Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 59
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction

of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a

moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
Download PDF Download RIS Download Bibtex

Abstract

We used cytological and embryological methods to study reproductive cycle stages in Cerasus fruticosa Pall., Cerasus × eminens (Beck) Buia and Cerasus × mohacsyana (Kárpáti) Janchen from SW Slovakia, focusing on development of the male and female reproductive organs, fertilization processes and embryo formation. We found that reproductive potential was reduced by synergistic effects of negative biotic and abiotic factors. Despite the presence of degenerated, deformed pollen grains and their great variability of shape and size, a sufficient amount of normally developed viable pollen grains developed in anthers of C. fruticosa and C. × mohacsyana. Disturbed microsporogenesis in C. × eminens led to significantly lower production of viable pollen grains. We did not observe serious disturbances during megasporogenesis and megagametogenesis. Lower fruit set was caused by degeneration of ovules as a result of unsuccessful pollination, fertilization failure, or embryo degeneration during its initial development.

Go to article

Authors and Affiliations

Renáta Chudíková
Ľuba Ďurišová
Tibor Baranec
Pavol Eliáš
Download PDF Download RIS Download Bibtex

Abstract

Foundry sand is the main element of sand mixtures from which molds or sand cores are made. Due to the continuous development of coremaking technologies, the selection of the right type of base sand becomes more and more important. The major features of foundry sand are determined by the following factors: chemical and mineralogical composition, sand grain size, grain size distribution, sand grain shape, and surface quality. The main goal of our research was to develop a qualification method that can be used to predict the characteristics of sand cores made from different sand types. Samples made from different types of foundry sand were used during the research whose properties were examined with a new qualification system, and then its connection with the gas permeability of sand cores was analyzed. Based on the research results, a strong correlation could be established between the suggested quality indicators: CQi (Core Quality Index), CG (Coefficient of Granulometry), and permeability.
Go to article

Bibliography

[1] Stauder, B.J. (2018). Investigation on the removal of internal sand cores from aluminium castings. Dissertation, Montanuniversitäte, University of Leoben, Leoben, Austria.
[2] Schindelbacher, G. & Kerber H. (2013). Umfassende Charakterisierung von Formstoffen mit einer neuen Prüfmethode. Giesserei Rundschau. 60 Heft 3/4, 58-66.
[3] Geraseva, O. (2016). P otential alternativer Formstoffe zur Kernherstellung. Masterarbeit, Montanuniversitäte, University of Leoben, Leoben, Austria.
[4] Conev, M., Vasková, I., Hrubovčáková, M. & Hajdúch, P. (2016). Impact of Silica Sand Granulometry on Bending Strength of Cores Produced by ASK Inotec Process. Manufacturing Technology. 16(2), 327-334. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/327.
[5] Vasková, I., Varga, L., Prass, I., Dargai, V., Coney, M., Hrubovčáková, M., Bartošová, M., Buľko, B. & Demeter P. (2020). Examination of Behavior from Selected Foundry Sands with Alkali Silicate-Based Inorganic Binders. Metals. 10(2), 235. DOI: 10.3390/met10020235.
[6] Flemming, E., Tilch, W. (1993). Formstoffe und Formverfahren. Deutscher Verlag fur Grundstoffindustrie, Leipzig – Stuttgart.
[7] Dańko, R. (2017). Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores. Archives of Foundry Engineering. 17(1), 27-30. DOI: 10.1515/afe-2017-0005.
[8] Beňo, J. & Adamusová K. & Merta V. & Bajer T. (2019) Influence of Silica Sand on Surface Casting Quality. Archives of Foundry Engineering. 19(2), 5-8. DOI: 10.24425/afe.2019.127107.
[9] Marinšek, M., Zupan, K. (2011). Influence of the granulation and grain shape of quartz sands on the quality of foundry cores, Materials and Technology. 45 (5), 451-455.
[10] Löchte, K. (1998.) Working with the Cold Box Process in the Coremaking Department of a Foundry. Retrieved January 29, 2021, from: http://metkoha.com/documents/Working% 20with%20the%20Coldbox%20Process1.pdf.
[11] Bechný, V. (2012). Zukünftige Herausforderungen an Gießereisande. Giesserei-Rundschau. 59. Heft 3/4, 81-83.
[12] Kotzmann, J. & Bechný V. (2013). Die Zukunft der Form- und Kernherstellung. Retrieved January 29, 2021, from: http://www.giba.at/pdf/giba-de.pdf.
[13] Iden, F., Pohlmann, U., Tilch, W. & Wojtas, H.J. (2011). Strukturen von Cold-Box-Bindersystemen und die Möglichkeitihrer Veränderung. Giesserei Rundschau. 58, 1/2, 3-8.
[14] Iden, F., Tilch, W. & Wojtas, H.J. (2011). Die Haftungsmechanismen von Cold-Box-Bindemitteln auf der Formstoffoberfläche. Giesserei. 5/2011, 24-36.
[15] Dargai, V., Polzin, H., Varga, L., Dúl, J. (2015). Determination of granulometric properties of foundry sands with image analysis. (Öntödei homokok granulometriai tulajdonságainak meghatározása képelemzéssel). MultiScience - XXIX. microCAD International Multidisciplinary Scientific Conference, 9-10 April 2015. University of Miskolc – Miskolc, Hungary.
[16] Dargai, V., Polzin, H. & Varga, L. (2018). Die Bestimmung der granulometrischen Eigenschaften von Gießereisanden mittels dynamischer Bildanalyse. Giesserei Praxis. 4/2018, 19-22.
[17] Bodycomb, J. (2018). Size and shape of Particles from Dynamic Image Analysis. Retrieved January 29, 2021, from: https://www.slideshare.net/HORIBA/size-and-shape-of-particles-from-dynamic-image-analysis.
[18] Microtrac MRB (2017). Comparison Between Dynamic Image Analysis, Laser Diffraction and Sieve Analysis. Retrieved January 29, 2021, from: https://www.azom.com/article.aspx?ArticleID=14331.
[19] Raatz, G. (2014). Trends in der Partikelgrößenanalyse. Powtech / Technopharm – Messtechnik. 9/2014, 25-28. [20] Ridsdale and Ridsdale DieterT. Foundry sand testing equipment operating instructions (AFS). Catalogue No. 800, Retrieved January 29, 2021, from: https://www.basrid.co.uk/ridsdale/images/pdf/AFS_OIM.pdf

Go to article

Authors and Affiliations

H. Hudák
1
G. Gyarmati
1
L. Varga
1

  1. Institute of Foundry, Faculty of Materials Science and Engineering, University of Miskolc, Hungary
Download PDF Download RIS Download Bibtex

Abstract

Studies were conducted on a zinc coating produced on the surface of ductile iron grade EN-GJS-500-7 to determine the eutectic grain

effect. For this purpose, castings with a wall thickness of 5 to 30 mm were made and the resulting structure was examined. To obtain a

homogeneous metal matrix, samples were subjected to a ferritising annealing treatment. To enlarge the reaction surface, the top layer was

removed from casting by machining. Then hot dip galvanising treatment was performed at 450°C to capture the kinetics of growth of the

zinc coating (in the period from 60 to 600 seconds). Analysing the test results it was found that within the same time of hot dip

galvanising, the differences in the resulting zinc coating thickness on samples taken from castings with different wall cross-sections were

small but could, particularly for shorter times of treatment, reduce the continuity of the alloyed layer of the zinc coating.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

It is assumed that close to the margins of ice-sheets, glacial, fluvial and aeolian processes overlap, and combined with weathering processes, produce numerous sediments, in which quartz is a common mineral. Quartz grains, if available, may serve as a powerful tool in determining the depositional history, transportation mode and postdepositional processes. However, quartz grain studies in some modern glacial areas are still sparse. In this study, we examine for the first time quartz grains sampled from the modern glacial and proglacial environments of the Russell Glacier, southwest Greenland in binocular microscope and scanning electron microscope, to analyze their shape, character of surface and microtextures. We debate whether the investigated quartz grains reveal glacial characteristics and to what extent they carry a signal of another transportation and sedimentary processes. Although glacial fracturing and abrasion occur in grain suites, most mechanical origin features are not of a high frequency or freshness, potentially suggesting a reduced shear stress in the glacier from its limited thickness and influence of the pressurized water at the ice-bed. In contrast, the signal that originates from the fluvial environment is much stronger derived by numerous aqueous-induced features present on quartz grain surfaces. Aeolian-induced microtextures on grain surfaces increase among the samples the closest to the ice margin, which may be due to enhanced aeolian activity, but are practically absent in sediments taken from the small scale aeolian landforms. In contrast, aeolian grains have been found in the bigger-size (1.0-2.0 mm) investigated fraction. These grains gained the strongest aeolian abrasion, possibly due to changes in transportation mode.
Go to article

Authors and Affiliations

Edyta KALIŃSKA-NARTIŠA
Kristaps Lamsters
Jānis Karušs
Māris KRIEVĀNS
Agnis REČS
Raimonds Meija
Download PDF Download RIS Download Bibtex

Abstract

Later harvest time increased the infection of stems by Fusarium spp. and plant lodging. With the delay of harvest, the dry matter content in grain increased, but the crop in the later periods decreased. The optimal harvest time seems to be 20 days after reaching physiological maturity. In spite of using different genotypes and a wide range of harvest dates, the chemical analysis used to determine the presence of trichothecens B (DON, 3-AcDON, 15-AcDON and NIV) did not reveal their presence above the detection limit 0,001 mg/kg.
Go to article

Authors and Affiliations

Tadeusz Michalski
Juliusz Perkowski
Jerzy Stachowiak
Download PDF Download RIS Download Bibtex

Abstract

The efficient, stable and reliable operation of the blast furnace secures the proper quality of coke, which is one of the basic components of the blast furnace charge. In modern blast-furnace technology, when using substitute fuels, i.e. coal dust, the role of coke is extremely important. For this reason, the demands placed on its quality increase. Domestic coking plants have a limited base of Polish high quality coking coals at their disposal, therefore the full use of their coking properties is extremely important. The grain composition of the coal blend is one of the basic factors affecting the quality of the produced coke. This influence depends on the quantity and quality of coal components that make up the blend. In the conducted research, 21 coking coals, differing significantly in the degree of rank and origin (Polish and overseas coals), it was shown that the separated grain classes differ in properties, both coking properties and the degree of devolatalization during heating. In analyzing the obtained results, it was observed that the grain volume growth occurs essentially in the temperature range between the beginning and the maximum of fluidity. It has been shown that there is a linear correlation between the temperature corresponding to maximum fluidity and the temperature at which the maximum rate of evolution of volatiles enters. The presented phenomena accompany the emergence of coal expansion pressure during the coking process and they are its primary causes. The presented results can be an important guide for preparing the milling of coal for the coking process.

Go to article

Authors and Affiliations

Bartosz Mertas
Marek Ściążko
Download PDF Download RIS Download Bibtex

Abstract

Wheat grain discoloration, a worldwide disease that lowers grain quality and decreases grain yield, does not have a single etiology. It has been proposed that it is a consequence of an abiotic mechanism, a response to environmental conditions or enzymatic activity. It has also been suggest that it is a biotic mechanism, a fungal infection principally by Alternaria spp. and Bipolaris sorokiniana. The present work was carried out to analyze the possible etiology of this disease in nine durum wheat genotypes from two localities of southern Buenos Aires province (Argentina) on two sowing dates. Incidence (percentage of grain discoloration) was recorded and mycobiota associated with this pathology was registered following ISTA rules. Peroxidase activity in an extract obtained from grains belonging to genotypes of the locality that showed the highest incidence was measured.

The incidence among genotypes, localities and sowing dates varied, although the genotypes with the higher and lower values of incidence were the same for all the variables tested. The fungus Alternaria spp. was isolated the most frequently followed by Fusarium spp., while Bipolaris sorokiniana was found the least frequently. Peroxidase activity showed that all the treatments had similar levels of enzymatic activity, but there was no clear differentiation between controls either between genotypes with the lowest or the highest incidence values. This suggests that peroxidase activity did not have a clear relationship with grain discoloration. In this research, it is presumed that fungal infection is the main cause of this disease.

Go to article

Authors and Affiliations

Maria Josefina Cipollone
Paulina Moya
Iván Martínez
Mario Saparrat
Marina Sisterna
Download PDF Download RIS Download Bibtex

Abstract

In this work, 25 wheels were cast with three different grain refiners: Al5Ti1B, Al3Nb1B and MTS 1582. Samples were machined from the wheels to check the mechanical properties. It was found that Nb grain refinement had the lowest grain size (260 mm) and highest tensile properties (yield strength of 119-124 MPa and ultimate tensile strength of 190-209 MPa). Al5Ti1B and MTS 1582 revealed quite similar results (110 MPa yield and 198 MPa ultimate tensile strength). The fading of the grain refining effect of Al5TiB1 master alloy was observed in both Nb and Ti added castings whereas during the investigated time interval, the fading was not observed when MTS 1582 was used.
Go to article

Authors and Affiliations

F. Aydogan
1
K.C. Dizdar
2
ORCID: ORCID
H. Sahin
2
ORCID: ORCID
E. Mentese
1
D. Dispinar
2
ORCID: ORCID

  1. Doktas Wheels, Turkey
  2. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The use of cold forging is a widely used solution in many industries. One application is the manufacture of bolts and fasteners. The largest amounts of bolts are used in the automotive and machine industry. Those customers demand high standards of quality and reliability from producers based on ISO 9001 and IATF 16949. Also, the construction, agriculture and furniture industries are raising their expectations for deliveries from year to year.
Automotive companies issue their standards specifying specific requirements for products. One of these standards is the aviation standard SAE USCAR 8-4; 2019, which speaks of a compatible arrangement of fibers in the bolt head and in the area of transition into the mandrel.
The article presents the cold forging process of flange bolts. Obtaining a compatible, acceptable and incompatible grain flow pattern based of the above mantioned standard was presented. Then the results of FEM simulation were correlated with the performed experiment.
The effect of incompatible grain flow system was discussed and presented as the crack initiating factor due to delta ferrite, hydrogen embrittlement, tempering embrittlement. The reliability of the connections was confirmed in the assembly test for yield stress on a Schatz machine. The advantages of this method and the difference compared to the tensile test were presented.
Go to article

Bibliography

[1] IA TF 16949: 2016 – Automotive Quality Management System Standard.
[2] ISO 9001: 2015 – Systemy zarządzania jakością – Wymagania.
[3] A. Komornicka, M. Sąsiadek, T. Nahirny, Wyzwania przemysłu motoryzacyjnego w świetle wprowadzania standardów IATF 16949:2016, [in:] R. Knosali, Innowacje w Zarządzaniu i Inżynierii Produkcji, Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
[4] S. Ziółkiewicz, S. Stachowiak, D. Kaczmarczyk, A. Karpiuk, Obróbka Plastyczna Metali 17 (1), 7-13 (2006).
[5] A. Żmudzki, P. Skubisz, J. Sińczak, M. Pietrzyk, Obróbka Plastyczna Metali 17 (3), 9-19 (2006).
[6] N . Biba, S. Stebounov, A. Lishiny, J. Mater. Process. Tech. 113, 34-39 (2001).
[7] M Saad, S. Akhtar, M. Srivastava, J. Chaurasia, Materials Today: Proceedings 5, 19576-19585 (2018).
[8] A . Dubois, L. Lazzarotto, L. Dubar., J. Oudin, Wear 249, 951-961 (2002).
[9] Y . Nugraha, Theory of WireDrawing, Tirtayasa University (2007).
[10] S.Y. Hsia, Y.T. Chou, J.C. Chao, Advances in Mechanical Engineering 8 (3), 1-10 (2016).
[11] R . Bussoloti, L. Albano, L. de Canale, G.E. Totten, Delta Ferrite: Cracking of Steel Fasteners, [in:] R. Colás, G.E. Totten, Encyclopedia of Iron, Steel, and Their Alloys, Five-Volume Set, CRC Press (2006).
[12] D .H. Herring, Indust Heat 73 (16), 9 (2006).
[13] S.V. Brahimi, S. Yue, K.R. Sriraman, Philos. Trans. A Math. Phys. Eng. Sci. 375 (2098), (2017).
[14] SAE USCAR 8-4;2019 „Grain Flow Pattern for Bolts, Screws and Studs”.
[15] PN -EN 26157-3. Części złączne – Nieciągłości powierzchni – Śruby, wkręty i śruby dwustronne specjalnego stosowania.
[16] ISO 898-1:2013-06 Własności mechaniczne części złącznych wykonanych ze stali węglowej oraz stopowej – Część 1: Śruby i śruby dwustronne o określonych klasach własności – Gwint zwykły i drobnozwojny.
[17] ISO 16047:2007 Części złączne – Badanie zależności moment obrotowy/siła zacisku.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o. o. Oddział w Łańcucie / Rzeszów University of Technology, Poland
  2. Rzeszów University of Technology, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

A fading mechanism during casting of treated Al-B-Sr master alloys in an aluminium-silicon cast alloy was investigated. Two different master alloys, the Al-3%B-3%Sr and Al-4%B-1%Sr were demonstrated for the efficiency test both grain refinement and modification microstructure. From experimental result, the addition of Al-3%B-3%Sr master alloy led to a refined grain size and fully modified eutectic Si. However, smaller grain sizes were found with Al-4%B-1%Sr master alloy addition while eutectic Si had coarser acicular morphology. The formation of high amounts of SrB6 compound in the Al-3%B-3%Sr master alloy resulted to increase of grain size and eutectic Si. In fading mechanism test when holding the melt for prolong time, the agglomeration of the SrB6 and AlSiSr compounds at the bottom of the casting specimen was important factors that decreased both grain refinement and modification efficiency. The stirring of the melt before pouring was found that the grain size and Si morphology were improved.
Go to article

Authors and Affiliations

P. Muangnoy
1
ORCID: ORCID
K. Eidhed
1
ORCID: ORCID

  1. University of Technology North Bangkok, Faculty of Engineering, Department of Materials and Production Technology Engineering, King Mongkut’s Bangkok, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are

presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand,

reclaimed sand and calcined in temperature of 700oC silica sand. Two kinds of alcoholic protective coatings were used – zirconium and

zirconium – graphite. Tests were performed under condition of a constant temperature within the range 30 – 35oC and high relative air

humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method

and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the

different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as

well.

Knowledge of the role of sand grains from the viewpoint of capacity for moisture sorption is important due to the surface casting defects

occurrence. In particular, that are defects of a gaseous origin caused by too high moisture content of moulds, especially in surface layers.

Go to article

Authors and Affiliations

N. Kaźnica
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The modification is a widespread method of improving the strength properties of cast iron. The impact in terms of increasing amounts of

eutectic grains has been thoroughly studied while the issue of the impact on the mechanical properties of primary austenite grains has not

been studied in depth yet. The paper presents the study of both aspects. The methodology was to conduct the melting cast iron with flake

graphite, then modifying the alloy by two sets of modifiers: the commercial modifier, and a mixture of iron powder with a commercial

inoculant. The DAAS test was carried out to identify the primary austenite grains. The degree of supercooling was determined and the

UTS test was performed as well. Additionally carried out the metallographic specimen allowing for counting grains. It can be concluded

that the introduction of the iron powder significantly improved the number of austenite primary grains which resulted in an increase

in tensile strength UTS.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
J. Dorula
D. Siekaniec
M. Ronduda
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.

Go to article

Authors and Affiliations

M. Kranc
A. Garbacz-Klempka
M. Górny
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass

moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such

as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and

olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass

grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar

permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have

a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the

ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their

individual technological parameters should be taken into account.

Go to article

Authors and Affiliations

B. Opyd
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The present research was conducted on thin-walled castings with 5 mm wall thicknesses. This study addresses the effect of the influence of

different master alloys, namely: (1) Al-5%Ti-1%B, (2) Al-5%Ti and (3) Al-3%B, respectively on the structure and the degree of

undercooling (ΔTα = Tα-Tmin, where Tα - the equilibrium solidification temperature, Tmin - the minimum temperature at the beginning of

α(Al) solidification) of an Al-Cu alloy. The process of fading has been investigated at different times spent on the refinement treatment ie.

from 3, 20, 45 and 90 minutes respectively, from the dissolution of master alloys. A thermal analysis was performed (using a type-S

thermocouple) to determine cooling curves. The degree of undercooling and recalescence were determined from cooling and solidification

curves, whereas macrostructure characteristics were conducted based on a metallographic examination. The fading effect of the refinement

of the primary structure is accompanied by a significant change in the number (dimension) of primary grains, which is strongly correlated

to solidification parameters, determined by thermal analysis. In addition to that, the analysis of grain refinement stability has been shown

with relation to different grain refinements and initial titanium concentration in Al-Cu base alloy. Finally, it has been shown that the

refinement process of the primary structure is unstable and requires strict metallurgical control.

Go to article

Authors and Affiliations

M. Górny
M. Kawalec
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands) as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard). In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms) of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.
Go to article

Authors and Affiliations

Wioleta Kellmann-Sopyła
Irena Giełwanowska
Justyna Koc
Ryszard J. Górecki
Marcin Domaciuk
Download PDF Download RIS Download Bibtex

Abstract

Eighteen sediment samples from a 36 cm long sediment core retrieved from a proglacial lake (namely P 11) situated in the Schirmacher Oasis, East Antarctica, were analysed for the study of quartz grain morphology and microtexture, along with sand percentage, to reconstruct the paleoenvironmental changes in the lake during the Holocene. The age of the core ranges from 3.3 ka BP to 13.9 ka BP. The quartz grain morphology and microtexture reveal significant evidences of glacial transport along with some eolian and aqueous activities. On the basis of predominance of these signatures and the zonation from CONISS Cluster Analysis on the percentages of characteristic grain morphology and microtextures, the entire core has been subdivided into three major zones. From the paleoenvironmental perspective, it can be concluded that there is an onset of interglacial period at the advent of Holocene (12.3 ka BP), which reigned until 5.3 ka BP and thereafter, again a glacial environment prevailed until 3.3 ka BP with some variations in-between. The results indicate probable alternative colder and less colder phases in the study area, which are also well supported by the respective sand percentages in the sediments. © 2017 Polish Academy of Sciences 2017.
Go to article

Authors and Affiliations

Abhijit Mazumder
Pawan GOVIL
Ratan Kar
Narath Meethal Gayathri
RAGHURAM
Download PDF Download RIS Download Bibtex

Abstract

The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure.

Go to article

Authors and Affiliations

A. Urbańczyk-Gucwa
A. Brzezińska
K. Rodak
Download PDF Download RIS Download Bibtex

Abstract

A desirable property of iterated cryptographic algorithms, such as stream ciphers or pseudo-random generators, is the lack of short cycles. Many of the previously mentioned algorithms are based on the use of linear feedback shift registers (LFSR) and nonlinear feedback shift registers (NLFSR) and their combination. It is currently known how to construct LFSR to generate a bit sequence with a maximum period, but there is no such knowledge in the case of NLFSR. The latter would be useful in cryptography application (to have a few taps and relatively low algebraic degree). In this article, we propose a simple method based on the generation of algebraic equations to describe iterated cryptographic algorithms and find their solutions using an SAT solver to exclude short cycles in algorithms such as stream ciphers or nonlinear feedback shift register (NLFSR). Thanks to the use of AIG graphs, it is also possible to fully automate our algorithm, and the results of its operation are comparable to the results obtained by manual generation of equations. We present also the results of experiments in which we successfully found short cycles in the NLFSRs used in Grain-80, Grain-128 and Grain-128a stream ciphers and also in stream ciphers Bivium and Trivium (without constants used in the initialization step).

Go to article

Authors and Affiliations

Władysław Dudzic
Krzysztof Kanciak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of aluminium concentration determination in the samples of surface water and bottom sediments of the Mala Wełna River (West Poland). In the surface water the concentration of aluminium varies in the range from 4.14 to 25.9 ug/dm'. With use of the Mineql+ program the concentration of the aluminium sulphate complexes in the water samples studied has been determined in a model way. In the bottom sediments samples of the river aluminium has been determined in the granulometrie fractions of the grain sizes> 2.0; 2.0-1.0; 1.0-0.5; 0.5-0.25; 0.25-0.1; 0.1-0.063; < 0.063 mm, using the sequential extraction scheme proposed by Tessier el al. The lowest concentration of aluminium has been found in the granulometrie fraction 0.5-0.25 mm, while the highest in the fractions 0.1-0.063 and< 0.063 mm. An elevated concentration of aluminium has been also noted in the fraction> 2.0 mm. Taking into regard the chemical fractions the lowest concentration of aluminium has been found in the exchange fraction and the fraction bounded to carbonates (fractions I and li), whereas the highest concentration of aluminium has been determined in the lithogenic fraction (fraction V). The methods of sample preparation for analysis of aluminium in bottom sediments were compared. Il was observed that higher concentration of aluminium was present in grounded samples without its influence on grain size fractions. The concentration of aluminium in surface water samples has been determined by the GF-AAS, while in bottom sediments by F-AAS.
Go to article

Authors and Affiliations

Marcin Frankowski
Anetta Zioła-Frankowska
Jerzy Siepak
Download PDF Download RIS Download Bibtex

Abstract

Hot tearing is a casting defect responsible for external and internal cracks on casting products. This irregular undesired formation is often observed during solidification and freezing. The solidification of molten metal also causes thermal contraction and shrinkage, indicating the occurrence of hot tearing when the alloy is restrained by the mould design. The parameters affecting this process include the pouring and mould temperatures, the chemical composition of the alloy, and the mould shape. Also, the factors affecting hot tearing susceptibility include pouring and mould temperatures, the grain refiner, as well as pouring speed. There are many methods of measuring the level of susceptibility to hot tearing, one of which is the thermal contraction evaluation during metal solidification, observed in cast products through several mould types. This paper discusses the hot tearing overview, the effect of pouring temperature, mould temperature, grain refiner, pouring speed on hot tearing, the type of mould, and criterion for hot tear observation.
Go to article

Bibliography

[1] Li, S. & Apelian, D. (2011). Hot Tearing of aluminum alloy: a critical literature review. International Journal of Metalcasting. 5(1), 23-40.
[2] Kumar, V.M. & Devi, C.N. (2014). Evaluation of mechanical characteristics for aluminum-copper metal matrix composite. Research Journal of Engineering Sciences. 3(3), 1-5.
[3] Briggs, C.W. & Gezelius, R.A. (1934). Studies on solidification and contraction in steel castings II-Free and hindered contraction of cast carbon steel. AFA Trans. 42, 449-476.
[4] Körber, F. & Schitzkowski, G. (1928). Determination of the contraction of cast steel. Stahl Und Eisen. 15, 128-135.
[5] Verö, J. (1936). The hot-shortness of aluminum alloys. The Metals Industry. 48, 431-434.
[6] Pumphrey, W.I. & Jennings, P.H. (1948). A consideration of the nature of brittleness at temperature above the solidus in castings and welds in aluminum alloys. Journal of Institute of Metals. 75, 235.
[7] Pellini, W.S. (1952). Strain theory of hot tearing. Foundry. 80, 125-199.
[8] Rosenberg, R.A. Flemings, M.C. & Taylor, H.F. (1960). Nonferrous binary alloys hot tearing. AFS Transactions. 69, 518-528.
[9] Saveiko, V.N. (1961). Theory of hot tearing. Russian Castings Production. 11, 453-456.
[10] Metz, S.A. & Flemings, M.C. (1970) A fundamental study of hot tearing. AFS Transactions. 78, 453-460.
[11] Clyne, T.W. & Davies, G.J. (1975). A quantitive solidification test for casting and an evaluation of cracking in aluminium-magnesium alloys. The British Foundryman. 68(9), 238-238.
[12] Campbell, J. (1991). Castings. Oxford: Butterworth-Heinemann.
[13] Sigworth, G.K. (1996). Hot tearing of metals. AFS Transactions. 104, 1053-1062.
[14] Davidson, C., Viano, D., Lu, L., & Stjohn, D. (2006). Observation of crack initiation during hot tearing. International Journal of Cast Metals Research. 19, 59-65.
[15] Singer, K., Benek, H. (1931). Contribution to hot tears in steel castings. Stahl and Sisen. 51, 61-65.
[16] Middleton, J.M. & Protheroe, H.T. (1951). The hot-tearing of steel. Journal of the Iron and Steel Institute. 168, 384-397.
[17] Bichler, L., Elsayed, A., Lee, K. & Ravindran, C. (2008). Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. International Journal of Metalcasting. 2(1), 43-54.
[18] Couture, A. & Edwards, J.O. (1996) The hot-tearing of copper-base casting alloys. AFS Transactions, 74, 709-721.
[19] Karunakar, D.B., Rai, R.N., Patra, S. & Datta, G.L. (2009). Effects of grain refinement and residual elements on hot tearing in aluminum castings. The International Journal of Advance Manufacturing Technology. 45, 851-858.
[20] Nasresfahani M.R. & Niroumand, B. (2010). Design of a new hot tearing test apparatus and modification of its operation. Metals and Materials International. 16(1), 35-38.
[21] Burapa, R., Rawangwong, S., Chatthong, J. & Boonchouytan, W. (2013). Effects of mold temperature and casting temperature on hot cracking in Al-4.5 wt.% Cu alloy. Advanced Materials Research. 747, 623-626 doi: 10.4028/www.scientific.net/AMR.747.623.
[22] He, Y., Li, S., Sadayappan, K. & Apelian, D. (2013). Thermomechanical simulation and experimental characterisation of hot tearing during solidification of aluminium alloys. International Journal of Cast Metals Research. 26(2).
[23] Huang, H., Fu, P., Wang, Y., Peng, L. & Jiang, H. (2014). Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Transactions of Nonferrous Metals Society of China. 24(4), 922-929.
[24] Hasan, A. & Suyitno (2015). Effect pouring temperature on casting defect susceptibility of hot tearing in metal alloy Al-Si. Applied Mechanics and Materials. 758, 95-99.
[25] Birru, A.K. & Karunakar, D.B. (2016). Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy. Transactions of Nonferrous Metals Society of China. 26, 1783-1790.
[26] Apelian, D. (2009). Aluminium cast alloys: enabling tools for improved performance. NADCA.
[27] Spittle, J.A. & Cushway, A.A. (1983). Influence of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Metals Technology. 10(1), 6-13.
[28] Limmaneevichitr, C., Saisiang, A. & Chanpum, S. (2002). The role of grain refinement on hot crack susceptibility of aluminum alloy permanent mold castings. Proceedings of the 65th World Foundry Congress.
[29] Sadayappan, M., Sahoo, M. & Weiss, D. (2007). Evaluation of the hot tear susceptibility of selected magnesium casting alloys in permanent molds. AFS Transactions. 115, 761-766.
[30] Fasoyinu, Y., Sahoo, M. & Sikorski, S. (2008). Hot tearing of aluminum alloys 206 and 535 poured in metal mold. Proceedings of the AFS 6th International Conference on Permanent Mold Casting of Aluminum and Magnesium. 11-25.
[31] Zhen, Z., Hort, N., Utke, O., Huang, Y., Petri, N. & Kainer, K.U. (2009). Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method. Magnesium Technology.
[32] Pokorny, M.G., Monroe, C.A. & Beckermann, C. (2009). Prediction of deformation and hot tear formation using a viscoplastic model with damage. The minerals. Metal and Materials Society. 198-198.
[33] Nabawy, A.M. Samuel, A.M., Samuel, F.H. & Doty, H.W. (2012). Influence of additions of Zr, Ti–B, Sr, and Si as well as of mold temperature on the hot-tearing susceptibility of an experimental Al–2% Cu–1% Si alloy. Journal of Materials Science. 47(9), 4146-4158.
[34] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[35] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckkmann, F., Kainer K.U. & Hort, N. (2014). Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. Journal of Materials Science. 49, 353-362.
[36] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & N.Hort. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55.
[37] Easton, M., StJohn, D.H. & Sweet, L. (2009). Grain refinement and hot tearing of aluminium alloys - how to optimise and minimise. Material Science Forum. 630, 213–221. https://doi.org/10.4028/www.scientific.net/msf.630.213.
[38] Elsayed, A., Ravindran, C. & Murty, B.S. (2011). Effect of Al-Ti-B based master alloys on grain refinement and hot tearing susceptibility of AZ91E magnesium alloy. Materials Science Forum. 690, 351–354.
[39] Choi, H., Cho, W., Konishi, H., Kou, S. & Li, X. (2012). Nanoparticle-induced superior hot tearing resistance of A206 alloy. Metallurgical and Materials Transactions A, 44(4), 1897-1907.
[40] Sweet, L., Easton, M.A., Taylor, J.A., Grandfield, J.F., Davidson, C.J., Lu, L., Couper, M.J. & StJohn, D.H. (2012). Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents. Metallurgical and Materials Transactions A. 44(12), 396-5407.
[41] Suyitno, Savran, V.I., Katgerman, L. & Eskin, D.G. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35A, 3551–3561.
[42] Bozorgi, S., Haberl, K., Kneissl, C., Pabel, T. & Schumacher, P. (2011). Effect of alloying elements (magnesium and copper) on hot cracking susceptibility of AlSi7MgCu-Alloys. In Tiryakioğlu, M., Campbell, J., and Crepeau, P.N. (eds.) Shape Casting: The 4th International Symposium. Wiley.
[43] Malau, V., Akhyar, H., , Iswanto, P.T. (2018). Modification of constrained rod casting mold for new hot tearing measurement. 63(3), 1201-1208. DOI 10.24425/123792.
[44] Gowri, S. & Bouchard, M. (1994). Hot cracking in aluminium alloys-part 1. Literature survey. Research Report. Université du Québec à Chicoutimi.
[45] Pekguleryuz, M.O., Li, X., & Aliravci, C.A. (2009). In-situ investigation of hot tearing in aluminum alloy AA1050 via acoustic emission and cooling curve analysis. Metallurgical and Materials Transactions A. 40(6), 1436-1456.
[46] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1990). Evaluation of acoustic emission from issand cast alloy 319 during solidification and formation of casting defects. AFS Transactions. 98, l-7.
[47] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1991). Acoustic emission signal characteristics from casting defects formed during solidification of Al alloy 319. AFS Transactions. 102, 525-530.
[48] Birru, A.K., Karunakar, D.B. & Mahapatra, M.M. (2012). A study on hot tearing susceptibility of Al–Cu, Al–Mg, and Al–Zn alloys. Transactions of the Indian Institute of Metals. 65(1), 97–105.
[49] Singer, A.R.E. & Jennings, P.H. (1946). Hot-shortness of the aluminium-1043 silicon alloys of commercial purity. Journal of Institute of Metals. 72, 197-211.
[50] Gamber, E.J. (1959). Hot cracking test for light metal casting alloys. Trans. AFS. 67, 237-237.
[51] Lemieux, A., Langlais, J. & Chen, X. (2013). Reduction of hot tearing of cast semi-solid 206 alloys. Solid State Phenomena. 193, 101-106.
[52] Novikov, I.I. (1966). Hot shortness of non-ferrous metals and alloys. Moscow, Nauka, 299. (in Russian)
[53] Zych, J., Myszka, M., Snopkiewicz, T. (2017). Hot cracking tendency of non-ferrous alloys - a new test method. W Nauka i Technologia 2017 – Odlewnictwo Metali Nieżelaznych, 199-212. Kraków: Wydawnictwo Naukowe „Akapit”. (in Polish).
[54] Oya, S., Honma, U., Fujii, T. & Othaki, M. (1984). Evaluation of hot tearing in binary Al-Si alloy castings. Aluminium. 60(20), 777.
[55] Warrington, D. & McCartney, D.G. (1989). Development of a new hot-cracking test for aluminum alloys. Cast Metals. 2, 134.
[56] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[57] Cao, G. & Kou, S. (2006). Hot cracking of binary Mg–Al alloy castings. Materials Science and Engineering: A. 417 (1-2), 230-238.
[58] Wannasin, J., Schwam, D., Yurko, J.A., Rohloff, C. & Woycik, G. (2006). Hot tearing susceptibility and fluidity of semi-solid gravity cast Al-Cu alloy. Solid State Phenomena. 116-117, 76-79.
[59] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[60] Guo, J. & Zhu, J.Z. (2007). Prediction of hot tearing during alloy solidification. In the 5th Decennial International Conference on Solidification Processing. Columbia. USA, 549-553.
[61] Kamga, H.K., Larouche, D., Bournane, M. & Rahem, A. (2010). Hot tearing of aluminum–copper B206 alloys with iron and silicon additions. Materials Science and Engineering: A. 527(27-28), 7413-7423.
[62] Cao, G., Zhang, C., Cao, H., Chang, Y.A. & Kou, S. (2010). Hot-tearing susceptibility of ternary Mg-Al-Sr alloy castings. Metallurgical and Materials Transactions A. 41(3), 706-716.
[63] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & Hort, N. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55, https://doi.org/10.1016/j.matdes.2014.07.024.
[64] Bichler, L. & Ravindran, C. (2010). New developments in assessing hot tearing in magnesium alloy castings. Materials and Design. 31, 17-23.
[65] Li, S. (2010). Hot Tearing in cast aluminum alloys: measures and effects of process variables. Worcester Polytechnic Institute. 24-24.
[66] Myszka, M., Zych, J. & Snopkiewicz, T. (2018). Hot cracking tendency of foundry alloys – an innovative testing method. Prace Instytutu Odlewnictwa Transactions of the Foundry Research Institute. 58(4), 235-249. DOI: 10.7356/iod.2018.19.
[67] Monroe, C. & Beckermann, C. (2004). Development of a hot tear indicator for steel castings. In The 58th SFSA Technical and Operating Conference. Chicago, America, 1-13.
[68] Monroe, C. & Beckermann, C. (2005). Development of a hot tear indicator for steel castings. Materials Science and Engineering A. 413-414(3), 30-36.
[69] Monroe, C.A., Beckermann, C. & Klinkhammer, J. (2009). Simulation of deformation and hot tear formation using a visco-plastic model with damage, in book cockcroft, S.L, & Maijer, D.M., eds. modeling of casting, Welding, and Advanced Solidification Processes-XII. TSM (The Minerals, Metals & Materials Society). 313-320.
[70] Nasresfahani, M.R. & Niroumand, B. (2014). A new criterion for prediction of hot tearing susceptibility of cast alloys. Metallurgical and Materials Transactions A. 45(9), 3699-3702.
[71] Nasresfahani, M.R. & Rajabloo, M.J. (2014). Research on the effect of pouring temperature on hot-tear susceptibility of A206 alloy by simulation. Metallurgical and Materials Transactions B. 45(5), 1827-1833.
[72] Li, S., Sadayappan, K. & Apelian, D. (2013). Role of grain refinement in the hot tearing of cast Al-Cu alloy. Metallurgical and Materials Transactions B. 44(3), 614-623.
[73] Olivier, C., Yvan, C. & Michel, B. (2008). Hot tearing in steels during solidification: experimental characterization and thermomechanical modeling. Journal of Engineering Materials and Technology. 130(2), 021018.
[74] Bellet, M., Cerri, O., Bobadilla, M. & Chastel, Y. (2009). Modeling hot tearing during solidification of steels: assessment and improvement of macroscopic criteria through the analysis of two experimental tests. Metallurgical and Materials Transactions A. 40(11), 2705-2717.
[75] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[76] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing susceptibility of binary Mg–Y alloy castings. Materials and Design. 47, 90-100.
[77] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013) Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[78] Liu, Z., Zhang, S., Mao, P. & Wang, F. (2014). Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Transactions of Nonferrous Metals Society of China. 24(4), 907-914.
[79] Akhyar, H. & Husaini (2016). Study on cooling curve behavior during solidification and investigation of impact strength and hardness of recycled Al–Zn aluminum alloy. International Journal of Metalcasting. 10(4), 452-456. https://doi.org/10.1007/s40962-016-0024-8.
[80] Clyne, B. & Davies, G.J. (1981). The influence of composition on solidification cracking susceptibility in binary alloy systems. J. Brit Foundryman. 74, 65-73.
[81] Instone, S. (1999). The effect of alloy composition and microstructure on the hot cracking of vertical direct chill cast aluminium alloy billet. University of Queensland.
[82] Davidson, C., Viano, D., Lu, L., D.H.S. (2005). Shape Casting, 7th International Symposium Celebrating Prof. John Campbell's 80th Birthday.
[83] Mitchell, J.B. Cockcroft, S.L., Viano, D., Davidson, C. & StJohn, D. (2007). Determination of strain during hot tearing by image correlation. Metallurgical and Materials Transactions A. 38(10), 2503-2512.
[84] Easton, M.A., Wang, H., Grandfield, J., Davidson, C.J., StJohn, D.H., Sweet, L.D. & Couper, M.J. (2012). Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys. Metallurgical and Materials Transactions A. 43(9), 3227-3238.
[85] Li, M., Wang, H., Wei, Z. & Zhu, Z. (2010). The effect of Y on the hot-tearing resistance of Al–5 wt.% Cu based alloy. Materials and Design. 31(5), 2483-2487. https://doi.org/10.1016/j.matdes.2009.11.044.
[86] Knuutinen A., Nogita K., Mcdonald S.D. & Dahle A.K. (2001) Modification of Al–Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals. 229-240.
[87] Murashima, I., Asada, J. & Yoshida, M., (2008). Effect of grain refiner and grain size on the susceptibility of Al – Mg die casting alloy to cracking during solidification. Journal of Materials Processing Technology. 209, 210-219.
[88] Xu, R., Zheng, H., Luo, J., Ding, S., Zhang, S. & Tian, X. (2014). Role of tensile forces in hot tearing formation of cast Al-Si alloy. Transactions of Nonferrous Metals Society of China. 24(7), 2203-2207.
[89] Zhang, J. & Singer, R.F. (2004).Effect of grain-boundary characteristics on castability of nickel-base superalloys. Metallurgical and Materials Transactions. A. 35, 939-946.
[90] Zhou, Y., Volek, A. & Singer, R.F. (2005). Influence of solidification conditions on the castability of nickel-base superalloy IN792. Metallurgical and Materials Transactions A. 36, 651-656.
[91] Zhou, Y., Volek, A. & Singer, R.F. (2006). Effect of grain boundary characteristics on hot tearing in directional solidification of superalloys. Journal of Materials Research. 21(09), 2361-2370.
[92] Zhou, Y. & Volek, A. (2008). Effect of carbon additions on hot tearing of a second generation nickel-base superalloy. Materials Science and Engineering: A. 479(1-2), 324-332.
[93] Phillion, A.B., Hamilton, R.W., Fuloria, D., Leung, A.C.L., Rockett, P., Connolley, T. & Lee, P.D. (2011). In situ X-ray observation of semi-solid deformation and failure in Al–Cu alloys. Acta Materialia. 59, 1436-1444.
[94] Akhyar, H., Malau, V., Suyitno & Iswanto, P.T. (2017). Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. Results in Physics. 7, 1030-1039. https://doi.org/10.1016/j.rinp.2017.02.041.
[95] Clyne, G.J. & Davies, T.W. (1979). Solidification and Casting of Metals. London: Metals Society. 275-278.
[96] Suyitno, Kool, W. H., Katgerman, L., (2005). Hot Tearing Criteria Evaluation for Direct-Chill Casting of an Al-4.5 Pct Cu Alloy. Metallurgical and Materials Transactions A. 36A, 1537-1546.
[97] Katgerman, L. (1982). A mathematical model for hot cracking of aluminum alloys during D.C. casting. JOM Journal of the Minerals Metals & Materials Society. 34, 46-49. https://doi.org/10.1007/BF03339110.
[98] Magnin, B., Maenner, L., Katgerman, L. & Engler, S. (1996). Ductility and theology of an Al-4.5%Cu alloy from room temperature to coherency temperature. Mater Science Forum. 1209, 217-222.
[99] Eskin, D.G., Suyitno & Katgerman, L. (2004). Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Progress in Materials Science. 49, 629-711.
[100] Prokhorov, N.N. (1962). Resistance to hot tearing of cast metals during solidification. Russian Castings Production. 2, 172-175.
[101] Rappaz, M., Drezet, J.M. & Gremaud, M. (1999). A new hot-tearing criterion. Metallurgical and Materials Transactions A. 30A, 449-455.
[102] Braccini, M., Martin, C. L., Suéry, M. & Bréchet, Y. (2000). Modeling of casting. Welding and Advanced Solidification Processes IX. 18-24.
[103] Eskin, D.G. & Katgerman, L. (2007). A quest for a new hot tearing criterion. Metallurgical and Materials Transactions A. 38A, 1511- 1519, DOI: 10.1007/s11661-007-9169-7.
[104] Hamdi, M.M., Mo, A. & Fjær, H.G. (2006). TearSim : A two-phase model addressing hot tearing formation during aluminum direct chill casting. Metallurgical and Materials Transactions A. 37, 3069-3083.
[105] Monroe, C. & Beckermann, C. (2014). Prediction of hot tearing using a dimensionless niyama criterion. The Journal of The Minerals. 66(8), 1439-1445.
[106] Aguiar, A.M. (2020). Hot tearing susceptibility of single-phase Al-3.8 wt%Zn-1 wt%Mg alloy using the constrained rod solidification experiment: influence of 1.2 wt%Fe addition and grain refinement. Thesis, McMaster University. Hamilton, Ontario.

Go to article

Authors and Affiliations

Akhyar
1

  1. Department of Mechanical Engineering, Univeritas Syiah Kuala, Jl. Syech Aburrauf No.7, Darussalam, Banda Aceh, 23111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The quality of the castings depends, among other influences, on the quality of the moulding mixture used. The silica sands used are characterized by high thermal expansion compared to other sands. The tendency to dilatation of the moulding mixture can be influenced by the choice of the granulometric composition of the basic sand and the grain size. The aim of this work is to present the influence of grain distribution of foundry silica sand BG 21 from Biala Góra (Poland) and the degree of sorting (unsorted, monofraction, polyfraction) on the degree of thermal dilatation of the sand and thus on the resulting quality of the casting and susceptibility to foundry defects. For the purpose of measuring thermal dilatation, clay wash analysis was performed, sieve analysis of the sand was carried out, and individual sand fractions were carefully sorted. The measurements confirmed a higher thermal expansion in the case of monofractional sand grading, up to 51.8 %. Therefore, a higher risk of foundry stress-strain defects, such as veining, can be assumed.
Go to article

Bibliography

[1] Czerwinski, F. (2017). Modern aspects of liquid metal engineering. Metallurgical and Materials Transactions B. 48(1), 367-393. DOI: 10.1007/s11663-016-0807-6.
[2] Brůna, M. & Galčík, M. (2021). Casting quality improvement by gating system optimization. Archives of Foundry Engineering. 21(1), 132-136. https://doi.org/10.24425/afe.2021.136089.
[3] Monroe, R. (2005). Porosity in castings. AFS Transactions. 113, 519-546.
[4] Kowalski, J.S. (2010). Thermal aspects of temperature transformation in silica sand. Archives of Foundry Engineering. 10(3), 111-114. ISSN (1897-3310).
[5] Jelínek, P. (2004). Binder systems of foundry moulding mixtures – chemistry of foundry binders. (1st ed.). Ostrava. ISBN: 80-239-2188-6. (in Czech).
[6] Svidró, J., Svidró J. T., & Diószegi, A. (2020). The role of purity level in foundry silica sand on its thermal properties. Journal of Physics: Conference Series. 1527(1), 012039, 1-8. DOI 10.1088/1742-6596/1527/1/012039.
[7] Chao, Ch. & Lu, H. (2002). Stress-induced β→ α-cristobalite phase transformation in (Na2O+Al2O3)-codoped silica. Materials Science and Engineering: A. 328(1-2), 267-276. DOI: 10.1016/S0921-5093(01)01703-8.
[8] Hrubovčáková, M., Vasková, I., Benková, M. & Conev, M. (2016). Opening material as the possibility of elimination veining in foundries. Archives of Foundry Engineering. 16(3), 157-161. DOI: 10.1515/afe-2016-0070.
[9] Beňo, J., Adamusová, K., Merta, V., Bajer, T. (2019). Influence of silica sand on surface casting quality. Archives of Foundry Engineering. 19(2), 5-8. DOI: 10.24425/afe.2019.127107.
[10] Thiel, J., Ziegler, M., Dziekonski, P., Joyce, S. (2007). Investigation into the technical limitations of silica sand due to thermal expansion. Transactions of the American Foundry Society. 115, 383-400.

Go to article

Authors and Affiliations

M. Bašistová
1
ORCID: ORCID
P. Lichý
1
ORCID: ORCID

  1. VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, Czech Republic

This page uses 'cookies'. Learn more