Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of experiments on a detection system used for detecting signals from a miniature, low-energy micro-electro-mechanical system (MEMS) X-ray source. The authors propose to use a detection based on luminescence phenomena occurring in luminophore and scintillators to record the visual signal on a CMOS/CCD detector. The main part of the article is a review of various materials of scintillators and luminophores which would be adequate to convert low-energy X-ray radiation (E < 25 keV – it is a range not typical for conventional X-ray systems) to visible light. Measurements obtained for different energies, exposure times, and different targets have been presented and analysed.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technologyul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

We present spectral emission characteristics from laser-plasma EUV/SXR sources produced by irradiation of < 1 J energy laser pulse on eleven different double stream gas puff targets, with most intense electronic transitions identified in the spectral range from 1 nm to 70 nm wavelength which corresponds to photon energy from 18 eV to 1240 eV. The spectra were obtained using grazing incidence and transmission spectro- graphs from laser-produced plasma emission, formed by the interaction of a laser beam with a double stream gas puff target. Laser pulses with a duration of 4 ns and energy of 650 mJ were used for the experiment. We present the results obtained from three different spectrometers in the wavelength ranges of SXR (1–5.5 nm), SXR/EUV (4–15.5 nm), and EUV (10–70 nm). In this paper, detailed information about the source, gas targets under investigation, the experimental setup, spectral measurements and the results are presented and discussed. Such data may be useful for the identification of adequate spectral emissions from gasses in the EUV and SXR wavelength ranges dedicated to various experiments (i.e. broadband emission for the X-ray coherence tomography XCT) or may be used for verification of magnetohydrodynamic plasma codes.

Go to article

Authors and Affiliations

Antony Jose Arikkatt
Przemysław Wachulak
Henryk Fiedorowicz
Andrzej Bartnik
Joanna Czwartos
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview and a classification of X-ray detection methods. The main motivation for its preparation was the need to select a suitable and useful method for detecting signals from a currently developed miniature micro-electro-mechanical system (MEMS) X-ray source. The described methods were divided into passive and active ones, among which can be distinguished: chemical, luminescent, thermo-luminescent, gas ionization, semiconductor, and calorimetric methods. The advantages and drawbacks of each method were underlined, as well as their usefulness for the characterisation of the miniature MEMS X-ray source.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

La0,7Ca0,3MnO3 polycrystalline were synthesized from La2O3, CaO and MnO2 powder mixture using a solid state reaction technique. The compound powders were obtained through the free sintering method at different temperatures and sintering times in order to study the influence of technological conditions on Ca doped La manganites. The most important physical features as structure, microstructure and morphology were described after X-ray diffraction investigation. Photographs of the specimen fractures were taken with SEM (scanning electron microscope) and they revealed high porosity of the tested material and great tendency for its grains to create agglomerates. Influence of doping and technological conditions on lattice parameters were studied by means of Rietvield analysis. The XRD measurements reveal that La0,7Ca0,3MnO3 has orthorhombic symmetry with Pnma space group.

Go to article

Authors and Affiliations

M. Bara
J. Dzik
ORCID: ORCID
K. Feliksik
L. Kozielski
B. Wodecka-Duś
ORCID: ORCID
T. Goryczka
ORCID: ORCID
A. Zarycka
M. Adamczyk-Habrajska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The perovskite type matrix is considered as solidification material for high-level radioactive waste. In this work the perovskite-rutile-type matrix doped by Co, Cs, Nd and Sr which simulate nuclear waste was prepared by sol-gel route. The material was characterized by several methods such as: X-ray diffraction, energy dispersive X-ray spectrometer, and particle induced X-ray emission combined with Rutherford backscattering spectrometry. The analyzes confirmed chemical composition Co-Cs-Nd-Sr- doped perovskite-rutile-type structure. A virtual model of the pellet`s structure was created non-destructively by Roentgen computed micro-tomography. The leaching tests confirmed high chemical resistance of the matrix.

Go to article

Authors and Affiliations

T. Smolinski
L. Zhao
M. Rogowski
D. Wawszczak
T. Olczak
M. Brykala
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a study to determine the influence of casting parameters (cooling rate in the casting mould, casting temperature) on the primary structure of Mg-4%Li-1%Ca alloy ingots. The macro- and microstructure analysis of the Mg-4%Li-1%Ca alloy was performed using light and electron microscopy techniques. Microhardness measurements were made for the Mg-4%Li-1%Ca alloy and phase identification in the Mg-4%Li-1%Ca alloy was made using X-ray phase analysis.
Go to article

Bibliography

[1] Białobrzeski, A.& Saja, K. (2011). Experimental stand for melting and casting of ultralight Mg-Li alloys. Archives of Foundry Engineering. 11(3), 17-20.
[2] Bednarczyk, I., Kuc, D. & Mikuszewski, T.(2016). Microstructure and properties of Mg-Li-Re magnesium alloys.Hutnik-WH, 83(8), 321-323. (in Polish).
[3] Bin J. Heng-mei, Y. Rui-hong, L. & Liang, G. (2010). Grain refinement and plastic formability of Mg-14Li-1Al alloy.Transactions of Nonferrous Metals Society of China. 1, 503-507. DOI: 10.1016/s1003-6326(10)60527-4.
[4] Liu, X., Zhan, H., Gu, S., Qu, Z., Wu, R. & Zhang, M. (2011).Superplasticity in a two-phase Mg– 8Li–2Zn alloy processed by two-pass extrusion. Materials Science and Engineering A. 528(19-20), 6157-6162. https://doi.org/10.1016/j.msea.2011.04.073.
[5] Białobrzeski, A., Lech-Grega, M.& Żelechowski, J. (2010). Research on the structure of alloys based on magnesium and lithium with a two-phase α-β and single-phase ß structure.Prace Instytutu Odlewnictwa. L, 17-28. (in Polish).
[6] Zhou, Y., Bian, L., Chen, G. Wang, L. & Liang, W. (2015). Influence of Ca addition on microstructular evolution and mechanical properties of near-eutectic Mg-Li alloys by copper-mold suction casting. Journal of Alloys and Compounds. 664. 85-91. DOI:10.1016/j.jallcom.2015.12.198.
[7] Białobrzeski, A., Saja, K. & Hubner, K. (2007) Ultralightmagnesium-lithiumalloys. Archives of Foundry Engineering. 7(3), 11-16. ISSN(1897-3310).
[8] Jiang, B., Qiu, D., Zhang, M., Ding, P.& Gao, L. (2010). A new approach to grain refinement of an Mg-Li-Al cast alloy. Journal of Alloys and Compounds. 10(1-2), 96-98. DOI:10.1016/j.jallcom.2009.11.066.
[9] Grobner, J., Schmid-Fetzer, R., Pisch, A., Colinet, C., Pavlyuk, V.V., Dmytriv, G.S., Kevorkov, D.G. & Bodak, O.I. (2002). Phase equilibria, calorimetric study and thermodynamic modeling of Mg-Li-Ca alloys. Thermochimica Acta. 389(1-2), 85-94. DOI:10.1016/S0040-6031(01)00842-5.
[10] Song, G.S. &Kral, M.V. (2005) Characterization of cast Mg-Li-Ca alloys. Materials Characterization. (54)4-5, 279-286. DOI: 10.1016/j.matchar.2004.12.001.
[11] Cui, L. Sun, L.R., Zheng, Y. &Li, S. (2018). In vitro degradation and biocompatibility of Mg-Li-Ca alloys – the influence of Li content. Science China Materials, 61(4), 607-618.
[12] Zeng, R.C. Qi, W.C. & Cui, H.Z. (2015). In vitro corrosion of as-extruded Mg-Ca alloys – the influence of Ca concentration. Corrosion Science. 96. 23-31. DOI:10.1016/j.corsci.2015.03.018.
[13] Chang, T., Wang, J., Chu, Ch., Lee, S (2006). Mechanical properties and microstructures of various Mg–Li alloys.Materials Letters.60(27), 3272-3276. DOI 10.1016/j.matlet.2006.03.052.
[14] Li, T., Wu, S.D. Li, S.X. &Li, P.J. (2007).Microstructure evolution of Mg–14% Li–1% Al. alloy during the process of equal channel angular pressing.Materials Science and Engineering A. 460-461, 499-503.DOI10.1016/j.msea.2007.01.108.
[15] Jiang, B., Qiu, D., Zhang, M., Ding, P., Gao, L. (2010). A new approach to grain refinement of an Mg-Li-Al cast alloy. Journal of Alloys and Compounds.492(1-2), 95-98. DOI: 10.1016/j.jallcom.2009.11.066.
[16] Cui, L., Sun, L., Zeng, R., Zheng, Y., Li, S. (2017). In vitro degradation and biocompatibility of, Mg-Li-Ca alloys – the influence of Li content. Science China Materials 7/08, 1-12, DOI: 10.1007/s40843-017-9071-y.
[17] Gierek, A., Mikuszewski, T. (1998). Shaping the primary structure of metals and alloys.Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).
[18] Adamski, C., Piwowarczyk, T. (1999).Metallurgy and foundry of non-ferrous metals. Aluminum and magnesium alloys. Kraków: Skrypt AGH nr 1117.
Go to article

Authors and Affiliations

Iwona Bednarczyk
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Materials Technology, 40-019 Katowice ul. Krasińskiego 8, Poland
Download PDF Download RIS Download Bibtex

Abstract

An attempt was made to determine phase composition of commercial aluminium alloys using X-ray diffraction. Samples for phase composition analysis were selected from the group of aluminium alloys covered by the EN 573-3:2013 standard [1]. Representative samples were taken from eight groups of alloys with different chemical composition (at least one sample from each group). The diffraction intensity was measured with a standard X-ray diffractometer in Bragg-Brentano geometry in a way that allowed identification of the weakest diffraction peaks. As a results of the performed research it has been shown that X-ray phase analysis can be used to identify the matrix of aluminium alloys, Si and crystalline intermetallic phases such as Mg2Si, Al93.38Cu6.02Fe24Si16.27, Al4.01MnSi0.74, MgZn2, Al17(Fe3.2Mn0.8)Si2, Al65Cu20Fe15, and Cu3Mn2Al. The detectability limit of the above-mentioned phases is better than 0.5%. The research has also shown that X-ray phase analysis is applicable in the investigation of phase transformations taking place in aluminium alloys.

Go to article

Authors and Affiliations

K. Pachut
J. Żelechowski
S. Boczkal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to investigate the effect of partial substitution of Mn by Nb on structure and thermomagnetic properties in the (Mn, Nb)-Co-Ge alloy. The master alloys were prepared by arc-melting in an arc furnace with high purity of constituent elements under a low pressure of Ar. The prepared specimens were studied in as-cast state. The X-ray was performed by BRUKER D8 Advance diffractrometer with Cu Kα radiation. The analysis of the XRD pattern revealed coexistence of two orthorhombic phases with different lattice constants. The analysis of the temperature dependence of magnetizaton confirmed the XRD results and showed that produced material manifested two magnetic phase transitions corresponding to detected phases. The values of the Curie temperature were 275 and 325 K. The values of magnetic entropy change ∆SM equaled 3.30 and 2.13 J/(kg K), respectively for recognized phases. Biphase structure of produced material allowed to reach relatively high refigeration capacity 307 J/(kg). Moreover, the analysis of field dependences of magnetic entropy change (∆SM = CBn) allowed to construct temperature dependence of exponent n. The analysis of elaborated n vs. T curve confirmed biphasic structure of produced material.
Go to article

Authors and Affiliations

K. Kutynia
1
ORCID: ORCID
P. Gębara
1
ORCID: ORCID
A. Przybył
1
ORCID: ORCID

  1. Czestochowa University of Technology, Institute of Physics, 19 Armii Krajowej Av., 42-200, Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Crystal structure and phase composition of stainless steel substrates (AISI 304 type) was studied and it was found that they adopted the cubic symmetry. The calculated elementary cell parameter for the mayor Fe-Ni phase (weight fraction 99%) was a = 3.593 Å, whereas the mean grain size was <D> = 2932 Å. Morphology of the stainless steel substrate surface was studied with profilometry. Mechanical properties of the stainless steel substrates and stainless steel substrates coated with ceramic layer of barium strontium titanate were studied with microhardness tester. For measurements performed according to the Vickers method the average microhardness was found HV = 189 or HV = 186 for the “in-line” and “mapping” measurement pattern, respectively. The sol-gel method was used to coat the surface of the stainless steel substrate with a thin ceramic layer of the chemical composition Ba0.6Sr0.4TiO3. It was found that the stainless steel substrate covered with sol-gel deposited ceramic coating exhibited the average hardness within the range HV = 217 up to HV = 235 for loading force F = 98 mN and F = 0.98 N, respectively. The Knopp method was also used and it was found that the stainless steel substrate with Ba0.6Sr0.4TiO3 coating exhibited hardness HK = 386.

Go to article

Authors and Affiliations

D. Czekaj
A. Lisińska-Czekaj
K. Krzysztofowicz
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, two multicomponent Cr 25Z 25Co 20Mo 15Si 10Y 5 and Cr 25Co 25Zr 20Mo 15Si 10Y 5 alloys were produced from bulk chemical elements using the vacuum arc melting technique. X-ray diffraction phase analysis was used to determine the phase composition of the obtained materials. Microstructure analysis included scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The studies revealed the presence of multi-phase structures in both alloys. Elemental distribution maps confirmed the presence of all six alloying elements in the microstructure. The segregation of chemical elements was also observed. Microhardness measurement revealed that both alloys exhibited microhardness from 832(27) to 933(22) HV1.
Go to article

Authors and Affiliations

K. Glowka
1
ORCID: ORCID
M. Zubko
1
ORCID: ORCID
K. Piotrowski
1
ORCID: ORCID
P. Świec
1
ORCID: ORCID
K. Prusik
1
ORCID: ORCID
R. Albrecht
1
ORCID: ORCID
D. Stróż
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Structural biology is concerned with the three-dimensional atomic structure of the molecules of life, proteins and nucleic acids. It was born in mid-1950s with a visionary application of X-ray diffraction to structure determination of protein crystals, and for several decades “structural biology” and “protein crystallography” were synonymous. In the 1980s structural biology received new experimental support from NMR spectroscopy, but a true breakthrough occurred only recently, with the development of atomic-resolution cryo-electron microscopy (cryo- EM), enabling direct visualization of macromolecular objects without the need of growing crystals. The Protein Data Bank (PDB) was created in 1971 with merely seven protein structures known. In mid-1990s the PDB entered an explosive growth phase, ignited by advances of biotechnological methods of protein production and, even more importantly, by widespread use of synchrotrons as extremely powerful X-ray sources. The technological advances did not stop there, and today we have on offer ever more powerful X-ray Free Electron Lasers (XFELs), producing astronomically bright femtosecond X-ray pulses, which allow studying the structure of nanometer-sized crystals or even of single macromolecules. Thanks to all those methodological developments, the PDB holds today over 210,000 experimental macromolecular structures, many of which (such as those related to HIV or SARS-CoV-2) have fundamental importance for medicine as targets for rational drug design. In addition to innovative experimental methodology, structural biology has recently seen a huge progress of artificial intelligence (AI)-based methods of protein structure prediction, capable now of quite accurate divination of the three-dimensional structure for billions of protein sequences in very short time. However, those machine-learning algorithms, such as AlphaFold, recognize patterns that have been seen before, while for truly new sequences and for oligomeric proteins the prediction is still less than certain and needs experimental validation. It appears then that experimental structural biology is not quite dead yet and will remain the main source of reliable novel structural information for the foreseeable future.
Go to article

Authors and Affiliations

Mariusz Jaskólski
1 2
ORCID: ORCID

  1. Zakład Krystalografii, Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu
  2. Instytut Chemii Bioorganicznej PAN w Poznaniu
Download PDF Download RIS Download Bibtex

Abstract

Opal can be found in several locations, including America, Tanzania, Brazil, Mexico, East Africa, Indonesia and Australia, which is now the world’s top producer of black opal. One of the most economically valuable gems in the world is the mineraloid opal. In the Rongkong area, opal is found in the host rock of volcanic igneous rock, namely andesite. This study aims to determine the opal mineraloid host-rock’s microstructural characteristics and the elemental and compound content of the opal mineraloid host-rock’s geochemistry in the Rongkong area, Indonesia. The research took three samples in the field as large as hand specimens. The three samples were one host-rock sample and two opal mineraloid samples; the samples were then prepared and analyzed in the laboratory. Laboratory analysis was performed using SEM-EDS, XRF and petrographic analyses. The results of the SEM-EDS test analysis showed that most opal mineraloid carrier rock constituents are aluminum and oxide. This can be seen from the substantial Al and O content. In samples 1 and 2, Al, O, Ca and P with the highest composition of chemical compounds are Al2O3, CaO, and P2O5. The Rongkong opal mineraloid from Limbong Village, Rongkong District, North Luwu Regency, South Sulawesi, based on the results of XRF analysis, contains the chemical compounds SiO2, Al2O3, K2O, Fe2O3, CaO, TiO2, RuO2, SrO, MnO, V2O5, Rb2O, Ag2O and CuO. The content compound that is more dominant in opal mineraloids is SiO2 due to silicate enrichment in the forming of opal mineraloids.
Go to article

Authors and Affiliations

Alam B. Thamsi
1
ORCID: ORCID
Agus A. Budiman
1
Emi P. Umar
1
Harwan Harwan
1

  1. Universitas Muslim Indonesia, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The composition and structural modification of aluminium alloys influence their strength, tribological properties and structural stability. The phase composition of the structure as well as the characteristics of the elementary cell of each identified phase was established by X-ray diffraction, and the main objective was to determine the compositional phases, microstructure and microcomposition of the alloy. Based on the cyclic voltammograms it can be said that on the OCP interval (+1.5 V… –1.1 V), after the breakthrough potential is an intensification of the anodic process by the pronounced increase of the current density, in these conditions the Al-Si alloy has low values which means that it has a better corrosion resistance.
Go to article

Authors and Affiliations

M.G. Minciuna
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
B. Jeż
3
ORCID: ORCID
A.V. Sandu
1 2
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
D.C. Achitei
1 2
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Blvd. Mangeron, No. 51, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  3. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Short-period 10 monolayers InAs/10ML GaSb type-II superlattices have been deposited on a highly lattice-mismatched GaAs (001), 2° offcut towards <110> substrates by molecular beam epitaxy. This superlattice was designed for detection in the mid-wave infrared spectral region (cut-off wavelength, λcut-off = 5.4 µm at 300 K). The growth was performed at relatively low temperatures. The InAs/GaSb superlattices were grown on a GaSb buffer layer by an interfacial misfit array in order to relieve the strain due to the ~7.6% lattice-mismatch between the GaAs substrate and type-II superlattices. The X-ray characterisation reveals a good crystalline quality exhibiting full width at half maximum ~100 arcsec of the zero-order peak. Besides, the grown samples have been found to exhibit a change in the conductivity.
Go to article

Authors and Affiliations

Piotr Martyniuk
1
ORCID: ORCID
Djalal Benyahi
2
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Laboratoire des Systèmes Lasers, École Militaire Polytechnique, BP 17 Bordj El Bahri, 16111 Algiers, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The Ag8SnSe6 argyrodite compound was synthesized by the direct melting of the elementary Ag, Sn and Se high purity grade stoichiometric mixture in a sealed silica ampoule. The prepared polycrystalline material was characterized by the X-ray diffraction (XRD), visible (VIS) and near-infrared (NIR) reflection and photoluminescence (PL) spectroscopy. XRD showed that the Ag8SnSe6 crystallizes in orthorhombic structure, Pmn21 space group with lattice parameters: а = 7.89052(6) Å, b = 7.78976(6) Å, c = 11.02717(8) Å. Photoluminescence spectra of the Ag8SnSe6 polycrystalline wafer show two bands at 1675 nm and 1460 nm. Absorption edge position estimated from optical reflectance spectra is located in the 1413–1540 nm wavelength range.

Go to article

Authors and Affiliations

Ihor Semkiv
Hryhoriy Ilchuk
Marek Pawlowski
Viktor Kusnezh
Download PDF Download RIS Download Bibtex

Abstract

This study presents the determination of the content of selected metals (Ba, Ca, Fe, Nb, Rb, Sr, Y, Zn, and Zr) in postglacial deposits from two glacial valleys (Ebbadalen and Elsadalen) in the Petunia Bay (southern Spitsbergen). The aim of the research was to experimentally check the usefulness of the handheld energy dispersive X-ray fluorescence technique in the study of samples from the polar zone, before performing the future field tests. Deposit analyses were performed (in parallel) with two handheld X-ray fluorescence spectrometers from different manufacturers, to investigate the accuracy and reliability of the instruments. The statistical analysis of the results indicated that the measurements carried out with two spectrometers were statistically significantly different, which was probably due to the different calibration characteristics used by the manufacturers. However, the analysis of the spatial distribution of element concentrations using Geographic Information System tools showed that the distribution maps of elements concentrations were similar regardless of the spectrometer used in the analyses.
Go to article

Authors and Affiliations

Lidia Kozak
1
Juliana Silva Souza
1
Adam Nawrot
2
Jędrzej Proch
1
Marcin Kaźmierski
3
Agnieszka Zawieja
4
Przemysław Niedzielski
1

  1. Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Analytical Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  2. Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa, Poland
  3. Adam Mickiewicz University in Poznań, Faculty of Geographical and Geological Sciences, Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
  4. MEWO S.A., Starogardzka 16, 83-010 Straszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The iconic discovery in 1912 of X-ray diffraction by crystals has revolutionized physics, chemistry, biology, and ultimately also life sciences, by providing a powerful method for structural characterization of drugs and drug targets used in molecular medicine. The first X-ray diffraction was recorded by an assistant (Walter Friedrich) and PhD student (Paul Knipping) under the instruction of a theoretician Max (later von) Laue, who two years later was the sole recipient of a Nobel Prize (with the award ceremony in 1920) awarded for this discovery. The experimental setup, now on display in Deutsches Museum München, is labeled “the original Laue apparatus”, which is doubly incorrect: Laue himself never experimented with it, and it has a number of reconstructed parts due to loss, or even theft in the Museum itself. Also, the “first X-ray diffraction photograph” is enshrouded in a mist of ambiguity. Laue’s Nobel medal was deliberately dissolved in aqua regia to evade identification and confiscation by the Nazis. A replica was minted but it has been lost without a trace. The distorted (embellished) account of this fundamental discovery makes one wonder: is it acceptable to repeat narrations about scientific achievements with some departure from the historical truth? We answer “reluctantly yes”, with the caveat that all possible effort should be expended to rectify the picture. And this article is trying to achieve exactly this, with respect to one discovery in physics.
Go to article

Authors and Affiliations

Kamil F. Dziubek
1
Mariusz Jaskólski
2 3
ORCID: ORCID
Andrzej B. Więckowski
4 5

  1. Europejskie Laboratorium Spektroskopii Nieliniowej LENS, Sesto Fiorentino (Florencja), Włochy
  2. Instytut Chemii Bioorganicznej PAN
  3. Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu
  4. Wydział Fizyki i Astronomii, Uniwersytet Zielonogórski, Zielona Góra
  5. Instytut Fizyki Molekularnej PAN, Poznań
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, but the classification of coal is particularly important. Nevertheless, the current coal and gangue sorting technology mainly focus on the identification of coal and gangue, and no in-depth research has been carried out on the identification of coal species. Accordingly, in order to preliminary screen coal types, this paper proposed a method to predict the coal metamorphic degree while identifying coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 coking coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism degree was developed. Based on the results, it is shown that by embedding the calculation method of coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the purpose of preliminary screening of coal types. As such, the method provides a new way of thinking and theoretical reference for coal and gangue identification.
Go to article

Authors and Affiliations

Yanqiu Zhao
1
ORCID: ORCID
Shuang Wang
1
Yongcun Guo
1
Gang Cheng
1
Lei He
1
Wenshan Wang
1

  1. School of Mechanical Engineering, Anhui University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.

Go to article

Authors and Affiliations

P.M. Nuckowski
M. Kondracki
T. Wróbel
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the lead-free BaTi1-xZrxO3 (for x = 0, 0.05 and 0.15) ceramics were prepared by High-Energy Ball Milling and heat treatments. The performed X-ray, SEM and EDS measurements confirmed high purity, good quality and the expected quantitative composition of the obtained samples. The study of dielectric properties was performed by means of broadband dielectric spectroscopy at the frequency ranging from 0.1 Hz to 10 MHz. The obtained measurement data, analyzed in accordance with the Arrhenius formalism demonstrated the presence of relaxation type dielectric mechanisms. The impedance answer of studied ceramic materials indicated the presence of two relaxation processes: one with a dominant resistive component and the other with a small capacitive component. The observed dielectric relaxation process is temperature dependent and has a “non-Debye” character.

Go to article

Authors and Affiliations

B. Garbarz-Glos
W. Bąk
A. Budziak
P. Dulian
A. Lisińka-Czekaj
D. Czekaj
Download PDF Download RIS Download Bibtex

Abstract

Goal of the present research was to apply a solid state reaction route to fabricate bismuth layer-structured multiferroic ceramics described with the formula Bi5FeTi3O15 and reveal the influence of processing conditions on its crystal structure and phase composition. Simple oxide powders Bi2O3, TiO2 and Fe2O3 were used to fabricate Aurivillius-type bismuth layer-structured ferroelectrics. Pressureless sintering in ambient air was employed and the sintering temperature was TS = 900°C, TS = 1000°C and TS = 1040°C. The phase composition as well as crystal structure of ceramics sintered at various processing conditions was examined with powder X-ray diffraction method at room temperature. The Rietveld refinement method was applied for analysis of X-ray diffraction data. It was found that ceramics adopted orthorhombic structure Cmc21. The unit cell parameters of bismuth layer-structured multiferroic ceramics increased slightly with an increase in sintering temperature.

Go to article

Authors and Affiliations

A. Lisińska-Czekaj
D. Czekaj
B. Garbarz-Glos
W. Bąk
I. Kuźniarska-Biernacka
Download PDF Download RIS Download Bibtex

Abstract

The paper describes modification to Fm3–m (space group no. 225) lattice of aluminium based α-solid solution observed in Zn-Al alloys required to properly correlate quantitative data from X-ray diffraction analysis with results obtained from quantitative scanning electron microscopy image analysis and those predicted from Zn-Al binary phase diagram. Results suggests that 14 at.% of Zn as a solute atom should be introduced in crystal lattice of aluminium to obtain correct estimation of phase quantities determined by quantitative X-ray diffraction analysis. It was shown that this modification holds for Cu mould cast as well as annealed and water-cooled samples of Zn-3wt.%. Al and Zn-5wt.% Al.

Go to article

Authors and Affiliations

P. Gogola
Z. Gabalcová
H. Suchánek
M. Babinec
M. Bonek
M. Kusý
Download PDF Download RIS Download Bibtex

Abstract

Present study introduces effect of forge application and elimination on microstructural and mechanical properties of AISI 316 during friction welding. Temperature measurements, microstructure, micro-hardness, tensile test, scanning electron microscopy and X-ray diffraction were evaluated. Maximum temperature recorded was 819°C while forge was applied between 357°C-237°C. Thermo-mechanically affected zone and highly plastically deformed zone were created at the interface at elimination and application of forge respectively. Ultimate tensile strength decreased and ductility increased when forge elimination compared to forge application. Tensile fracture was occurred adjacent to the welding interface for both cases, though, after forge application, ductile fracture mode and cleavage features through the fingerprints were observed in the fracture morphology. Redistribution and concentration of gamma iron in 111 level after forge application and heat treated of AISI 316.
Go to article

Authors and Affiliations

A. Jabbar Hassan
1
T. Boukharouba
1
D. Miroud
2

  1. Houari Boumediene University of Sciences and Technology (USTHB), Advanced Mechanic Laboratory (LMA), BP. 32, El-Alia, 16111 Bab-Ezzoaur, Algiers-Algeria
  2. Houari Boumediene University of Sciences and Technology (USTHB), Materials Science and Process Engineering Laboratory (LSGM), BP. 32, El-Alia,16111 Bab-Ezzoaur, Algiers-Algeria
Download PDF Download RIS Download Bibtex

Abstract

Predicting the permeability of different regions of foundry cores and molds with complex geometries will help control the regional outgassing, enabling better defect prediction in castings. In this work, foundry cores prepared with different bulk properties were characterized using X-ray microtomography, and the obtained images were analyzed to study all relevant grain and pore parameters, including but not limited to the specific surface area, specific internal volume, and tortuosity. The obtained microstructural parameters were incorporated into prevalent models used to predict the fluid flow through porous media, and their accuracy is compared with respect to experimentally measured permeability. The original Kozeny model was identified as the most suitable model to predict the permeability of sand molds. Although the model predicts permeability well, the input parameters are laborious to measure. Hence, a methodology for replacing the pore diameter and tortuosity with simple process parameters is proposed. This modified version of the original Kozeny model helps predict permeability of foundry molds and cores at different regions resulting in better defect prediction and eventual scrap reduction.
Go to article

Bibliography

[1] Jorstad, J., Krusiak, M.B., Serra, J.O., La Fay, V. (2018). Aggregates and binders for expendable molds. Casting. 528-548. https://doi.org/10.31399/asm.hb.v15.a0005242.
[2] Campbell, J., Svidró, J.T. & Svidró, J. (2017). Molding and Casting Processes. In Doru M. Stefanescu (Eds.), Cast Iron Science and Technology (pp. 189-206). ASM International. https://doi.org/10.31399/asm.hb.v01a.a0006297.
[3] Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. & Günther, J. (2014). 3D printing of inorganic sand moulds for casting applications. Advanced Materials Research. 1018, 441-449. https://doi.org/10.4028/www.scientific.net/AMR.1018.441.
[4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73. https://doi.org/10.7494/ jcme.2017.1.3.70.
[5] Lannutti, J.J., Mobley, C.E. (2003). Improvements in Sand Mold/Core Technology: Effects on Casting Finish. Final Technical Report, The Ohio State University, Columbus, OH.
[6] Korotchenko, A.Y., Khilkov, D.E., Khilkova, A.A. & Tverskoy, M.V. (2020). Improving the quality of production of sand core on core shooting machines. Materials Science Forum. 989, 589-594. https://doi.org/10.4028/www.scientific.net/MSF.989.589.
[7] Winartomo, B., Vroomen, U., Bührig-Polaczek, A. & Pelzer, M. (2005). Multiphase modelling of core shooting process. International Journal of Cast Meterials Research. 18(1), 13-20. https://doi.org/10.1179/136404605225022811.
[8] Thorborg, J., Wendling, J., Klinkhammer, J., Heitzer, M. (2023). Modelling hot distortion of inorganic bonded sand cores and application on complex 3D printed automotive cores, IOP Conference Series: Materials Science and Engineering. 1281(1), 012069. https://doi.org/10.1088/1757-899x/1281/1/012069.
[9] Muskat, M. (1937). The flow of fluids through porous media, Journal of Applied Physics. 8(4), 274-282. https://doi.org/10.1063/1.1710292.
[10] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0.
[11] Marks, B., Sandnes, B., Dumazer, G., Eriksen, J.A. Måløy, K.J. (2015). Compaction of granular material inside confined geometries, Frontiers in Physics. 3, 1-9. https://doi.org/10.3389/fphy.2015.00041.
[12] Bargaoui, B., Azzouz, F., Thibault, D. & Cailletaud, G. (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of Materials Processing Technology. 246, 30-41. https://doi.org/10.1016/j.jmatprotec. 2017.03.002.
[13] Mitra, S., EL Mansori, M., Rodríguez de Castro, A. & Costin, M. (2020). Study of the evolution of transport properties induced by additive processing sand mold using X-ray computed tomography. Journal of Materials Processing Technology. 277 116495. https://doi.org/10.1016/ j.jmatprotec.2019.116495.
[14] Ettemeyer, F., Lechner, P., Hofmann, T., Andrä, H., Schneider, M., Grund, D., Volk, W. & Günther, D. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. Internatiol Journal of Solids Structures. 188-189, 155-168. https://doi.org/10.1016/j.ijsolstr.2019.09.014.
[15] Neithalath, N., Sumanasooriya, M.S. & Deo, O. (2010). Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization 61(8), 802-813. https://doi.org/10.1016/j.matchar.2010.05.004.
[16] Das, S., Stone, D., Convey, D. & Neithalath, N. (2014). Pore- and micro-structural characterization of a novel structural binder based on iron carbonation, Materials Characterization. 98, 168-179. https://doi.org/10.1016/j.matchar.2014.10.025.
[17] Landis, E.N. & Keane, D.T. (2010). X-ray microtomography. Materials Characterization. 61(12), 1305-1316. https://doi.org/10.1016/j.matchar.2010.09.012. [18] Scheidegger, A.E.. (1957). The physics of flow through porous media. University of Toronto press.
[19] H. Darcy. (1856). Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris.
[20] da Silva, M.T.Q.S., do Rocio Cardoso, M., Veronese, C.M.P. & Mazer, W. (2022). Tortuosity: A brief review. Materials Today: Proceedings. 58(4), 1344-1349. https://doi.org/10.1016/j.matpr.2022.02.228.
[21] Kadhim, F.S., Samsuri, A. & Kamal, A. (2013). A review in correlations between cementation factor and carbonate rocks properties. Life Science Journal. 10(4), 2451-2458.
[22] Nield, D.A., Bejan, A. (2012). Convection in porous media: Springer Fourth edition. https://doi.org/10.1007/978-1-4614-5541-7.
[23] Costa, A. (2006). Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters. 33(2), 1-5. https://doi.org/10.1029/2005GL025134.
[24] Slichter, C.S. (1899). Theoretical investigation of the motion of ground waters. Geological Survey (U.S.). Ground Water Branch.
[25] Leibenzon, L.S. (1947). Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede. In The Motion of Natural Liquids and Gases in a Porous Medium. Gostekhizdat, Moscow.
[26] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2021). On the relation between the gas-permeability and the pore characteristics of furan sand. Materials. 14(14), 3803, 1-14. https://doi.org/10.3390/ma14143803.
[27] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2022). A novel approach to quantifying the effect of the density of sand cores on their gas permeability. Joranl of Casting & Materials Engineering. 6(2), 33-38. https://doi.org/10.7494/jcme.2022.6.2.33.
[28] Costanza-Robinson, M.S. Estabrook, B.D. & Fouhey, D.F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Reserch. 47(7), 1-12. https://doi.org/10.1029/2010WR009655.
[29] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682. https://doi.org/10.1038/nmeth.2019.
[30] Grace, J.R., Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology. 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006.
[31] Vincent, L., Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence. 13(06), 583-598. https://doi.org/10.1109/34.87344.
[32] Domander, R. Felder, A.A., Doube, M., Schmidt, D. (2021). BoneJ2 - refactoring established research software. Wellcome Open Research. 6, 1–21.
[33] Dougherty, R., Kunzelmann, K.-H. (2007). Computing Local Thickness of 3D Structures with ImageJ. Microscopy Microanalysis. 13(S02), 1678-1679. https://doi.org/10.1017/ s1431927607074430.
[34] Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. (2010). Open Access SOFTWARE A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics. 11, 274, 1-7. http://www.biomedcentral.com /1471-2105/11/274.
[35] Nimmo, J.R. (2004). Porosity and Pore Size Distribution. In Hillel, D.(Eds.), Encyclopedia of Soils in the Environment. London, Elsevier,.
[36] Glover, P.W.J., Walker, E. (2009). Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics. 74(1), E17-E29. https://doi.org/10.1190/ 1.3033217.
[37] Graton, L.C. & Fraser, H.J. (1935). Systematic Packing of spheres: with particular relation to porosity and permeability. The Journal of Geology. 43(8), 1, 785-909. http://www.jstor.org/stable/30058420.
[38] Holzer, L., Marmet, P., Fingerle, M., Wiegmann, A., Neumann, M., Schmidt, V. (2023). Tortuosity and microstructure effects in porous media. Springer Cham. https://doi.org/10.1007/978-3-031-30477-4.
Go to article

Authors and Affiliations

D. Sundaram
1
ORCID: ORCID
T. Matsushita
1
ORCID: ORCID
I. Belov
1
A. Diószegi
1
ORCID: ORCID

  1. School of Engineering, Jönköping University, Sweden

This page uses 'cookies'. Learn more