W. Babbitt, C. Bailey, Journal of Environmental Management 135, 126-134 (2014).
[4] A. Boyden, V.-K. Soo, M. Doolan, Procedia CIRP 48, 188-193 (2016).
[5] X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, Z. Sun, Engineering 4, 361-370 (2018).
[6] T.-G. Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Journal of Power Sources 207, 173-182 (2012).
[7] G . Wu, S. Seebold, E. Yazhenskikh, K. Hack, M. Müller, Fuel Processing Technology 171, 339-349 (2018).
[8] M.-L. Pearce, J.-F. Beisler, Journal of The American Ceramic Society 49, 547-551 (1966).
[9] N. Saito, N. Hori, K. Nakashima, K. Mori, Metallurgical and Materials Transactions B 34B, 509-516 (2003).
[10] M. Nakamoto, Y. Miyanayashi, L, Holappa, T. Tanaka, ISIJ International 47, 1409-1415 (2007).
[11] H . Park, J.-Y. Park, G.-H. Kim, I. Sohn, Steel Research Int. 83, 150-156 (2012).
[12] H . Kim, W.-H. Kim, I. Sohn, D.-J. Min, Steel Research Int. 81, 261-264 (2010).
[13] J.-H. Park, D.-J. Min, H.-S. Song, Metallurgical and Materials Transactions B 35B, 269-275 (2004).
[14] G .-H. Cartledge, The Journal of the American Chemical Society 50, 2855-2863(1928).
[15] D. Wang, L. Jin, Y. Li, B. Wei, D. Yao, T. Wang, H. Hu, Fuel Processing Technology 191, 20-28 (2019).
[16] J. Pesl, R.-H. Eric, Minerals Engineering 15, 971-984 (2002).
[17] S. Wu, J. Xu, S. Yang, Q. Zhou, L. Zhang, ISIJ international 50, 1032-1039 (2010).
[18] X.-J. Zhai, N.-J. Li, X. Zhang, F.-U. Yan, L. Jiang, Trans. Nonferrous Met. Soc. China 21, 2117-2121 (2011).
[19] G . Ren, S. Xiao, M. Xie, PAN. Bing, C. Jian, F. Wang, X. Xia, Trans. Nonferrous Met. Soc. China 27, 450-456 (2017).
[20] V . Rayapudi, S. Agrawal, N. Dhawan, Minerals Engineering 138, 204-214 (2019).
[21] K. Prabriputaloong, M.-R. Piggott, Journal of the American Ceramic Society 56, 177-180 (1973).
[22] C. Hamann, D. Stoffler, W.-U. Reimold, Geochimica et Cosmochimica Acta 192, 295-317 (2016).
Go to article

Authors and Affiliations

Tae Boong Moon
1 2
ORCID: ORCID
Chulwoong Han
2
ORCID: ORCID
Soong Keun Hyun
1
ORCID: ORCID
Sung Cheol Park
2
ORCID: ORCID
Seong Ho Son
2
ORCID: ORCID
Man Seung Lee
3
ORCID: ORCID
Yong Hwan Kim
2
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing and Materials Technology Incheon, 156, Gaetbeol Rd., Yeonsu-gu, Incheon, 406-840, Korea
  3. Mokpo National University, Department of Materials Science and Engineering Mokpo, Korea

This page uses 'cookies'. Learn more