Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 113
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Statistical conformity criteria for the compressive strength of concrete are a matter of debate. The criteria can have prejudicial effects on construction quality and reliability. Hence, the usefulness of statistical criteria for the small sample size n = 3 is questioned. These defects can cause a reduction in the quality of produced concrete and, consequently, too much risk for the recipient (investor). For this reason, the influence of conformity control on the value of the reliability index of concrete and reinforced concrete has been determined. The authors limited their consideration to the recommended standards PN-EN 206-1, PN-EN 1992 and ISO 2394 method of reliability index, which belongs to the analytical methods FORM (First Order Reliability Method). It assumes that the random variables are defined by two parameters of the normal distribution or an equivalent normal: the mean and the standard deviation. The impact of conformity control for n = 3 for concrete structures, designed according to the Eurocode 1992, for which the compressive strength of concrete is the capacity dominant parameter (sensitivity factor of dominating resistance parameter according to the FORM is 0.8), has been determined by evaluation of the reliability index.

Go to article

Authors and Affiliations

I. Skrzypczak
L. Buda-Ożóg
Download PDF Download RIS Download Bibtex

Abstract

This investigation is carried out to evaluate the repair and strengthening the techniques of elliptical paraboloid reinforced concrete shells with openings. An experimental program of several different techniques in repair and strengthening is executed. The materials, which are considered for strengthening, are; Glass fiber reinforced polymers GFRP at different position of the shell bottom surface, steel strip and external tie. They loaded by four concentrated loads affected on the corners of the opening. The initial and failure loads as well as the crack propagation for the tested shells at different loading stages, defl ections and failure load for repaired and shells are recorded. A non-linear computer program based on finite element techniques is used to study the behavior of these types of shells. Geometric and materials nonlinearities are considered in the analysis. The efficiency and accuracy of computer program are verified by comparing the program results with those obtained experimentally for the control shell with opening and strengthened shells.

Go to article

Authors and Affiliations

N.N. Meleka
M.A. Safan
A.A. Bashandy
A.S. Abd-Elrazek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the description of structure and the selected problems of the technical condition, as well as the strength analysis of the thin-walled reinforced concrete shell which has been making a covering of the main hall of the Gdynia Seaport Building through the last 80 years. The rectangle projection of four single curvature shells of the dome was shaped out of mutual perpendicular intersection of two cylindrical shells.

The analysis of the state of stress and deformations was carried out using the special model worked out in MES considering the combination of loads, the thermal ones included. For the long lasting loads (the deadweight of the dome), the computed results of static quantities were confronted with analytical results obtained according to F. Dischinger’s method. This method had been applied by the DYWIDAG Company in Berlin and its branch in Katowice (Poland) who designed the Gdynia Dome.

The computational analysis and the assessment of the technical state, along with laboratory pH tests of concrete, made it possible to carry out the overall evaluation of durability and safety of operation of the Gdynia Seaport Dome through the next decades.

Go to article

Authors and Affiliations

T. Godycki-Ćwirko
K. Nagrodzka-Godycka
P. Piotrkowski
Download PDF Download RIS Download Bibtex

Abstract

Coal ash produced from thermal power plants as a substitute for conventional construction material has increased considerably in recent years. In the past, studies on partial replacement of soil were carried out with a single type of ash. Because of the insufficient evidence, limited research has been initiated on the productive usage of Fly and Bottom Ashes. This paper aims to study the properties of these materials and investigate their efficacy in road construction. Laboratory investigations were conducted to assess chemical and physical properties and mechanical performance to evaluate both ash types in pavement construction. The rutting factor is calculated for various combinations of coal ash materials with the addition of polypropylene fiber as a reinforcement in increments of 0.1% of its total weight with an aspect ratio of 200. The analytical tool ANSYS is used to validate the service life, vertical strain and quality of reinforced ash materials.

Go to article

Authors and Affiliations

S.M. Subash
N. Mahendran
M. Manoj Kumar
M. Nagarajan
Download PDF Download RIS Download Bibtex

Abstract

The present study has been taken up to emphasize the role of the hybridization process for optimizing a given reinforced concrete (RC) frame. Although various primary techniques have been hybrid in the past with varying degree of success, the effect of hybridization of enhanced versions of standard optimization techniques has found little attention. The focus of the current study is to see if it is possible to maintain and carry the positive effects of enhanced versions of two different techniques while using their hybrid algorithms. For this purpose, enhanced versions of standard particle swarm optimization (PSO) and a standard gravitational search algorithm (GSA), were considered for optimizing an RC frame. The enhanced version of PSO involves its democratization by considering all good and bad experiences of the particles, whereas the enhanced version of the GSA is made self-adaptive by considering a specific range for certain parameters, like the gravitational constant and a set of agents with the best fitness values. The optimization process, being iterative in nature, has been coded in C++. The analysis and design procedure is based on the specifications of Indian codes. Two distinct advantages of enhanced versions of standard PSO and GSA, namely, better capability to escape from local optima and a faster convergence rate, have been tested for the hybrid algorithm. The entire formulation for optimal cost design of a frame includes the cost of beams and columns. The variables of each element of structural frame have been considered as continuous and rounded off appropriately to consider practical limitations. An example has also been considered to emphasize the validity of this optimum design procedure.

Go to article

Authors and Affiliations

Sonia Chutani
Jagbir Singh
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of computer simulations carried out to determine coordination numbers for a system of parallel cylindrical fibres distributed at random in a circular matrix according to twodimensional pattern created by random sequential addition scheme. Two different methods to calculate coordination number were utilized and compared. The first method was based on integration of pair distribution function. The second method was the modified sequential analysis. The calculations following from ensemble average approach revealed that these two methods give very close results for the same neighbourhood area irrespective of the wide range of radii used for calculation.

Go to article

Authors and Affiliations

Piotr Darnowski
Piotr Furmański
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to distinguish between Acoustic Emission (AE) signals coming from mechanical friction and AE signals coming from concrete cracking, recorded during fourteen seismic simulations conducted with the shaking table of the University of Granada on a reinforced concrete slab supported on four steel columns. To this end, a particular criterion is established based on the Root Mean Square of the AE waveforms calculated in two different temporal windows. This criterion includes a parameter calculated by optimizing the correlation between the mechanical energy dissipated by the specimen (calculated by means of measurements with accelerometers and displacement transducers) and the energy obtained from the AE signals recorded by low-frequency piezoelectric sensors located on the specimen. The final goal of this project, initiated four years ago, is to provide a reliable evaluation of the level of damage of Reinforced Concrete specimens by means of AE signals to be used in future Structural Health Monitoring strategies involving RC structures.
Go to article

Authors and Affiliations

Francisco A. Sagasta
Juan L. Torné
Antonio Sánchez-Parejo
Antolino Gallego
Download PDF Download RIS Download Bibtex

Abstract

Reinforced concrete composite slab consists of a thin prefabricated slab in which span reinforcement is located and of concrete joined with the slab, with such concrete being laid on site.

The existence of a joint of two concretes in such floors is interpreted as introducing a contact layer into a monolithic slab. In the paper parameters of two models are estimated. The first is a model of a contact layer and the second is a model of a composite slab with a single degree of freedom. The models consider that the contact has elastic properties and inelastic properties causing energy dissipation. Experimental investigations are discussed further based on which the parameters values of the contact layer model were determined.

Delamination was experienced for the slabs characterised by low contact layer stiffness after applying a maximum load. In addition, the strains of a contact layer having low stiffness are accompanied by lower energy dissipation than of a layer with high stiffness.

The smaller stiffness of composite floors, as compared to monolithic floors, occurs as a consequence of the existence of a joint. Such decrease for a composite slab is interpreted in the model with a single degree of freedom as the serial connection of stiffness of a monolithic slab and an element considering the existence of a contact layer.

The stiffness of an element considering the existence of a contact layer decreases along with a load, and the elements corresponding to the higher stiffness of the contact layer are characterised by higher energy dissipation.

The aforementioned results of the investigations confirm the assumptions of the contact layer model and a composite slab model with a single degree of freedom. The findings made represent a basis for establishing a method of evaluating the condition of a joint in composite slabs according to statistical investigations.

Go to article

Authors and Affiliations

K. Gromysz
Download PDF Download RIS Download Bibtex

Abstract

This study aims to evaluate the efficiency of strengthening reinforced concrete beams using some valid strengthening materials and techniques. Using concrete layer, reinforced concrete layer and steel plates are investigated in this research. Experiments on strengthening beam samples of dimensions 100x150x1100 mm are performed. Samples are divided in to three groups. Group “A” is strengthened using 2 cm thickness concrete layer only (two types). Group “B” is strengthened using 2 cm thickness concrete layer reinforced with meshes (steel and plastic). Group “C” is strengthened using steel plates. The initial cracking load, ultimate load and crack pattern of tested beams are illustrated. The experimental results show that for group A and B, the ultimate strength, stiffness, ductility, and failure mode of RC beams, with the same thickness strengthening layer applied, will be affected by the mesh type, type of concrete layer. While for group C, these parameters affected by the fixation technique and adhesion type.

Go to article

Authors and Affiliations

Alaa A. Bashandy
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility to apply numerical simulation in static analysis of reinforcedconcrete structure strengthened with carbon fibre reinforced polymer composite strips (CFRP).Reinforced concrete beams, with strengthening in form values CFRP made of carbon fibres andepoxy resin, featuring various width, as well as non-strengthened bent beams, were analysed. Thesimply supported beams arranged in a free support scheme were subjected to two concentratedforces within full range of loading (until collapse). The numerical analysis was performed throughapplication of the Finite Elements Method (FEM), and the calculation model applied took intoaccount the geometric and physical nonlinearity. The problem was solved by application of thequasi-staticstrategy method of calculations using ABAQUS software. While analysing the results,we focused on the run of changes in structure displacement and development of material damage,up to the point of destruction of the beam.

Go to article

Authors and Affiliations

W. Głodkowska
M. Ruchwa
Download PDF Download RIS Download Bibtex

Abstract

In calculating the resistance of welds within the connections between hollow sections in EN 1993‒1‒8, very general information is given without presenting specific calculations. The chief recommendations indicate that the resistance of the welds connecting the wall to the second element should not be less than the resistance of the cross section of the wall. In addition, assessment of the welds’ resistance based on the effective lengths is viable in cases when forces in the braces are smaller than the resistance of the joint, though the detailed method was not specified. The objective of this paper is to present the most up-to-date information about the design of overlap welded joints with a reinforcing rib plate.

Go to article

Authors and Affiliations

J. Bródka
M. Broniewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an experimental behaviour of the basalt fibre reinforced polymer composite by external strengthening to the concrete beams. The BFRP composite is wrapped at the bottom face of R.C beam as one layer, two layers, three layers and four layers. The different characteristics – are studied in – first crack load, ultimate load, tensile and compressive strain, cracks propagation, crack spacing and number of cracks etc. To – investigate, total of five beams size 100×160×1700 mm were cast. One beam is taken as control and others are strengthened with BFRP composite with layers. From this investigation, the first crack load is increased depending on the increment in layers from 6.79% to 47.98%. Similarly, the ultimate load carrying – capacity is increased from 5.66% to 20%. The crack’s spacing is also reduced with an increase in the number of layers.

Go to article

Authors and Affiliations

A. Chandran
M. Neelamegam
Download PDF Download RIS Download Bibtex

Abstract

“Polyurea coatings as a possible structural reinforcement system” is a research project aimed at exploring possible applications of polyurea coatings for improving structural performance (including steel, concrete, wooden and other structures used in the construction industry). As part of the project, this paper focuses on evaluating the performance of bent reinforced concrete (RC) beams covered with a polyurea coating system. Easy polyurea application and its numerous advantages can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of three types of RC beams with three different longitudinal reinforcement ratios were performed for the purposes of this paper. The tests were designed to determine the bending strength, performance and cracking patterns of the coated RC beams. In addition, a theoretical model was developed to predict the impact of the polyurea coating on the bending strength of the RC beams. On this basis, the effect of the coating on the bending strength and the performance of the coated beams at the ultimate limit state (ULS) was examined and analyzed. The results showed that the use of the polyurea coating has a positive impact on the cracking state of the RC beams subject to bending and little effect on their bending strength.
Go to article

Authors and Affiliations

Jacek Szafran
1
ORCID: ORCID
Artur Matusiak
1
Katarzyna Rzeszut
2
ORCID: ORCID
Iwona Jankowiak
3

  1. Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Aleja Politechniki 6, 90-924 Łódź, Poland
  2. Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
  3. Institute of Civil Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper the problem of strengthening of flat slabs against punching shear was discussed. Selected methods verified on the basis of experimental tests such as increasing size of the support, applying post-installed shear reinforcement or increasing the main reinforcement by installing additional steel flat bars, were presented. The previous studies demonstrated, that the last method allows for an increase in punching shear resistance of up to 90%, depending on the longitudinal reinforcement ratio. The example of the application of such strengthening technique in the real structure was described. The use of steel flat bars located in the vicinity of the columns and additionally anchored to the slab made possible to compensate for the load capacity deficiencies that occurred due to execution errors (lowering of the main reinforcement within the support zones).
Go to article

Authors and Affiliations

Tadeusz Urban
1
ORCID: ORCID
Michał Gołdyn
1
ORCID: ORCID
Łukasz Krawczyk
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Concrete Structures, al. Politechniki 6, 93-590 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to investigate the shear failure mechanisms in T-shape, single span and simply supported beams exclusively reinforced with longitudinal glass fiber reinforced polymer (GFRP) bars. Usually the critical shear crack in RC beams without stirrups develops through the theoretical compression strut reducing the shear strength following the shear failure. The main parameter affecting the crack pattern and the shear strength of the beams is the shear slenderness. However, the test results presented in the paper indicated the new arching effect due to the bond losing between the GFRP flexural reinforcement and concrete. This failure mode revealed unexpected critical crack pattern and failure mode. The research of concrete beams flexurally reinforced with GFRP bars without stirrups indicated two failure modes: typical shear-compression and a new one leading by the bond losing between the ordinary reinforcement and concrete.

Go to article

Authors and Affiliations

M. Kaszubska
R. Kotynia
Download PDF Download RIS Download Bibtex

Abstract

Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as

SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry

machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of

specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and

consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and

spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel

exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in

second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g

for base steel

Go to article

Authors and Affiliations

S. Sobula
T. Tokarski
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

In this study, low-carbon cast steel was reinforced with TiC by SHS-B method, also known as combustion synthesis during casting method. The composite zone was then subjected to surface remelting by Gas Tungsten Arc Welding (GTAW) method. The remelting operation was realized manually, at 150 A current magnitude. Microstructure, phase composition and hardness of remelted zone were investigated. XRD results reveal that the phases of the composite zone in initial state consist of TiC and Feα. Surface remelting resulted in formation of thick layers containing TiC carbides, Feα and Feγ. Microstructural examination has shown strong refinement of titanium carbides in remelted zone and complete dissolution of primary titanium carbides synthetized during casting. The average diameter of carbides was below 2 μm. The structural changes are induced by fast cooling which affects crystallization rate. The hardness (HV30) of the remelted layer was in the range between 250 HV and 425 HV, and was lower than hardness in initial state.

Go to article

Authors and Affiliations

S. Sobula
A. Kwiecień
E. Olejnik
P. Pałka
Download PDF Download RIS Download Bibtex

Abstract

A continuous contact layer exists between the top and bottom layer of concrete composite reinforced floors. The contact layer is characterised by linear elasticity and frictional properties. In this paper a model of single degree of freedom of composite floor is determined. The model assumes that the restoring forces and the non-conservative internal friction forces dissipating energy are produced within the contact layer. A hysteresis loop is created in the process of static loading and unloading of the model, with the energy absorption coefficient being defined on this basis. The value of the coefficient is rising along with the growing stiffness of the composite.

A critical damping ratio is a parameter describing free decaying vibration caused by non-conservative internal friction forces in the contact layer and in the bottom and top layer. The value of the ratio in the defined model is rising along with the lowering stiffness of the element representing contact layer.

The findings resulting from the theoretical analyses carried out, including the experimental tests, are the basis for the established methods of determining the concrete layer state for reinforced concrete floors. The method is based on energy dissipation in the contact layer.

Go to article

Authors and Affiliations

K. Gromysz
Download PDF Download RIS Download Bibtex

Abstract

In the recent years a tendency for design of increasingly slender structures with the use of high performance concrete has been observed. Moreover, the use of high performance concrete in tunnel structures, subject to high loads with possibility of extreme loads occurrence such as fire, has an increasing significance. Presented studies aimed at improving high performance concrete properties in high temperature conditions (close to fire conditions) by aeration process, and determining high temperature impact on the concretes features related to their durability. In this paper it has been proven that it is possible to obtain high performance concretes resistant to high temperatures, and additionally that modification of the concrete mix with aerating additive does not result in deterioration of concrete properties when subject to water impact in various form.

Go to article

Authors and Affiliations

W. Jackiewicz-Rek
T. Drzymała
A. Kuś
M. Tomaszewski
Download PDF Download RIS Download Bibtex

Abstract

The design of suitable thermophysical properties of reinforced ice as well as employing the novel material in feasible ways represent key aspects towards alternative building sustainability. In this overview research studies dealing with reinforced ice structures have been presented with an emphasis on construction parameters and reinforcement materials of the structures. The main focus of the study is directed to the identification of the main issues related to the construction of reinforced ice structures as well as the environmental and economic impact of such structures. Obtained research data shows that the compressive, tensile, and bending strength of reinforced ice can be increased up to 6 times compared to plain ice. The application of reinforcement materials decreases creep rate, enhances ductility, and reduces brittle behaviour of ice. Assessed reinforced ice structures were mainly found to be environmentally friendly and economically viable. However, in most of the analysed studies construction parameters and physical properties were not defined precisely. The conducted overview indicates the necessity for more comprehensive and more accurate data regarding reinforced ice construction, applied methods, and processes, and preparation of ice composites in general.
Go to article

Authors and Affiliations

Jelena Bosnjak
1
Natalia Bodrozic Coko
1
Miso Jurcevic
1
Branko Klarin
1
Sandro Nizetic
1

  1. University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
Download PDF Download RIS Download Bibtex

Abstract

Recently, textile reinforced concrete (TRC) has been intensively studied for strengthening reinforced concrete (RC) and masonry structures. This study is to experimentally explore the effectiveness of application of carbon TRC to strengthen RC beam in flexure and shear. Concerning the cracks formation, failure modes, ultimate strength and overall stiffness, the performance of the strengthened beams compared to the control beams were evaluated from two groups of tests. The test results confirm that the TRC layers significantly enhance both shear and flexural capacity of RC beams in cracking, yielding and ultimate loads. All of the tested specimens were also modelled using ABAQUS/CAE software, in order to validate the experimental results. The numerical results show that the simulation models have good adaptability and high accuracy.

Go to article

Authors and Affiliations

Cuong Huy Nguyen
Quang Dang Ngo
Download PDF Download RIS Download Bibtex

Abstract

Development of the transport infrastructure in Poland has contributed to the implementation of various technologies of construction of bridges and their components. Use of reinforced soil for construction of embankments, retaining structures (RSS walls) and abutments is one of the solutions which has been frequently used for the past twenty years. Shortly after its development, the technology proposed by Henri Vidal in 1966 also gained appreciation in Poland [4]. Reinforced soil bridge abutments started to be widely used in Poland at the turn of the 20th century. The bridge facilities at the junction of Trasa Siekierkowska route and Wał Miedzeszyński Street in Warsaw, which were built in the years 2000÷2002, are an example of structures from that period. The authors of this paper have been particularly interested in the outermost supports of the reinforced concrete flyovers which were constructed in the form of intermediate reinforced soil abutments. Offsets – the vertical displacements, in the range of 15÷25mm, emerging between the level of the road surface and the steel elements of the expansion joints which separate the flyover’s structure from the embankment – were observed in 2015, in the course of regular inspections. While accounting for the observations which have been made, the surveying measurements and the ground investigation, the paper diagnoses and describes the mechanism which led to the emergence of the offsets. Potential patterns of the occurrence of additional settlements, as the reason for emergence of the offsets, were identified and analyzed. The settlement of the outermost support (abutment), as a result of increase of relative density of alluvial sands due to the dynamic interaction of the roadways of Wał Miedzeszyński Street, was analyzed. Analytical and numeric approaches were used in the course of analysis while relying on PLAXIS and MIDAS software.

Go to article

Authors and Affiliations

M. Bukowski
P. Łysiak
R. Oleszek
W. Trochymiak
Download PDF Download RIS Download Bibtex

Abstract

In the present paper tensile stresses perpendicular to the grain in reinforced double-tapered beams made of glued laminated timber are discussed. The beams are analysed using the finite element method within the linear elasticity theory with the influence of orthotropic material properties. The main objective is to assess the influence of transverse reinforcement on the values and distributions of the analysed stresses and to identify the most efficient scheme of reinforcement. The obtained results prove that, with the use of the proposed tools, it is possible to assess the level of stress, including delaminating stress, and to indicate the areas of occurrence of such stress with high precision.

Go to article

Authors and Affiliations

A. Al Sabouni-Zawadzka
W. Gilewski
J. Pełczyński

This page uses 'cookies'. Learn more