Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

Go to article

Authors and Affiliations

Abhinandan Jain
Calvin Kuo
Paramsothy Jayakumar
Jonathan Cameron
Download PDF Download RIS Download Bibtex

Abstract

The article aims at the explanation of some distributional peculiarities of two high unrounded vowels [i] and [È] in Russian. More generally, it looks at some phonotactic constraints of Russian vowels which are directly related to a broader topic of palatalization and vowel reduction in this language. Although the discussion in this paper concerns only a tiny section of Russian phonology, which is the distribution of high unrounded vowels, it is necessary to introduce several facts from Russian phonology, such as palatalization, velarization, stress and vowel reduction. They, at first sight, may look pretty much irrelevant to the main topic of the paper but, as it will become evident, are closely related and actually indispensable to the understanding of vowel distribution including the two high unrounded vowels in Russian.

Go to article

Authors and Affiliations

Artur Kijak
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the problem of optimization of the motion mode of the tower crane's slewing mechanism in the steady-state mode of trolley movement is stated and solved. An optimization criterion, which includes the RMS values of the drive torque and the rate of its change over time, is minimized. The optimization is carried out taking into account the drive torque constraints, and under the specified boundary conditions of motion. Three optimization problems at different values of the weight coefficients are solved. In the first problem, priority is given to the drive torque, in the third – to the rate of the drive torque change, and in the second problem, the significance of both components is assumed equal. The optimization problems are nonlinear, thus a VСT-PSO method is applied to solve them. The obtained optimal start-up modes of the crane slewing mechanism eliminate pendulum load oscillations and high-frequency elastic oscillations of the tower. Most of the kinematic, dynamical, and power parameters at different values of the weight coefficients are quite close to each other. It indicates that the optimal modes of motion are significantly influenced by the boundary conditions, optimization parameters, and constraints
Go to article

Bibliography

[1] E.M. Abdel-Rahman, A.H. Nayfeh, and Z.N. Masoud. Dynamics and control of cranes: A review. Journal of Vibration and Control, 9(7):863–908, 2003. doi: 10.1177/1077546303009007007.
[2] S.C. Kang and E. Miranda. Physics based model for simulating the dynamics of tower cranes. In 2004 Proceeding of Xth International Conference on Computing in Civil and Building Engineering (ICCCBE), Weimar, Germany, June 2004. doi: 10.25643/bauhaus-universitaet.240.
[3] T. Kuo, Y-C. Chiang, S-Y. Cheng, and S.-C.J. Kang. Oscillation reduction method for fast crane operation. Modular and Offsite Construction (MOC) Summit Proceedings, pages 388–395, 2015. doi: 10.29173/mocs159.
[4] G. Sun and M. Kleeberger. Dynamic responses of hydraulic mobile crane with consideration of the drive system. Mechanism and Machine Theory. 38(12):1489–1508, 2003. doi: 10.1016/S0094-114X(03)00099-5.
[5] T. Čampara, H. Bukvić, D. Sprečić. Ability to control swinging of payload during the movement of the rotary cranes mechanism. In 4th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems. Kaunas University of Technology Panevezys Institute, pages 52–55, Kaunas. Lithuania, 2009.
[6] V. Loveikin, Yu. Romasevych, A. Loveikin, and M. Korobko. Optimization of the trolley mechanism acceleration during tower crane steady slewing. Archive of Mechanical Engineering, 69(3):411–429, 2022. doi: 10.24425/ame.2022.140424.
[7] I.G. Carmona and J. Colado. Control of a two wired hammerhead tower crane. Nonlinear Dynamics, 84(4):2137–2148, 2016. doi: doi.org/10.1109/AIM.2016.7576860">10.1109/AIM.2016.7576860.
[9] R.P. Gerasymyak and V.A. Leshchev. Analysis and Synthesis of Crane Electromechanical Systems. 2008. (in Russian).
[10] R.P. Gerasymyak and O.V. Naidenko. Features of the control of the electric drive of the boom departure mechanism during the rotation of the crane with a suspended load. Electrical Engineering and Electrical Equipment, 68:11–15, 2007. (in Ukrainian).
[11] Naidenko E.V. Electric drive control of horizontal movement mechanisms with a suspended load. Electric Machine Building and Electric Control, 69:17–22, 2007.
[12] M. Čolić, N. Pervan, M. Delić, A.J. Muminović, S. Odžak, and V. Hadžiabdić. Mathematical modelling of bridge crane dynamics for the time of non-stationary regimes of working hoist mechanism. Archive of Mechanical Engineering, 69(2):189–202, 2022. doi: 10.24425/ame.2022.140415.
[13] S. Chwastek. Optimization of crane mechanism to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[14] V. Loveikin, Yu. Romasevych, A. Loveikin, A. Lyashko,and M. Korobko. Minimization of high frequency oscillations of trolley movement mechanism during steady tower crane slewing. UPB Scientific Bulletin, Series D: Mechanical Engineering, 84(1):31-44, 2022.
[15] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: Design and experiments. IEEE Access, 7: 62142–62151, 2019. doi: 10.1109/ACCESS.2019.2915999.
[16] T.K. Nguyen. Combination of feedback control and spring-damper to reduce the vibration of crane payload. Archive of Mechanical Engineering, 68(2):165–181, 2021. doi: 10.24425/ame.2021.137046.
[17] G. Rigatos, M. Abbaszadeh, and J. Pomares. Nonlinear optimal control for the 4-DOF underactuated robotic tower crane. Autonomous Intelligent Systems, 2:21, 2022. doi: 10.1007/s43684-022-00040-4.
[18] A. Al-Fadhli and E. Khorshid. Payload oscillation control of tower crane using smooth command input. Journal of Vibration and Control, 29(3-4):902–915. 2023. doi: 10.1177/10775463211054640.
[19] S.-J. Kimmerle, M. Gerdts, and R. Herzog. An optimal control problem for a rotating elastic crane-trolley-load system. IFAC-PapersOnLine, 51(2):272-277, 2018, doi: 10.1016/j.ifacol.2018.03.047.
[20] Y. Romasevych, V. Loveikin, and Y. Loveikin. Development of a PSO modification with varying cognitive term. 2022 IEEE 3rd KhPI Week on Advanced Technology, KhPI Week 2022 – Conference Proceedings, Kharkiv, Ukraine, 2022. doi: 10.1109/KhPIWeek57572.2022.9916413.
Go to article

Authors and Affiliations

Viacheslav Loveikin
1
ORCID: ORCID
Yuriy Romasevych
1
ORCID: ORCID
Andrii Loveilin
2
ORCID: ORCID
Mykola Korobko
1
ORCID: ORCID
Anastasia Liashko
1
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.

Go to article

Authors and Affiliations

Lubomir Kolev
Download PDF Download RIS Download Bibtex

Abstract

Main topic of the paper is a problem of designing the input-output decoupling controllers for nonholonomic mobile manipulators. We propose a selection of output functions in much more general form than in [1,2]. Regularity conditions guaranteeing the existence of the input-output decoupling control law are presented. Theoretical considerations are illustrated with simulations for mobile manipulator consisting of RTR robotic arm mounted atop of a unicycle which moves in 3D-space.

Go to article

Authors and Affiliations

A. Mazur
Download PDF Download RIS Download Bibtex

Abstract

This work addresses the problem of adaptive observer design for nonlinear systems satisfying incremental quadratic constraints. The output of the system includes nonlinear terms, which puts an additional strain on the design and feasibility of the observer, which is guaranteed under the satisfaction of an LMI, and a set of algebraic constraints. A particular case where the output nonlinearity matches the unknown parameter coefficient is also discussed. The result is illustrated through a numerical example for the chaos synchronization of the Rössler system.
Go to article

Authors and Affiliations

Lazaros Moysis
1
Meenakshi Tripathi
2
Mahendra Kumar Gupta
2
Muhammad Marwan
3
Christos Volos
1

  1. Laboratory of Nonlinear Systems – Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
  2. Department of Mathematics, National Institute of Technology Jamshedpur, Jamshedpur, India
  3. Department of Mathematics, Zhejiang Normal University, Jinhua, China
Download PDF Download RIS Download Bibtex

Abstract

Current drive control systems tend to push control loops to the limits of their performance. One of the ways of doing so is to use advanced optimization algorithms, usually related to model-based off-line calculations, such as genetic algorithms, the particle swarmoptimisation or the others. There is, however, a simpler way, namely to use predictive control formalism and by formulation of a simple linear programming problem which is easy to solve using powerful solvers, without excessive computational burden, what is a reliable solution, as whenever the optimization problem has a feasible solution, a global minimizer can be efficiently found. This approach has been deployed for a servo drive system operated by a real-time sampled-data controller, verified between model-in-the-loop and hardwarein- the-loop configurations, for a range of prediction horizons, as an attractive alternative to classical quadratic programming-related formulation of predictive control task.
Go to article

Authors and Affiliations

Dariusz Horla
1
ORCID: ORCID
Piotr Pinczewski
2

  1. Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3a Str., 60-965 Poznan, Poland
  2. IT.integro sp. z o.o. Zabkowicka 12 Str., 60-166 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current solutions for pose estimation problems using coplanar feature points (PnP problems) can be divided into non-iterative and iterative solutions. The accuracy, stability, and efficiency of iterative methods are unsatisfactory. Therefore, non-iterative methods have become more popular. However, the non-iterative methods only consider the correspondence of the feature points with their 2D projections. They ignore the constraints formed between feature points. This results in lower pose estimation accuracy and stability. In this work, we proposed an accurate and stable pose estimation method considering the line constraints between every two feature points. Our method has two steps. In the first step, we solved the pose non-iteratively, considering the correspondence of the 3D feature points with their 2D projections and the line constraints formed by every two feature points. In the second step, the pose was refined by minimizing the re-projection errors with one iteration, further improving accuracy and stability. Simulation and actual experiment results show that our method’s accuracy, stability, and computational efficiency are better than the other existing pose estimation methods. In the -45° to +45° measuring range, the maximum angle measurement error is no more than 0.039°, and the average angle measurement error is no more than 0.016°. In the 0 mm to 30 mm measuring range, the maximum displacement measurement error is no more than 0.049 mm, and the average displacement measurement error is no more than 0.012 mm. Compared to other current pose estimation methods, our method is the most efficient based on guaranteeing measurement accuracy and stability. Keywords:
Go to article

Authors and Affiliations

Zhang Zimiao
1
Zhang Hao
1
Zhang Fumin
2
Zhang Shihai
1

  1. School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin, China
  2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
Download PDF Download RIS Download Bibtex

Abstract

Elastic optical networking is a potential candidate to support dynamic traffic with heterogeneous data rates and variable bandwidth requirements with the support of the optical orthogonal frequency division multiplexing technology (OOFDM). During the dynamic network operation, lightpath arrives and departs frequently and the network status updates accordingly. Fixed routing and alternate routing algorithms do not tune according to the current network status which are computed offline. Therefore, offline algorithms greedily use resources with an objective to compute shortest possible paths and results in high blocking probability during dynamic network operation. In this paper, adaptive routing algorithms are proposed for shortest path routing as well as alternate path routing which make routing decision based on the maximum idle frequency slots (FS) available on different paths. The proposed algorithms select an underutilized path between different choices with maximum idle FS and efficiently avoids utilizing a congested path. The proposed routing algorithms are compared with offline routing algorithms as well as an existing adaptive routing algorithm in different network scenarios. It has been shown that the proposed algorithms efficiently improve network performance in terms of FS utilization and blocking probability during dynamic network operation.

Go to article

Authors and Affiliations

Akhtar Nawaz Khan
Download PDF Download RIS Download Bibtex

Abstract

Calibration is necessary for dual manipulator to complete operational tasks. This paper proposes an effective robot-robot and hand-eye calibration method based on virtual constraints. Firstly, a rotational error model and a translational error model are established based on the relationships between the transformation matrices of the dual manipulator calibration system. Then a poses-alignment method is designed to make the poses of the two robots satisfy the constructed virtual constraints. At the aligned positions, the joint angles of the two robots are saved and used to calculate the values of the variables in the error models. Finally, the robot-robot and hand-eye rotational errors are estimated by an iterative algorithm. These errors are then used to calculate translational errors based on the SVD (singular value decomposition) method. To show the feasibility and effectiveness of the proposed method, experiments of robot-robot and hand-eye calibration for dual manipulators are performed. The experiment results demonstrate that the accuracy of the dual manipulator system is improved greatly.

Go to article

Authors and Affiliations

Q. Zhu
X. Xie
C. Li
Download PDF Download RIS Download Bibtex

Abstract

In modelling flexure based mechanisms, generally flexures are modelled perfectly aligned and nominal values are assumed for the dimensions. To test the validity of these assumptions for a two Degrees Of Freedom (DOF) large stroke compliant mechanism, eigenfrequency and mode shape measurements are compared to results obtained with a flexible multibody model. The mechanism consists of eleven cross flexures and seven interconnecting bodies. From the measurements 30% lower eigenfrequencies are observed than those obtained with the model. With a simplified model, it is demonstrated that these differences can be attributed to wrongly assumed leaf spring thickness and misalignment of the leaf springs in the cross flexures. These manufacturing tolerances thus significantly affect the behaviour of the two DOF mechanism, even though it was designed using the exact constraint design principle. This design principle avoids overconstraints to limit internal stresses due to manufacturing tolerances, yet this paper shows clearly that manufacturing imperfections can still result in significantly different dynamic behaviour.

Go to article

Authors and Affiliations

w. Wijma
S.E. Boer
R.G.K.M. Aarts
D.M. Brouwer
W.B.J. Hakvoort
Download PDF Download RIS Download Bibtex

Abstract

The control system described by Urysohn type integral equation is considered where the system is nonlinear with respect to the phase vector and is affine with respect to the control vector. The control functions are chosen from the closed ball of the space Lq (Ω; ℝ<sup>m</sup>), q > 1, with radius r and centered at the origin. The trajectory of the system is defined as p-integrable multivariable function from the space Lq (Ω; ℝ<sup>n</sup>), (1/q) + (1/p) = 1, satisfying the system’s equation almost everywhere. It is shown that the system’s trajectories are robust with respect to the fast consumption of the remaining control resource. Applying this result it is proved that every trajectory can be approximated by the trajectory obtained by full consumption of the total control resource.









Go to article

Authors and Affiliations

Nesir Huseyin
1
ORCID: ORCID
Anar Huseyin
2
ORCID: ORCID
Khalik G. Guseinov
3
ORCID: ORCID

  1. Department of Mathematics and Science Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey
  2. Department of Statistics and Computer Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey
  3. Department of Mathematics, Eskisehir Technical University, 26470 Eskisehir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of seeking generalized Nash equilibrium for constrained aggregative games with double-integrator agents who communicate with each other on an unbalanced directed graph. An auxiliary variable is introduced to balance the consensus terms in the designed algorithm by estimating the left eigenvector of the Laplacian matrix associated with the zero eigenvalue in a distributed manner. Moreover, an event-triggered broadcasting scheme is proposed to reduce communication loads in the network. It is shown that the proposed communication scheme is free of the Zeno behavior and the asymptotic convergence of the designed algorithm is obtained. Simulation results are demonstrated to validate the proposed methods.
Go to article

Authors and Affiliations

Xin Cai
1
Xinyuan Nan
1
Bingpeng Gao
1

  1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
Download PDF Download RIS Download Bibtex

Abstract

Modern industry requires an increasing level of efficiency in a lightweight design. To achieve these objectives, easy-to-apply numerical tests can help in finding the best method of topological optimization for practical industrial applications. In this paper, several numerical benchmarks are proposed. The numerical benchmarks facilitate qualitative comparison with analytical examples and quantitative comparison with the presented numerical solutions. Moreover, an example of a comparison of two optimization algorithms was performed. That was a commonly used SIMP algorithm and a new version of the CCSA hybrid algorithm of topology optimization. The numerical benchmarks were done for stress constraints and a few material models used in additive manufacturing.
Go to article

Bibliography

  1.  S.I. Valdez, S. Botello, M.A. Ochoa, J.L. Marroquín, and V. Cardoso, “Topology Optimization Benchmarks in 2D: Results for Min- imum Compliance and Minimum Volume in Planar Stress Problems,” Arch. Comput. Methods Eng., vol. 24, no. 4, pp. 803–839, Nov. 2017, doi: 10.1007/s11831-016-9190-3.
  2.  M. Fanni, M. Shabara, and M. Alkalla, “A Comparison between Different Topology Optimization Methods,” Bull. Fac. Eng. Mansoura Univ., vol. 38, no. 4, pp. 13–24, Jul. 2020, doi: 10.21608/bfemu.2020.103788.
  3.  S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization solvers for structural topology optimization,” Struct. Multidiscip. Optim., vol. 52, no. 3, pp. 527–547, Sep. 2015, doi: 10.1007/s00158-015-1250-z.
  4.  D. Yang, H. Liu,W. Zhang, and S. Li, “Stress-constrained topology optimization based on maximum stress measures,” Comput. Struct., vol. 198, pp. 23–39, Mar. 2018, doi: 10.1016/j.compstruc.2018.01.008.
  5.  D. Pasini, A. Moussa, and A. Rahimizadeh, “Stress-Constrained Topology Optimization for Lattice Materials,” in Encyclopedia of Con- tinuum Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 1–19.
  6.  E. Lee, K.A. James, and J.R.R.A. Martins, “Stress-constrained topology optimization with design-dependent loading,” Struct. Multidis- cip. Optim., vol. 46, no. 5, pp. 647–661, Nov. 2012, doi: 10.1007/s00158-012-0780-x.
  7.  L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary struc- tural optimization method,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 356 –370, May 2018, doi: 10.1016/j.cma. 2018.01.035.
  8.  S. Bulman, J. Sienz, and E. Hinton, “Comparisons between algorithms for structural topology optimization using a series of benchmark studies,” Comput. Struct., vol. 79, no. 12, pp. 1203–1218, May 2001, doi: 10.1016/S0045-7949(01)00012-8.
  9.  G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization,” Struct. Optim., vol. 15, no. 1, pp. 42–48, Feb. 1998, doi: 10.1007/BF01197436.
  10.  G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, no. 3, pp. 217–237, Jan. 2009, doi: 10.1007/s00158-007-0217-0.
  11.  T. Lewiński and G.I.N. Rozvany, “Analytical benchmarks for topological optimization IV: Square-shaped line support,” Struct. Multidiscip. Optim., vol. 36, no. 2, pp. 143–158, Aug. 2008, doi: 10.1007/s00158-007-0205-4.
  12.  A. Verbart, M. Langelaar, and F. van Keulen, “Damage approach: A new method for topology optimization with local stress constraints,” Struct. Multidiscip. Optim., vol. 53, no. 5, pp. 1081–1098, May 2016, doi: 10.1007/s00158-015-1318-9.
  13.  S. Goo, S. Wang, J. Hyun, and J. Jung, “Topology optimization of thin plate structures with bending stress constraints,” Comput. Struct., vol. 175, pp. 134–143, Oct. 2016, doi: 10.1016/ j.compstruc.2016.07.006.
  14.  E. Holmberg, B. Torstenfelt, and A. Klarbring, “Stress constrained topology optimization,” Struct. Multidiscip. Optim., vol. 48, no. 1, pp. 33–47, Jul. 2013, doi: 10.1007/s00158-012-0880-7.
  15.  E. Holmberg, Topology optimization considering stress, fatigue and load uncertainties. Linköping University Electronic Press, 2015.
  16.  L. He, M. Gilbert, T. Johnson, and T. Pritchard, “Conceptual design of AM components using layout and geometry optimization,” Comput. Math. with Appl., vol. 78, no. 7, pp. 2308–2324, Oct. 2019, doi: 10.1016/j.camwa.2018.07.012.
  17.  M. Mrzygłód, “Multi-constrained topology optimization using constant criterion surface algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 2, pp. 229–236, Oct. 2012, doi: 10.2478/v10175-012-0030-9.
  18.  M. Zhou and G.I.N. Rozvany, “The COC algorithm, Part II: Topological, geometrical and generalized shape optimization,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3, pp. 309–336, Aug. 1991, doi: 10.1016/0045-7825(91)90046-9.
  19.  M.P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
  20.  M.W. Mrzygłód, “Alternative quasi-optimal solutions in evolutionary topology optimization,” in AIP Conference Proceedings, 2018, vol. 1922, p. 020007-1‒020007-7, doi: 10.1063/1.5019034.
  21.  G. Fiuk and M.W. Mrzygłód, “Topology optimization of structures with stress and additive manufacturing constraints,” J. Theor. Appl. Mech., vol. 58, no. 2, pp. 459–468, Apr. 2020, doi: 10.15632/jtam-pl/118899.
  22.  M. Mrzygłód and T. Kuczek, “Uniform crashworthiness optimization of car body for high-speed trains,” Struct. Multidiscip. Optim., vol. 49, no. 2, pp. 327–336, Feb. 2014, doi: 10.1007/s00158-013-0972-z.
  23.  P. Duda and M.W. Mrzygłód, “Shape and operation optimization of a thick-walled power boiler component,” in MATEC Web of Confer- ences, Nov. 2018, vol. 240, p. 05006, doi: 10.1051/matecconf/201824005006.
  24.  T. Lewiński and G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains,” Struct. Multidiscip. Optim., vol. 35, no. 2, pp. 165–174, Feb. 2008, doi: 10.1007/s00158-007-0157-8.
  25.  N. Olhoff, J. Rasmussen, and M.P. Bendsøe, “On CADIntegrated Structural Topology and Design Optimization,” in Evaluation of Global Bearing Capacities of Structures, Vienna: Springer Vienna, 1993, pp. 255–280.
  26.  A.G.M. Michell, “LVIII. The limits of economy of material in frame-structures,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 8, no. 47, pp. 589–597, 1904, doi: 10.1080/14786440409463229.
Go to article

Authors and Affiliations

Grzegorz Fiuk
1
ORCID: ORCID
Mirosław W. Mrzygłód
1
ORCID: ORCID

  1. Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a design method of a static anti-windup compensator for systems with input saturations is proposed. First, an anti-windup controller is presented for system with cut-off saturations, and, secondly, the design problem of the compensator is presented to be a non-convex optimization problem easily solved using bilinear matrix inequalities formulation. This approach guarantees stability of the closed-loop system against saturation nonlinearities and optimizes the robust control performance while the saturation is active.
Go to article

Bibliography

  1.  E.F. Mulder, M.V. Kothare, L. Zaccarian, and A.R. Teel, “Multivariable Anti-windup Controller Synthesis using Bilinear Matrix Inequalities”, Eur. J. Control 6(5), 455–464 (2000).
  2.  J.G. VanAntwerp and R.D. Braatz, “A Tutorial on Linear and Bilinear Matrix Inequalities”, J. Process Control 10, 363–385 (2000).
  3.  C. Scherer and S. Weiland, “Linear Matrix Inequalities in Control”, DISC Course on Linear Matrix Inequalities in Control, Technische Universiteit Eindhoven, 2005.
  4.  S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities” in System and Control Theory, 2nd ed., SIAM, Philadelphia, 1994.
  5.  E. de Klerk, Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht, 2002.
  6.  M. Kocvara and M. Stingl, “PENNON – A Generalized Augmented Lagrangian Method for Semidefinite Programming”, in High Performance Algorithms and Software for Nonlinear Optimization, eds. G. Di Pillo, A. Murli, pp. 297–315, Kluwer Academic Publishers, Dordrecht, 2003.
  7.  M. Kocvara and M. Stingl, “PENNON – A Code for Convex Nonlinear and Semidefinite Programming”, Optim. Method Softw. 18(3), 317–333 (2003).
  8.  D. Henrion, J. Löfberg, M. Kocvara, and M. Stingl, “Solving Polynomial Static Output Feedback Problems with PENBMI”, technical report LAAS-CNRS 05165, 2005.
  9.  Tomlab Optimization, [Online]. http://tomopt.com/tomlab/ (accessed 20.03.2020).
  10.  T.D. Quoc, S. Gumussoy, W. Michiels, and M. Diehl, “Combining Convex-Concave Decompositions and Linearization Approaches for solving BMIs, with Application to Static Output Feedback”, technical report, OPTEC K.U. Lueven Optimization in Engineering Center, 2011.
  11.  J. Löfberg, “YALMIP: A Toolbox for Modeling and Optimization in MATLAB”, in Proceedings of the CACSD Conference, Taipei, 2004.
  12.  CVX Research, Inc., CVX: Matlab Software for Disciplined Convex Programming, version 2.0, 2012 [Online]. http://cvxr.com/cvx
  13.  M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs”, in Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, eds. V. Blondel, S. Boyd and H. Kimura, pp. 95–110, Springer-Verlag Limited, 2008.
  14.  A.A. Adegbege and W.P. Heath, “Internal Model Control Design for Input-constrained Multivariable Processes”, AICHE J. 57, 3459–3472 (2011).
  15.  M. Rehan, A. Ahmed, N. Iqbal, and M.S. Nazir, “Experimental Comparison of Different Anti-windup Schemes for an AC Motor Speed Control System”, in Proceedings of 2009 International Conference on Emerging Technologies, Islamabad, 2009.
  16.  N. Wada, M. Saeki, “Synthesis of a Static Anti-windup Compensator for Systems with Magnitude and Rate Limited Actuators”, in 3rd IFAC Symposium on Robust Control Design, Prague, 2000.
  17.  X. Sun, Z. Shi, Z. Yang, S. Wang, B. Su, L. Chen, and K. Li, “Digital Control System Design for bearingless permanent magnet synchronous motor”, Bull. Pol. Ac.: Tech. 66(5), 687–698 (2018).
  18.  M. Ran, Q. Wang, C. Dong, and M. Ni, “Simultaneous antiwindup synthesis for linear systems subject to actuator saturation”, J. Syst. Eng. Electron. 26(1), 119–126 (2015).
  19.  G. Liu, W. Ma, and A. Xue, “Static Anti-windup Control for Unstable Linear Systems with the Actuator Saturation”, Proceedings of the Chinese Automation Congress, Hangzou, 2019, pp. 2734–2739.
  20.  S. Solyom, “A synthesis method for static anti-windup compensators”, Proceedings of the European Control Conference, Cambridge, 2003, pp. 485–488.
  21.  H. Septanto, A. Syaichu-Rohman, and D. Mahayana, “Static Anti-Windup Compensator Design of Linear Sliding Mode Control for Input Saturated Systems”, Proceedings of the International Conference on Electrical Engineering and Informatics, Bandung, 2011, p. C5-2.
  22.  D. Horla, “Interplay of Directional Change in Controls and Windup Phenomena – Analysis and Synthesis of Compensators”, D. Sc. Monography, no. 471, Poznan University of Technology, Poznan, 2012.
  23.  N.Wada and M. Saeki, “Design of a static anti-windup compensator which guarantees robust stability”, Trans. Inst. Syst. Control Inf. Eng. 12(11), 664—670 (1999).
  24.  P.J. Campo and M. Morari, “Robust Control of Processes Subject to Saturation Nonlinearities”, Comput. Chem. Eng. 14(4‒5), 343–358 (1990).
  25.  S. Skogestad and I. Postlethwaite, Multivariable Feedback Control. Analysis and Design, 2nd ed.,Wiley-Blackwell, Chichester, 2005.
  26.  F. Wu and M. Soto, “Extended Anti-windup Control Schemes for LTI and LFT Systems with Actuator Saturations”, Int. J. Robust Nonlinear Control 14(15), 1255–1281 (2004).
  27.  F. Amato, “Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters”, Lecture Notes in Control and Information Sciences, Springer, Berlin–Heidelberg, 2006.
  28.  F. Uhlig, “A recurring theorem about pairs of quadratic forms and extensions: a survey”, Linear Alg. Appl. 25, 219–237 (1979).
  29.  S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2006.
  30.  D. Horla and A. Królikowski, “Discrete-time LQG Control with Actuator Failure”, in Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, Noordwijkerhout, 2011, [CD-ROM].
  31.  J.M. Maciejowski, Multivariable Feedback Design, Addison Wesley Publishing Company, Cambridge, 1989.
Go to article

Authors and Affiliations

Dariusz Horla
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Automatic Control, Robotics and Electrical Engineering, ul. Piotrowo 3a, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper describes a nonlinear controller design technique applied to a servo drive in the presence of hard state constraints. The approach presented is based on nonlinear state-space transformation and adaptive backstepping. It allows us to impose hard constraints on the state variables directly and to achieve asymptotic tracking of any reference trajectory inside the constraints, despite unknown plant parameters. Two control schemes (with and without integral action) are derived, investigated and then compared. Several examples demonstrate the main features of the design procedure and prove that it may be applied in case of motion control problems in electric drive automation.

Go to article

Authors and Affiliations

Jacek Kabziński
Przemysław Mosiołek
Download PDF Download RIS Download Bibtex

Abstract

Significant differences in the physical and mechanical properties exist between the rock masses on two sides of an ore-rock contact zone, which the production tunnels of an underground mine must pass through. Compared with a single rock mass, the mechanical behavior of the contact zone composite rock comprising two types of rock is more complex. In order to predict the overall strength of the composite rock with different contact angles, iron ore-marble composite rock sample uniaxial compression tests were conducted. The results showed that composite rock samples with different contact angles failed in two different modes under compression. The strengths of the composite rock samples were lower than those of both the pure iron ore samples and pure marble samples, and were also related to the contact angle. According to the stress-strain relationship of the contact surface in the composite rock sample, there were constraint stresses on the contact surface between the two types of rock medium in the composite rock samples. This stress state could reveal the effect of the constraint stress in the composite rock samples with different contact angles on their strengths. Based on the Mohr-Coulomb criterion, a strength model of the composite rock considering the constraint stress on the contact surface was constructed, which could provide a theoretical basis for stability researches and designs of contact zone tunnels.

Go to article

Authors and Affiliations

Qihu Wang
Jie Wang
ORCID: ORCID
Yicheng Ye
Wei Jiang
Nan Yao
Download PDF Download RIS Download Bibtex

Abstract

Currently, we live in a culture of being overly busy, but this does not translate into efficiency, speed of implementation of the actions taken. Enterprises are constantly looking for methods and tools to make them more efficient. The most popular method of production management is Lean Manufacturing, less known is Theory of Constraints. This work is a continuation of the research on the comparison of these methods with apply a computer simulation, which the analyzed production process in the selected enterprise, after 24 hours and week. An attempt was made to simplify the comparison of the methods based on the obtained simulation in terms of costs. In analyzed case, more advantageous solution is to use the DBR method. To produce various orders that do not require 100% production on the bottleneck position, the use of Kanban is a frequent practice as it provides greater flexibility in order execution.
Go to article

Authors and Affiliations

Klaudia Tomaszewska
1

  1. Faculty of Management Engineering, Bialystok University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to identify the constraints that affect the effective usage of the site waste management plan (SWMP). A substantial review of the literature was carried out to identify the constraining factors that affect the site waste management plan tool. Questionnaires were administered based on a five-point Likert scale and the data were assessed and analyzed using IBM SPSS version 28. The outcome showed that the knowledge of the SWMP is still very low in the Polish construction sector. Only 6% have a written SWMP while 16% have used this tool in their previous project. Hence, the need for the increased awareness of the SWMP as one of the waste management strategies. The lack of adequate monitoring and control of the SWMP, lack of awareness, time required for the preparation of the tool were identified as the top constraints. The solutions identified include; increased level of awareness and education, the inclusion of the SWMPas part of the contract documentation requirement, adequate training of the site personnel, and presence of waste manager.
Go to article

Authors and Affiliations

Oluwasegun Emmanuel
1
ORCID: ORCID
Vsevolod Nikolaiev
1
ORCID: ORCID
Marcin Gajzler
2
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Civil Engineering and Transport, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
  2. Poznan University of Technology, Faculty of Civil Engineering and Transport, ul. Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns a strength optimization of continuous beams with variable cross-section. The continuous beams are subjected to a dead weight and a useful load, the six (seven) combinations of loads were analyzed. Optimal design problems in structural mechanics can by mathematically formulated as optimal control tasks. To solve the above formulated optimization problems, the minimum principle was applied. The paper is an introductory and survey paper of the treatment of realistically modelled optimal control problems from application in the structural mechanics. Especially those problems are considered, which include different types of constraints. The optimization problem is reduced to the solution of multipoint boundary value problems (MPBVP) composed of differential equations. Dimension of MPBVP is usually a large number, what produces numerical difficulties. Optimal control theory does not give much information about the control structure. The correctness of the assumed control structure can be checked after obtaining the solution of the boundary problem.

Go to article

Authors and Affiliations

Leszek Mikulski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The Green’s function approach is applied for studying the exact and approximate nullcontrollability of a finite rod in finite time by means of a source moving along the rod with controllable trajectory. The intensity of the source remains constant. Applying the recently developed Green’s function approach, the analysis of the exact null-controllability is reduced to an infinite system of nonlinear constraints with respect to the control function. A sufficient condition for the approximate null-controllability of the rod is obtained. Since the exact solution of the system of constraints is a long-standing open problem, some heuristic solutions are used instead. The efficiency of these solutions is shown on particular cases of approximate controllability.
Go to article

Bibliography

[1] J. Klamka: Controllability of Dynamical Systems. Kluwer Academic, Dordrecht, 1991.
[2] S.A. Avdonin and S.A. Ivanov: Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York, 1995.
[3] A. Fursikov and O.Yu. Imanuvilov: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
[4] E. Zuazua: Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Differential Equations, vol. 3, Elsevier/North-Holland, Amsterdam, 2006.
[5] R. Glowinski, J.-L. Lions and J. He: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Cambridge University Press, New York, 2008.
[6] A.S. Avetisyan and As.Zh. Khurshudyan: Controllability of Dynamic Systems: The Green’s Function Approach. Cambridge Scholars Publishing, Cambridge, 2018.
[7] S. Micu and E. Zuazua: On the lack of null-controllability of the heat equation on the half-line. Transactions of the American Mathematical Society, 353(4), (2001), 1635–1659.
[8] S. Micu and E. Zuazua: Null Controllability of the Heat Equation in Unbounded Domains. In “Unsolved Problems in Mathematical Systems and Control Theory”, edited by Blondel V.D., Megretski A., Princeton University Press, Princeton, 2004.
[9] V. Barbu: Exact null internal controllability for the heat equation on unbounded convex domain. ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 222–235, DOI: 10.1051/cocv/2013062.
[10] As.Zh. Khurshudyan: (2019), Distributed controllability of heat equation in un-bounded domains: The Green’s function approach. Archives of Control Sciences, 29(1), (2019), 57–71, DOI: 10.24425/acs.2019.127523.
[11] S. Ivanov and L. Pandolfi: Heat equation with memory: Lack of controllability to rest. Journal of Mathematical Analysis and Applications, 355 (2009), 1–11, DOI: 10.1016/j.jmaa.2009.01.008.
[12] A. Halanay and L. Pandolfi: Approximate controllability and lack of controllability to zero of the heat equation with memory. Journal of Mathematical Analysis and Applications, 425 (2015), 194–211, DOI: 10.1016/j.jmaa.2014.12.021.
[13] B.S. Yilbas: Laser Heating Applications: Analytical Modelling. Elsevier, Waltham, 2012.
[14] A.G. Butkovskiy and L.M. Pustylnikov: Mobile Control of Distributed Parameter Systems. Chichester, Ellis Horwood, 1987.
[15] V.A. Kubyshkin and V.I. Finyagina: Moving control of systems with distributed parameters (in Russian). Moscow: SINTEG, 2005.
[16] Sh.Kh. Arakelyan and As.Zh. Khurshudyan: The Bubnov-Galerkin procedure for solving mobile control problems for systems with distributed parameters. Mechanics. PNAS Armenia, 68(3), (2015), 54–75.
[17] A.G. Butkovskiy: Some problems of control of the distributed-parameter systems. Automation and Remote Control, 72 (2011), 1237–1241, DOI: 10.1134/S0005117911060105.
[18] A.S. Avetisyan and As.Zh. Khurshudyan: Green’s function approach in approximate controllability problems. Proceedings of National Academy of Sciences of Armenia. Mechanics, vol. 69, issue 2, (2016), 3–22, DOI: 10.33018/69.2.1.
[19] A.S. Avetisyan and As.Zh. Khurshudyan: Green’s function approach in approximate controllability of nonlinear physical processes. Modern Physics Letters A, 32 1730015, (2017), DOI: 10.1142/S0217732317300154.
[20] As.Zh. Khurshudyan: Resolving controls for the exact and approximate controllabilities of the viscous Burgers’ equation: the Green’s function approach. International Journal of Modern Physics C, 29(6), 1850045, (2018), DOI: 10.1142/S0129183118500456.
[21] A.S. Avetisyan and As.Zh. Khurshudyan: Exact and approximate controllability of nonlinear dynamic systems in infinite time: The Green’s function approach. ZAMM, 98(11), (2018), 1992–2009, DOI: 10.1002/zamm.201800122.
[22] As.Zh. Khurshudyan: Exact and approximate controllability conditions for the micro-swimmers deflection governed by electric field on a plane: The Green’s function approach. Archives of Control Sciences, 28(3), (2018), 335–347. DOI: 10.24425/acs.2018.124706.
[23] J. Klamka and As.Zh. Khurshudyan: Averaged controllability of heat equation in unbounded domains with uncertain geometry and location of controls: The Green’s function approach. Archives of Control Sciences, 29(4), (2019), 573–584, DOI: 10.24425/acs.2018.124706.
[24] J. Klamka, A.S. Avetisyan and As.Zh. Khurshudyan: Exact and approximate distributed controllability of the KdV and Boussinesq equations: The Green’s function approach. Archives of Control Sciences, 30(1), (2020), 177–193, DOI: 10.24425/acs.2020.132591.
[25] J. Klamka and As.Zh. Khurshudyan: Approximate controllability of second order infinite dimensional systems. Archives of Control Sciences, 31(1), (2021), 165–184, DOI: 10.24425/acs.2021.136885.
[26] As.Zh. Khurshudyan: Heuristic determination of resolving controls for exact and approximate controllability of nonlinear dynamic systems. Mathematical Problems in Engineering, (2018), Article ID 9496371, DOI: 10.1155/2018/9496371.
[27] H. Hossain and As.Zh. Khurshudyan: Heuristic control of nonlinear power systems: Application to the infinite bus problem. Archives of Control Sciences, 29(2), (2019), 279–288, DOI: 10.24425/acs.2019.129382.
[28] A.G. Butkovskii and L.M. Pustyl’nikov: Characteristics of Distributed- Parameter Systems. Kluwer Academic Publishers, 1993.
Go to article

Authors and Affiliations

Samvel H. Jilavyan
1
Edmon R. Grigoryan
1
Asatur Zh. Khurshudyan
2

  1. Faculty of Mathematics and Mechanics, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
  2. Dynamicsof Deformable Systems and Coupled Fields, Institute of Mechanics, National Academy of Sciences of Armenia, 0019 Yerevan, Armenia
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.

Go to article

Authors and Affiliations

Dušan Krokavec
Anna Filasová

This page uses 'cookies'. Learn more