Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present article investigates the dynamic behavior of a fully assembled turbogenerator system influenced by misalignment. In the past, most of the researchers have neglected the foundation flexibility in the turbogenerator systems in their study, to overcome this modelling error a more realistic model of a turbogenerator system has been attempted by considering flexible shafts, flexible coupling, flexible bearings and flexible foundation. Equations of motion for fully assembled turbogenerator system including flexible foundations have been derived by using finite element method. The methodology developed based on least squares technique requires forced response information to quantify the bearing–coupling–foundation dynamic parameters of the system associated with different faults along with residual unbalances. The proposed methodology is tested for the various level of measurement noise and modelling error in the system parameters, i.e., 5% deviation in E (modulus of elasticity) and ρ (density), respectively, for robustness of the algorithm. In a practical sense, the condition analyzed in the present article relates to the identification of misalignment and other dynamic parameters viz. bearing and residual unbalance in a rotor integrated with flexible foundation.
Go to article

Authors and Affiliations

Mohit Lal
Download PDF Download RIS Download Bibtex

Abstract

The method of calculations of a thick plate on the two-parameter layered foundation by the finiteelement method is presented. The numerical model allows to add a few (number of) foundationlayers. The expressions for the element stiffness matrices of the foundation are based on 18-nodezero-thickness interface elements. For modelling of thick plates the 9-node Mindlin element of theLagrange family is used. The formulation of the problem takes into account the shear deformation ofthe plate and unilateral contact conditions between plate and foundation. The tensionless characterof the foundation is achieved by removing from the global stiffness matrix the appropriate partof foundation stiffness attached to the node being in the separation stage. The advantages of theproposed algorithm are illustrated by numerical examples.

Go to article

Authors and Affiliations

R. Buczkowski
W. Torbacki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a static load test of a pile with the largest vertical load in Poland to-date up to the force of 23000 kN. The test was performed in the centre of Warsaw on the construction site of a future high-rise building to be the tallest building in European Union. The designed building height measured from the ground level is 310 meters including an 80-metre mast. The foundation of the building was designed as a Combined Piled Raft Foundation (CPRF) utilising the barrettes and diaphragm walls technology. The test was carried out on barrettes with lengths of approx. 28 and 34 m and was aimed to estimate the stiffness (load-settlement relation) of the designed 17.5 metre-long barrette situated below the foundation level. In addition to that a series of extensometric sensors was placed inside the barrette to determine the distribution of the axial force.

Go to article

Authors and Affiliations

G. Kacprzak
S. Bodus
Download PDF Download RIS Download Bibtex

Abstract

The presented analysis concerns deflections of the reinforced concrete slab in the fire-fighting water storage tank with volume of 950 m3. It was built on human-altered soil which led to deflection of the tank. When water was pumped out from the tank, rectification was performed. The tank and its slab foundation were non-uniformly elevated by means of hydraulic jacks. These jacks were installed under the slab, on foundation made of concrete block stacks, which were pressed into the ground. The computational analysis was conducted for displacements and deflections of the slab supported on the jacks. The number of jacks under the slab and stiffness of jack supports on the stacks were the variable parameters of the model. Stiffness of the jack supports was found to have non-significant impact on deflections of the foundation slab of the rectified tank. On the other hand, the number of jacks under the tank affected both deflections of the slab and displacements of the whole tank. The greatest deflection of the tank slab supported on three jacks was 15.233 mm, and the smallest one was 10.435 mm at 32 jacks.
Go to article

Authors and Affiliations

Krzysztof Gromysz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Marceli Nencki Foundation for Supporting Biological Sciences is a non-governmental organization that conducts public benefit activities. The statutory goal of the Foundation is to support scientific, popularization, and educational efforts in the field of biological sciences. The Foundation focuses its activities primarily on students and young scientists who wish to bring biological sciences closer to young people and foster their creative development. Close cooperation with the Nencki Institute and the promotion of its scientific heritage result in many joint initiatives, including lectures, workshops, study visits, Art and Science, and coorganized scientific conferences. The Foundation began its activities on November 14, 2012. Its founders were professors from Nencki Institute and members of the Polish Academy of Sciences.
Go to article

Authors and Affiliations

Maciej Nałęcz
1 2
Ewa Nowak
1 2
Hanna Fabczak
1 2

  1. Instytut Biologii Doświadczalnej im. Marcelego Nenckiego PAN, Warszawa
  2. Fundacja Marcelego Nenckiego Wspierania Nauk Biologicznych
Download PDF Download RIS Download Bibtex

Abstract

The calculations of fuel tanks should take into account the geometric imperfections of the structure as well as the variability of the material parameters of the foundation. The deformation of the tank shell can have a significant impact on the limit state of the structure and its operating conditions. The paper presents a probabilistic analysis of a vertical-axis, floating-roof cylindrical shell of a tank with a capacity of 50000 m3 placed on stratified soil with heterogeneous material parameters. The impact of a random subsoil description was estimated using the Point Estimated Method (PEM). In this way, the number of analyzed FEM models was significantly reduced. This approach also makes it possible to assess the sensitivity of tank settlement and deformation to the changing foundation conditions.
Go to article

Authors and Affiliations

Kamil Żyliński
1 2
Jarosław Górski
1
ORCID: ORCID

  1. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
  2. ERSYS, Poland
Download PDF Download RIS Download Bibtex

Abstract

The impact of a moving load speed on the dynamic overload of beams, assuming that the track of the load has no unevenness, is examined. First the problem of a visco-elastic beam on a Winkler foundation subjected to a force moving at a constant speed will be solved. Using the Bubnov-Galerkin method, the deflections of the beam, and then the bending moments and shear forces will be determined. The solution of the problem will be obtained both for the case of a forced vibration and the case of a free vibration after the moving force has left the beam. Using these solutions, dynamic amplification factors will be determined for the deflections, bending moments, and shear forces, which are different for the two cases.

The magnitude of the amplification factors increases and decreases alternately as a function of the speed. In the case of a single force on a beam, the dynamic overloads are limited, and do not exceed 60%. There is no resonance phenomenon in the beam subjected to the single moving force. The dynamic amplification factors determined in this way can be used as correction coefficients when designing engineering structures subjected to moving loads by static methods.

Go to article

Authors and Affiliations

M. Ataman
Download PDF Download RIS Download Bibtex

Abstract

At present, the cushion thickness of composite foundation under rigid base is mostly selected by the experience of the engineer, which is of great arbitrariness. In order to improve this problem, the optimum design method of cushion thickness is proposed by theoretical research. First, the stress diffusion line in the cushion is assumed to be a quadratic curve, and the critical diffusion thickness of the pile top stress is obtained. Then, by analyzing the relative deformation between soil and pile, pile top penetration into the critical cushion thickness is proposed. Finally, based on the relationship between stress ratio of pile to soil and cushion thickness, the calculation method of optimum cushion thickness is put forward. The application of engineering cases shows that the proposed method has better calculation results, which attests to the correctness of the method. The method can be used for the optimal design of cushion thickness of single-type-pile or multi-type-pile composite foundation.
Go to article

Authors and Affiliations

Yaoting Xiao
1
ORCID: ORCID
Jing Wang
1
ORCID: ORCID

  1. Hubei University of Arts and Science, College of Civil Engineering and Architecture, No. 296, Longzhong Road, Xiangyang, Hubei, China
Download PDF Download RIS Download Bibtex

Abstract

The excavation of adjacent pits following the initial foundation pit excavation can significantly influence ground settlement. Using a foundation pit excavation project in Changzhou as a prototype, this study employed the numerical simulation method in conjunction with the HSS model to analyze the settlement deformation characteristics of the original excavation and compare them with the recorded monitoring values. In this study, the analysis focused on the ground settlement between two pits by varying the spacing between them at different excavation depths. The findings revealed that the ground settlement does not exhibit a significant increase when the new pit is excavated at a shallow depth. However, it rapidly increases when the excavation depth of the new pit surpasses that of the existing pit. Furthermore, an increase in the distance between the two pits causes the maximum settlement position to shift towards the edge of the new pit. The maximum ground settlement is found to have a linear relationship with both the maximum horizontal displacement of the two pits and the spacing between them.
Go to article

Authors and Affiliations

Yan Wu
1
ORCID: ORCID

  1. Changzhou University Huaide College, Architecture and Environmental Engineering Department, Tiazhou, Jiangsu, China
Download PDF Download RIS Download Bibtex

Abstract

The mechanical properties of soil in soft soil area are poor, and the settlement of the underlying layer in the composite foundation accounts for a large proportion of the total settlement. At present, most of the research focuses on the settlement of the reinforced area, and the research on the settlement of the underlying layer is of great significance for the settlement of soft soil composite foundation. The differences in load transfer modes of soil and pile are analyzed, and based on the Boussinesq solution and Mindlin solution, a calculation method for the stress and settlement of the underlying layer in flexible and rigid pile composite foundation is proposed. The relative displacement of soil and pile in flexible pile composite foundation is small, and the negative friction can be ignored, but the influence of effective pile length should be considered. The relative displacement of soil and pile in rigid pile composite foundation is large, so the negative friction should be considered. Part of soil top stress is transmitted to the pile via negative friction, and then the pile axial force is transmitted back to the soil via positive friction. In addition to effective pile length, the change of stress transfer path caused by negative friction should also be considered in settlement calculation.
Go to article

Authors and Affiliations

Yaoting Xiao
1
ORCID: ORCID
Jing Wang
1
ORCID: ORCID

  1. Hubei University of Arts and Science, College of Civil Engineering and Architecture, No. 296, Longzhong Road, Xiangyang, Hubei, China
Download PDF Download RIS Download Bibtex

Abstract

Even the best project of a wind power plant (WPP) can fail if there are not favourable legal regulations for its completion. Most of the research has dealt with identification of various obstacles to implement WPP (political, social, legal, environmental). Analyses of legal barriers (LBs) have been usually made at a high degree of generality. This paper offers a thorough overview of LBs for localization of WPPs in Poland. This is the country where restrictive regulations have blocked the possibility of implementing such projects in many areas. Unfriendly law may persuade investors to choose worse wind turbines foundation conditions. In our research we focus on a problem little dealt in scientific studies, i.e. on the localization of WPP in difficult geotechnical conditions. The article presents the analytical engineering method, which includes the mutual influence between foundation piles in carrying on the construction load on a subsoil. The paper presents the geotechnical parameters responsible for calculation outcomes, the theoretical basis of the curve analysis method of settlement of a single pile and of the calculation of piles settlement working in a group and fastened with a stiff head. It also shows the effect of pile arrangement in a foundation and a load distribution of in-dividual piles, as well as a settlement and leaning of foundation of wind power turbine towers. The method enables a more precise, safer and optimal design of a wind turbine foundation.
Go to article

Authors and Affiliations

Ireneusz Dyka
1
ORCID: ORCID
Jolanta Harasymiuk
1
ORCID: ORCID

  1. University of Warmia and Mazury, Faculty of Geongineering, Prawochenskiego str. 15, 10-720 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.

Go to article

Bibliography


[1] J. Neuringer and I. Elishakoff. Natural frequency of an inhomogeneous rod may be independent of nodal parameters. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 456(2003):2731–2740, 2000. doi: 10.1098/rspa.2000.0636.
[2] I. Elishakoff and S. Candan. Apparently first closed-form solution for vibrating: inhomogeneous beams. International Journal of Solids and Structures, 38(19):3411–3441, 2001. doi: 10.1016/S0020-7683(00)00266-3.
[3] Y. Huang and X.F. Li. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration, 329(11):2291–2303, 2010. doi: 10.1016/j.jsv.2009.12.029.
[4] M. Şimşek, T. Kocatürk, and Ş.D. Akbaş.. Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Composite Structures, 94(8):2358–2364, 2012. doi: 10.1016/j.compstruct.2012.03.020.
[5] B. Akgöz and Ö. Civalek. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98:314-322, 2013. doi: 10.1016/j.compstruct.2012.11.020.
[6] K. Sarkar and R. Ganguli. Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites Part B: Engineering, 58:361–370, 2014. doi: 10.1016/j.compositesb.2013.10.077.
[7] M. Rezaiee-Pajand and S.M. Hozhabrossadati. Analytical and numerical method for free vibration of double-axially functionally graded beams. Composite Structures, 152:488–498, 2016. doi: 10.1016/j.compstruct.2016.05.003.
[8] M. Javid and M. Hemmatnezhad. Finite element formulation for the large-amplitude vibrations of FG beams. Archive of Mechanical Engineering, 61(3):469–482, 2014. doi: 10.2478/meceng-2014-0027.
[9] W.R. Chen, C.S. Chen and H. Chang. Thermal buckling of temperature-dependent functionally graded Timoshenko beams. Archive of Mechanical Engineering, 66(4): 393–415, 2019. doi: 10.24425/ame.2019.131354.
[10] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
[11] J. Ying, C.F. Lü, and W.Q. Chen. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures, 84(3):209–219, 2008. doi: 10.1016/j.compstruct.2007.07.004.
[12] T. Yan, S. Kitipornchai, J. Yang, and X.Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11):2992–3001, 2011. doi: 10.1016/j.compstruct.2011.05.003.
[13] A. Fallah and M.M. Aghdam. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics – A/Solids, 30(4):571–583, 2011. doi: 10.1016/j.euromechsol.2011.01.005.
[14] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[15] H. Yaghoobi and M. Torabi. An analytical approach to large amplitude vibration and post-buckling of functionally graded beams rest on non-linear elastic foundation. Journal of Theoretical and Applied Mechanics, 51(1):39–52, 2013.
[16] A.S. Kanani, H. Niknam, A.R. Ohadi, and M.M. Aghdam. Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115:60–68, 2014. doi: 10.1016/j.compstruct.2014.04.003.
[17] N. Wattanasakulpong and Q. Mao. Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Composite Structures, 119:346–354, 2015. doi: 10.1016/j.compstruct.2014.09.004.
[18] F.F. Calim. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering, 103:98–112, 2016. doi: 10.1016/j.compositesb.2016.08.008.
[19] H. Deng, K. Chen, W. Cheng, and S. Zhao. Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Composite Structures, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.
[20] H. Lohar, A. Mitra, and S. Sahoo. Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures, 6(1):90–104, 2019. doi: 10.1515/cls-2019-0008.
[21] B. Karami and M. Janghorban. A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 143:106227, 2019. doi: 10.1016/j.tws.2019.106227.
[22] I. Esen. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 153–154:21–35, 2019. doi: 10.1016/j.ijmecsci.2019.01.033.
[23] L.A. Chaabane, F. Bourada, M. Sekkal, S. Zerouati, F.Z. Zaoui, A. Tounsi, A. Derras, A.A. Bousahla, and A. Tounsi. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71(2):185–196, 2019. doi: 10.12989/sem.2019.71.2.185.
[24] M. Eisenberger and J. Clastornik. Vibrations and buckling of a beam on a variable Winkler elastic foundation. Journal of Sound and Vibration, 115(2):233–241, 1987. doi: 10.1016/0022-460X(87)90469-X.
[25] A. Kacar, H.T. Tan, and M.O. Kaya. Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Mathematical and Computational Applications, 16(3):773–783, 2011. doi: 10.3390/mca16030773.
[26] A. Mirzabeigy and R. Madoliat. Large amplitude free vibration of axially loaded beams resting on variable elastic foundation. Alexandria Engineering Journal, 55(2):1107–1114, 2016. doi: 10.1016/j.aej.2016.03.021.
[27] H. Zhang, C.M. Wang, E. Ruocco, and N. Challamel. Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Engineering Structures, 126:252–263, 2016. doi: 10.1016/j.engstruct.2016.07.062.
[28] M.H. Yas, S. Kamarian, and A. Pourasghar. Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method. Annals of Solid and Structural Mechanics, 9(1-2):1–11, 2017. doi: 10.1007/s12356-017-0046-9.
[29] S.K. Jena, S. Chakraverty, and F. Tornabene. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express, 6(8):085051, 2019. doi: 10.1088/2053-1591/ab1f47.
[30] S. Kumar, A. Mitra, and H. Roy. Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal, 18(4):579–593, 2015. doi: 10.1016/j.jestch.2015.04.003.
Go to article

Authors and Affiliations

Saurabh Kumar
1

  1. Department of Mechanical Engineering, School of Engineering, University of Petroleum andEnergy Studies (UPES), Dehradun, 248007, India.
Download PDF Download RIS Download Bibtex

Abstract

The two-variable refined plate theory is used in this paper for the analysis of thick plates resting on elastic foundation. This theory contains only two unknown parameters and predicts parabolic variation of transverse shear stresses. It satisfies the zero traction on the plate surfaces without using shear correction factor. Using the principle of minimum potential energy, the governing equations for simply supported rectangular plates resting on Winkler elastic foundation are obtained. The Navier method is adopted for solution of obtained coupled governing equations, and several benchmark problems under various loading conditions are solved by present theory. The comparison of obtained results with other common theories shows the excellent efficiency of this theory in modeling thick plates resting on elastic foundation. Also, the effect of foundation modulus, plate thickness and type of loading are studied and the results show that the deflections are decreased by increasing the foundation modulus and plate thickness.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Jafar Rouzegar
Reza Abdoli Sharifpoor

Download PDF Download RIS Download Bibtex

Abstract

Complex structures used in various engineering applications are made up of simple structural members like beams, plates and shells. The fundamental frequency is absolutely essential in determining the response of these structural elements subjected to the dynamic loads. However, for short beams, one has to consider the effect of shear deformation and rotary inertia in order to evaluate their fundamental linear frequencies. In this paper, the authors developed a Coupled Displacement Field method where the number of undetermined coefficients 2n existing in the classical Rayleigh-Ritz method are reduced to n, which significantly simplifies the procedure to obtain the analytical solution. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. In this paper, the free vibration behaviour in terms of slenderness ratio and foundation parameters have been derived for the most practically used shear flexible uniform Timoshenko Hinged-Hinged, Clamped-Clamped beams resting on Pasternak foundation. The findings obtained by the present Coupled Displacement Field Method are compared with the existing literature wherever possible and the agreement is good.

Go to article

Bibliography

[1] C.F. Lü, C.W. Lim, and W.A. Yao. A new analytic symplectic elasticity approach for beams resting on Pasternak elastic foundations. Journal of Mechanics of Materials and Structures, 4(10):1741–1754, 2010. doi: 10.2140/jomms.2009.4.1741.
[2] C. Franciosi and A. Masi. Free vibrations of foundation beams on two-parameter elastic soil. Computers & Structures, 47(3):419–426, 1993. doi: 10.1016/0045-7949(93)90237-8.
[3] I. Caliò and A. Greco. Free vibrations of Timoshenko beam-columns on Pasternak foundations. Journal of Vibration and Control, 19(5):686–696, 2013. doi: 10.1177/1077546311433609.
[4] S. Lee, J.K. Kyu Jeong and J. Lee. Natural frequencies for flexural and torsional vibrations of beams on Pasternak foundation. Soils and Foundations, 54(6):1202–1211, 2014. doi: 10.1016/j.sandf.2014.11.013.
[5] M.A. De Rosa. Free vibrations of Timoshenko beams on two-parameter elastic foundation. Computers & Structures, 57(1):151–156, 1995. doi: 10.1016/0045-7949(94)00594-S.
[6] M.A. De Rosa and M.J. Maurizi. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution. Journal of Sound and Vibration, 212(4):573–581, 1998. doi: 10.1006/jsvi.1997.1424.
[7] M. Karkon and H. Karkon. New element formulation for free vibration analysis of Timoshenko beam on Pasternak elastic foundation. Asian Journal of Civil Engineering (BHRC), 17(4):427–442, 2016.
[8] K. Meera Saheb et al. Free vibration analysis of Timoshenko beams using Coupled Displacement Field Method. Journal of Structural Engineering, 34:233–236, 2007.
[9] M.T. Hassan and M. Nassar. Analysis of stressed Timoshenko beams on two parameter foundations. KSCE Journal of Civil Engineering, 19(1):173–179, 2015. doi: 10.1007/s12205-014-0278-8.
[10] N.D. Kien. Free vibration of prestress Timoshenko beams resting on elastic foundation. Vietnam Journal of Mechanics, 29(1):1–12, 2007. doi: 10.15625/0866-7136/29/1/5586.
[11] P. Obara. Vibrations and stability of Bernoulli-Euler and Timoshenko beams on two-parameter elastic foundation. Archives of Civil Engineering, 60(4):421–440, 2014. doi: 10.2478/ace-2014-0029.
[12] S.Y. Lee, Y.H. Kuo, and F.Y. Lin. Stability of a Timoshenko beam resting on a Winkler elastic foundation. Journal of Sound and Vibration, 153(2):193–202, 1992. doi: 10.1016/S0022-460X(05)80001-X.
[13] T.M. Wang and J.E. Stephens. Natural frequencies of Timoshenko beams on Pasternak foundations. Journal of Sound and Vibration, 51(2):149–155, 1977. doi: 10.1016/S0022-460X(77)80029-1.
[14] T.M. Wang and L.W. Gagnon. Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations. Journal of Sound and Vibration, 59(2):211–220, 1978. doi: 10.1016/0022-460X(78)90501-1.
[15] T. Yokoyama. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Computers & Structures, 61(6):995–1007, 1996. doi: 10.1016/0045-7949(96)00107-1.
[16] T. Yokoyama. Parametric instability of Timoshenko beams resting on an elastic foundation. Computers & Structures, 28(2):207–216, 1988. doi: 10.1016/0045-7949(88)90041-7.
[17] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
Go to article

Authors and Affiliations

Korabathina Rajesh
1
Koppanati Meera Saheb
1

  1. Jawaharlal Nehru Technological University Kakinada, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

The authors developed a simple and efficient method, called the Coupled Displacement method, to study the linear free vibration behavior of the moderately thick rectangular plates in which a single-term trigonometric/algebraic admissible displacement, such as total rotations, are assumed for one of the variables (in both X,Y directions), and the other displacement field, such as transverse displacement, is derived by making use of the coupling equations. The coupled displacement method makes the energy formulation to contain half the number of unknown independent coefficients in the case of a moderately thick plate, contrary to the conventional Rayleigh-Ritz method. The smaller number of undetermined coefficients significantly simplifies the vibration problem. The closed form expression in the form of fundamental frequency parameter is derived for all edges of simply supported moderately thick rectangular plate resting on Pasternak foundation. The results obtained by the present coupled displacement method are compared with existing open literature values wherever possible for various plate boundary conditions such as all edges simply supported, clamped and two opposite edges simply supported and clamped and the agreement found is good.

Go to article

Authors and Affiliations

Korabathina Rajesh
Koppanati Meera Saheb
Download PDF Download RIS Download Bibtex

Abstract

The condition monitoring of offshore wind power plants is an important topic that remains open. This monitoring aims to lower the maintenance cost of these plants. One of the main components of the wind power plant is the wind turbine foundation. This study describes a data-driven structural damage classification methodology applied in a wind turbine foundation. A vibration response was captured in the structure using an accelerometer network. After arranging the obtained data, a feature vector of 58 008 features was obtained. An ensemble approach of feature extraction methods was applied to obtain a new set of features. Principal Component Analysis (PCA) and Laplacian eigenmaps were used as dimensionality reduction methods, each one separately. The union of these new features is used to create a reduced feature matrix. The reduced feature matrix is used as input to train an Extreme Gradient Boosting (XGBoost) machine learning-based classification model. Four different damage scenarios were applied in the structure. Therefore, considering the healthy structure, there were 5 classes in total that were correctly classified. Five-fold cross validation is used to obtain a final classification accuracy. As a result, 100% of classification accuracy was obtained after applying the developed damage classification methodology in a wind-turbine offshore jacket-type foundation benchmark structure.
Go to article

Authors and Affiliations

Jersson X. Leon-Medina
1 2
ORCID: ORCID
Núria Parés
3
ORCID: ORCID
Maribel Anaya
4
ORCID: ORCID
Diego A. Tibaduiza
4
ORCID: ORCID
Francesc Pozo
1 5
ORCID: ORCID

  1. Control, Data, and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE),Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain
  2. Programa de Ingeniería Mecatrónica, Universidad de San Buenaventura, Carrera 8H #172-20, Bogota, Colombia
  3. Laboratori de Càlcul Numèric (LaCàN), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs
  4. Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, Colombia
  5. Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, 08028 Barcelona, Spain
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the original concept of description and analysis of buildings (wall and floor structures), corresponding to the natural components of construction, quasi finite elements (QWSFS). This concept constitutes one of the component of the developed, interactive model of deep foundation buildings. The presented modelling method enables a significant reduction of the number of unknowns, which in the case of interaction building – subsoil, gives a possibility of including the factual geometry and building development stiffness into the FEM model. Therefore the true representation of static operation of the objects can be analysed. The paper gives basic assumptions to the construction of the QWSF-superelements as well as the results of numerical tests conducted. The potential of using the developed modelling concept in the analysis of the structural elements and deep foundation problems, in a three-dimensional system: subsoil – new building – potential neighbouring building development (at each stage of erection of investment, using a structural statics stage analysis) was presented.
Go to article

Authors and Affiliations

Czesław Miedziałowski
1
ORCID: ORCID
Leonas Ustinovichius
2
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering And Environmental Sciences, Wiejska 45E, 15-351 Bialystok
  2. Vilnius Gediminas Technical University, Civil Engineering Faculty, Vilnius, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

Several months after August 4, 2020, Lebanon is still recovering from the enormous explosion at the port of Beirut that killed more than 200 people and injured more than 7500. This explosion ripped the city to shreds and significantly damaged the Beirut port silos. Saint Joseph University of Beirut “the school of engineering ESIB” in collaboration with “Amann” Engineering performed a 3D scan of the Beirut port silos to assess the silos’ level of damage. The obtained data was then compared to the numerical modelling results, obtained from Abaqus explicit, in order to estimate the blast magnitude and to check if the pile foundation can be reused in building new silos at the same place due to the limited space available at the port of Beirut while considering the soil-foundation-structure interaction effect. In addition, the silos’ structural response against the filling of the silos at the time of explosion was investigated. The displacement of the silos and the amount of silos’ damage obtained from the fixed and flexible numerical models indicate that a blast magnitude of 0.44 kt TNT (approximately 1100 tons of Ammonium Nitrate) best estimates the 20 to 30 cm silos’ tilting in the direction of the blast. In addition, the soil and the foundation played a positive role by absorbing part while dissipating less amount of the blast energy. Also, the grains at the time of the event did not affect the silos’ deformation and damage amount. Noting that the displacement of the pile foundation exceeded all limits set by design codes, indicating that the pile foundation cannot be reused to build new silos at the same place.
Go to article

Bibliography


[1] How a Massive Bomb Came Together in Beirut’s Port, The New York Times, https://www.nytimes.com/interactive/2020/09/09/world/middleeast/beirut-explosion, 2020.
[2] How powerful was the Beirut blast Reuters Graphics, https://graphics.reuters.com/LEBANON-SECURITY/BLAST/yzdpxnmqbpx/, 2020.
[3] A. Bauer, A. King and R. Heater, The detonation properties of ammonium nitrate perils, Department of Mining and Engineering, Queens University, Canada, 1978.
[4] A. King, A. Bauer and R. Heater, The explosion hazards of ammonium nitrate and ammonium nitrate based fertilizer compositions, Department of Mining and Engineering, Queen’s University report to the Canadian Fertilizer Institute and Contributing Bodies, Canada, 1982.
[5] DIRECTIVE 2012/18/EU, The control of major-accident hazards involving dangerous substances, 406 amending and subsequently repealing Council Directive 96/82/EC, 2012.
[6] S. E. Rigby, T. J. Lodge, S. Alotaibi, A. D. Barr, S. D. Clarke, G. S. Langdon and A. Tyas, “Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media”, Shock Waves, 2020. https://doi.org/10.1007/ s00193-020-00970-z
[7] J. Diaz, “Explosion analysis from images: Trinity and Beirut”, in: arXiv preprint arXiv:2009.05674, 2020.
[8] C. Aouad, W. Chemissany, P. Mazzali, Y. Temsah and A. Jahami, “Beirut explosion: Energy yield from the fireball time evolution in the first 230 milliseconds”, in: arXiv preprint arXiv:2010.13537, 2020.
[9] C. Stennett, S. Gaulter and J. Akhavan, “An estimate of the TNT-equivalent net explosive quantity (NEQ) of the Beirut Port explosion using publicly-available tools and data”, Journal of Propellants, Explosives, Pyrotechnics vol. 45, pp. 1675–1679, 2020. https://doi.org/10.1002/prep.202000227
[10] H. Pasman, C. Fouchier, S. Park, N. Quddus and D. Laboureur, “Beirut ammonium nitrate explosion: Are not we really learning anything”, Journal of Process Safety, vol. 39, p. 12203, 2020. https://doi.org/10.1002/prs.12203
[11] G. Valsamos, M. Larcher and F. Casadei, “Beirut explosion 2020: A case study for a large-scale urban blast simulation”, Journal of Safety Science, vol. 137, pp. 105190, 2021. https://doi.org/10.1016/j.ssci.2021.105190
[12] M 3.3 Explosion – 1 km ENE of Beirut, Lebanon, USGS, https://earthquake.usgs.gov/earthquakes/eventpage/us6000b9bx/executive, 2020.
[13] M. Rayhani and M. El Naggar, “Numerical modeling of seismic response of rigid foundation on soft soil”, International Journal of Geomechics, vol. 8, pp. 336–346, 2008. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)
[14] A. Shehata, M. Ahmed and T. Alazrak, “Evaluation of soil-foundation-structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations”, International Journal of Advanced Structural Engineering, vol. 7, pp. 11–30, 2015. https://doi.org/10.1007/s40091-014-0078-x
[15] J. Rusek , L. Słowik , K. Firek and M. Pitas, “Determining the dynamic resistance of existing steel industrial hall structures for areas with different seismic activity”, Archives of Civil Engineering, LXVI vol. 4, pp. 525–542, 2020. http://dx.doi.org/10.24425/ace.2020.135235
[16] D. Mendez, Stunned Salvador suffers second deadly quake in a month, The BG News, http://media.www.bgnews.com/media/storage/paper883/news/2001/02/14/World/Stunned.Salvador. Suffers Second Deadly Quake In A Month-1283510.shtm, 2001 (accessed Jan. 22, 2008).
[17] K. Patel , A. Goswami and S. Adhikary, “Response characterization of highway bridge piers subjected to blast loading”, Structural Concrete, vol. 21, no. 6, pp. 2377–2395, 2020. https://doi.org/10.1002/suco.201900286
[18] M. Ismail, Y. Ibrahim, M. Nabil and M.M. Ismail, “Response of a 3-D reinforced concrete structure to blast loading”, International Journal of Advanced Applied Sciences, vol. 4, no. 10, pp. 46–53, 2017. https://doi.org/10.21833/ijaas.2017.010.008
[19] F. Fu, “Dynamic response and robustness of tall buildings under blast loading”, Journal of Construction and Steel Research, vol. 80, pp. 299–307, 2013. https://doi.org/10.1016/j.jcsr.2012.10.001
[20] R. Mudragada and S. Mishra, “Effect of blast loading and resulting progressive failure of a cable-stayed bridge”. SN Applied Sciences, vol. 3, p. 322, 2021. https://doi.org/10.1007/s42452-021-04145-y
[21] C. Zhao, Y. Liu , P. Wang, M. Jiang, J. Zhou, X. Kong, Y. Chen and F. Jin, “Wrapping and anchoring effects on CFRP strengthened reinforced concrete arches subjected to blast loads”, Structural Concrete, 2020. https://doi.org/10.1002/suco.202000394
[22] W. Wang, R. Liu and B. Wu, “Analysis of a bridge collapsed by an accidental blast loads”, Engineering Failure Analysis, vol. 36, pp. 353–361, 2014. https://doi.org/10.1016/j.engfailanal.2013.10.022
[23] D. Dunkman, A. Yousef, P. Karve and E. Williamson, Blast performance of prestressed concrete panels, Proc. 2009 Structures Congress, “Don’t Mess with Structural Engineers: Expanding Our Role”, Austin, Texas, pp. 1297–1306, 2009.
[24] W. Raphael, R. Faddoul, R. Feghaly and A. Chateauneuf, “Analysis of Roissy airport Terminal 2E collapse using deterministic and reliability assessments”, Engineering Failure Analysis, vol. 20, pp. 1–8, 2012. https://doi.org/10.1016/j.engfailanal.2011.10.001
[25] A. Edalati and H. Tahghighi, “Investigating the performance of isolation systems in improving the seismic behavior of urban bridges. a case study on the Hesarak bridge”, Archives of Civil Engineering LXV vol. 4, pp. 155–175, 2019. http://doi.org/10.7428/acc-2019-0052
[26] R. Faddoul, W. Raphael, A.H. Soubra and A. Chateauneuf, “Incorporating Bayesian networks in markov decision processes”, Journal of Infrastructure System, vol. 19, no. 4, pp. 415–424, 2013. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000134
[27] W. Raphael, E. Zgheib and A. Chateauneuf, “Experimental investigations and sensitivity analysis to explain the large creep of concrete deformations in the bridge of Cheviré”, Case Studies in Construction Materials, vol. 9, 2018. https://doi.org/10.1016/j.cscm.2018.e00176
[28] W. Raphael, R. Faddoul, F. Geara and A. Chateauneuf, “Improvements to the Eurocode 2 shrinkage model for concrete using a large experimental database”, Structural Concrete, vol. 13, pp. 174–181, 2012. https://doi.org/10.1002/suco.201100029
[29] K. Kawashima, Y. Takahashi, H. Ge, Z. Wu and J. Zhang, “Reconnaissance report on damage of bridges in 2008 Wenchuan, China, earthquake”, Journal of Earthquake Engineering, vol. 13, pp. 956–998, 2009. https://doi.org/10.1080/13632460902859169
[30] Beirut silos at heart of debate about remembering port blast, AP news, https://apnews.com/article/international-news-beirut-lebanon-3aec16ceeebca5b6b2b132aed3cd49d8, 2020 (accessed December 10, 2020).
[31] Lebanon navigates food challenge with no grain silo and few stocks, TBS news, https://tbsnews.net/world/global-economy/lebanon-navigates-food-challenge-no-grain-silo-and-few-stocks-116467, 2020 (accessed August 7, 2020).
[32] H.W. Stephens, The Texas City Disaster 1947, University of Texas Press, Texas, USA, 1997.
[33] S. Mannan, Lees’ Loss Prevention in the Process Industries. Hazard Identification, Assessment 396 and Control, Elsevier, Third Ed., Oxford, United Kingdom, 2005.
[34] R.J. Mainiero and J.H. Rowland, A review of recent accidents involving explosives transport, National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory, 2007.
[35] REPORT 2013-02-I-TX , U.S. chemical safety and hazard investigation board, Investigation report, 400 West fertilizer company fire and explosion, 2016.
[36] M. Bandera, Beirut port silos scan reconstruction - 3D model, Silos Expertise Group, Lebanon Ministry of Commerce, 2021. https://sketchfab.com/models/75059e566100492996630bd3c800d951/embed
[37] Abaqus [Computer Software]. Simulia, Inc.
[38] M. E. Hafezolghorani, F. Hijazi and R. Vaghei, “Simplified damage plasticity model for concrete”, Journal of Structural Engineering, vol. 27, 2017. https://doi.org/10.2749/101686616X1081
[39] Eurocode 4, Actions on structures, EN 1991-4, 2006.
[40] The Beirut Port Explosion, Forensic Architecture, https://forensic417architecture.org/investigation/beirut-port-explosion, 2020 (accessed 16 November 2020).
[41] T. Krauthammer, Modern Protective Structures, CRC Press, Taylor & Francis Group, 2008.
[42] HSE, Safety Report Assessment Guide: Chemical warehouses – Hazards, Health and Safety Executive, United Kingdom, 2012.
[43] Eurocode 2, Design of concrete structures, EN 1992-1-1, 2004.
Go to article

Authors and Affiliations

Sahar Ali Ismail
1
ORCID: ORCID
Wassim Raphael
1
Emmanuel Durand
2
ORCID: ORCID
Fouad Kaddah
1
ORCID: ORCID
Fadi Geara
1
ORCID: ORCID

  1. Civil Engineering Department, Saint Joseph University of Beirut, Beirut 17-5208, Lebanon
  2. Amann Engineering, Geneva 1212, Switzerland
Download PDF Download RIS Download Bibtex

Abstract

In this study, static behaviors of functionally graded plates resting on Winkler-Pasternak elastic foundation using the four-variable refined theory and the physical neutral surface concept is reported. The four-variable refined theory assumes that the transverse shear strain has a parabolic distribution across the plate’s thickness, thus, there is no need to use the shear correction factor. The material properties of the plate vary continuously and smoothly according to the thickness direction by a power-law distribution. The geometrical middle surface of the functionally graded plate selected in computations is very popular in the existing literature. By contrast, in this study, the physical neutral surface of the plate is used. Based on the four-variable refined plate theory and the principle of virtual work, the governing equations of the plate are derived. Next, an analytical solution for the functionally graded plate resting on the Winkler-Pasternak elastic foundation is solved using the Navier’s procedure. In numerical investigations, a comparison of the static behaviors of the functionally graded plate between several models of displacement field using the physical neutral surface is given, and parametric studies are also presented.
Go to article

Bibliography

[1] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.
[2] S-H. Chi and Y-L.Chung. Mechanical behavior of functionally graded material plates under transverse load – Part I: Analysis. International Journal of Solids and Structures, 43(13):3657–3674, 2006. doi: 10.1016/j.ijsolstr.2005.04.011.
[3] V-L. Nguyen and T-P. Hoang. Analytical solution for free vibration of stiffened functionally graded cylindrical shell structure resting on elastic foundation. SN Applied Sciences, 1(10):1150, 2019. doi: 10.1007/s42452-019-1168-y.
[4] A.M. Zenkour and N.A. Alghamdi. Thermoelastic bending analysis of functionally graded sandwich plates. Journal of Materials Science, 43(8):2574–2589, 2008. doi: 10.1007/s10853-008-2476-6.
[5] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[6] I. Mechab, H.A. Atmane, A. Tounsi, H.A. Belhadj, E.A. Adda Bedia. A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mechanica Sinica, 26(6):941–949, 2010. doi: 10.1007/s10409-010-0372-1.
[7] M.T. Tran, V.L. Nguyen, and A.T. Trinh. Static and vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners resting on Winkler–Pasternak elastic foundations. International Journal of Advanced Structural Engineering, 9(2):153–164, 2017. doi: 10.1007/s40091-017-0155-z.
[8] A. Gholipour, H. Farokhi, and M.H. Ghayesh. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dynamics, 79(3):1771–1785, 2015. doi: 10.1007/s11071-014-1773-7.
[9] M.T. Tran, V.L. Nguyen, S.D. Pham, and J. Rungamornrat. Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners. Acta Mechanica, 231:2545–2564, 2020. doi: 10.1007/s00707-020-02658-y.
[10] S-H. Chi and Y-L. Chung. Mechanical behavior of functionally graded material plates under transverse load – Part II: Numerical results. International Journal of Solids and Structures, 43(13):3675–3691, 2006. doi: 10.1016/j.ijsolstr.2005.04.010.
[11] S. Hosseini-Hashemi, H.R.D Taher, H. Akhavan, and M. Omidi. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Applied Mathematical Modelling, 34(5):1276–1291, 2010. doi: 10.1016/j.apm.2009.08.008.
[12] M.S.A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, and E.A. Adda Bedia. Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. Journal of Thermal Stresses, 34(4):315–334, 2011. doi: 10.1080/01495739.2010.550806.
[13] M.Talha and B.N. Singh. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Applied Mathematical Modelling, 34(12):3991–4011, 2010. doi: 10.1016/j.apm.2010.03.034.
[14] H-T. Thai and S-E. Kim. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Composite Structures, 96:165–173, 2013. doi: 10.1016/j.compstruct.2012.08.025.
[15] A. Chikh, A. Tounsi, H. Hebali, and S.R. Mahmoud. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3):289–297, 2017. doi: 10.12989/sss.2017.19.3.289.
[16] H.H. Abdelaziz, M.A.A. Meziane, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, and A.S. Alwabli. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel and Composite Structures, 25(6):693–704, 2017. doi: 10.12989/scs.2017.25.6.693.
[17] D-G. Zhang, Y-H. Zhou. A theoretical analysis of FGM thin plates based on physical neutral surface. Computational Materials Science, 44(2):716–720, 2008. doi: 10.1016/j.commatsci.2008.05.016.
[18] A.A. Bousahla, M.S.A. Houari, A. Tounsi A, E.A. Adda Bedia. A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. International Journal of Computational Methods, 11(06):1350082, 2014. doi: 10.1142/S0219876213500825.
[19] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[20] D-G. Zhang. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica, 49(2):283–293, 2014. doi: 10.1007/s11012-013-9793-9.
[21] D-G. Zhang. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Composite Structures, 100:121–126, 2013. doi: 10.1016/j.compstruct.2012.12.024.
[22] H-T. Thai and B. Uy. Levy solution for buckling analysis of functionally graded plates based on a refined plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(12):2649–2664, 2013. doi: 10.1177/0954406213478526.
[23] Y. Khalfi, M.S.A. Houari, and A. Tounsi. A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation. International Journal of Computational Methods, 11(05):1350077, 2014. doi: 10.1142/S0219876213500771.
[24] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, and A. Tounsi. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1):265–275, 2016. doi: 10.1007/s40430-015-0354-0.
[25] H. Shahverdi and M.R. Barati. Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science, 120:82–99, 2017. doi: 10.1016/j.ijengsci.2017.06.008.
[26] R.P. Shimpi and H.G. Patel. A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22-23):6783–6799, 2006. doi: 10.1016/j.ijsolstr.2006.02.007.
[27] H-T. Thai and D-H. Choi. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71(16):1850–1858, 2011. doi: 10.1016/j.compscitech.2011.08.016.
[28] M.H. Ghayesh. Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams. The European Physical Journal Plus, 134(8):401, 2019. doi: 10.1140/epjp/i2019-12472-x .
[29] M.H. Ghayesh. Nonlinear oscillations of FG cantilevers. Applied Acoustics, 145:393–398, 2019. doi: 10.1016/j.apacoust.2018.08.014.
[30] M.H. Ghayesh. Dynamical analysis of multilayered cantilevers. Communications in Nonlinear Science and Numerical Simulation, 71:244–253, 2019. doi: 10.1016/j.cnsns.2018.08.012.
[31] M.H. Ghayesh. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics – A/Solids, 73:492–499, 2019. doi: 10.1016/j.euromechsol.2018.09.001.
[32] M.H. Ghayesh. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science, 124:115–131, 2018. doi: 10.1016/j.ijengsci.2017.11.004.
[33] A.T. Trinh, M.T. Tran, H.Q. Tran, and V.L. Nguyen. Vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners. Vietnam Journal of Science and Technology, 55(3):382–392, 2017. doi: 10.15625/2525-2518/55/3/8823.
Go to article

Authors and Affiliations

Van Loi Nguyen
1
ORCID: ORCID
Minh Tu Tran
1
ORCID: ORCID
Van Long Nguyen
1
Quang Huy Le
2

  1. Department of Strength of Materials, National University of Civil Engineering, Hanoi, Vietnam
  2. Department of Highway Engineering, Faculty of Civil Engineering, University of Transport Technology, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

High-pressure jet grouting pile is a kind of stratum reinforcement technology developed in recent years. Due to its characteristics of high solid strength, fast construction, low noise, safety and reliability, low cost, controllable reinforcement diameter, strong adaptability to stratum, and good reinforcement effect for soft soil, loose soil and water-rich stratum, high-pressure jet grouting pile technology has been more and more widely used in foundation treatment, water stop, and seepage prevention, tunnel lining and other fields in recent years. As a country with a relatively late development of underground construction engineering, Vietnam has little research on special geotechnical reinforcement technology, especially on special geotechnical reinforcement technology around urban underground construction engineering, especially on its theoretical analysis and practical application. Therefore, this thesis combines the Vietnam Trung Hoa tunnel project as an example, using the theoretical calculation formula and field monitoring measurement comparing the two methods, the high pressure jet grouting pile system research in Vietnam in the underground engineering reinforcement principle and application effect, get to the actual engineering design and construction has a guiding significance to the research, provides the reference for future similar projects. Finally, the application effect of high-pressure jet grouting pile in underground building reinforcement project is evaluated, which proves that high-pressure jet grouting pile has good applicability and economic benefit in underground building reinforcement project in Vietnam.

Go to article

Authors and Affiliations

Xuan Loi Nguyen
Li Wu
ORCID: ORCID
Khanh Tung Nguyen
Quang Anh Bui
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews latest developments of substructures for offshore wind turbines focusing on investigations and applications of hybrid foundations. Model tests and numerical analyses were used to simulate the loading of hybrid piles in sand. The results of pile-soil interaction were investigated to confirm the changes in soil stiffness around the hybrid monopile head. The mechanism and factors affecting the change in lateral stiffness of the hybrid foundation were explained by analysing p–y curves for M+H loading conditions in sand. Based on this research, a new shape of p–y curves for hybrid monopiles was established and a method for determining key parameters was proposed. The effectiveness of new p–y curves was verified by comparing back-calculated results with those from numerical simulations. The conducted tests confirmed that the hybrid monopile displacement is 30–50% smaller when compared to a standard monopile with similar dimensions. The gained experiences can be useful for designers and researchers to enhance the design of foundations for offshore wind turbines.
Go to article

Authors and Affiliations

Krzysztof Trojnar
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, al. Powstanców Warszawy 12, 00-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper attempts to place John Rawls’s social theory in an ontological frame of ideas. Józef M. Bocheński’s theory of systems was chosen to describe social reality without prejudging its role in the adequate theory. By adopting this approach the author presents several issues one by one: the characteristics of political philosophy and its relation to the ontology of social reality, Bocheński’s systems theory, the analysis of the industrial enterprise as a model example of a heterogeneous, dynamic and organic system, and Rawls’s structure of society. All this is done in terms of systems theory. The resulting outcome provides, among other things, a formal definition of Rawls’s basic social structure expressed in the language of systems theory, and it supports the thesis that the synthetic entity responsible for social functioning, such as the state, is correlated with the principles of justice as proposed by Rawls.
Go to article

Bibliography

Bertalanffy L. (1984), Ogólna teoria systemów. Podstawy, rozwój, zastosowania, przeł. E. Woydyłło‑Woźniak, Warszawa: Państwowe Wydawnictwo Naukowe.
Bocheński J.M. (1986), The Concept of the Free Society, „The Monist” 69 (2), s. 207– 215.
Bocheński J.M. (1993), Przyczynek do filozofii przedsiębiorstwa przemysłowego, przeł. J. Garewicz, w: J.M. Bocheński, Logika i filozofia, red. J. Parys, Biblioteka Współczesnych Filozofów, Warszawa: Wydawnictwo Naukowe PWN.
Bunge M. (1979), Treatise on Basic Philosophy, vol. 4: Ontology II: A World of Systems, Dordrecht – Boston – London: D. Reidel Publishing Company.
Ingarden R. (1972), Książeczka o człowieku, Kraków: Wydawnictwo Literackie.
Ingarden R. (1974), Wstęp do fenomenologii Husserla, przeł. A. Półtawski, Warszawa: Państwowe Wydawnictwo Naukowe.
Ingarden R. (1987), Spór o istnienie świata, t. I, t. II, cz. 1 i 2, wyd. III, Warszawa: Państwowe Wydawnictwo Naukowe.
Kaczmarek J. (2008), Indywidua. Idee. Pojęcia. Badania z zakresu ontologii sformalizowanej, Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Kaczmarek J. (2016), Atom ontologiczny: atom substancji, „Przegląd Filozoficzny – Nowa Seria” 4 (100), s. 109–124.
Rawls J. (1971), A Theory of Justice, Cambridge, MA: Harvard University Press.
Rawls J. (1993), Political Liberalism, New York: Columbia University Press.
Rawls J. (1999), The Law of Peoples, Cambridge, MA: Harvard University Press.
Rawls J. (2001), Justice as Fairness: A Restatement, red. E. Kelly, Cambridge, MA: Harvard University Press.
Stróżewski W. (2003), Ontologia, Kraków: Znak – Aureus.
Wenar L. (2021), John Rawls, w: E.N. Zalta (red.), The Stanford Encyclopedia of Philosophy, Summer 2021 Edition, https://plato.stanford.edu/archives/sum2021/entries/rawls/.
Go to article

Authors and Affiliations

Janusz Kaczmarek
1
ORCID: ORCID

  1. Uniwersytet Łódzki, Instytut Filozofii, ul. Lindleya 3/5, 90-131 Łódź
Download PDF Download RIS Download Bibtex

Abstract

The design of new investments with underground floors in the downtown urban fabric calls for determining its impact on existing, often historic, neighboring facilities. The article presents the results of own research on 3D spatial arrangement numerical modeling of this type of investment. The scope of the research includes the analysis of neighboring buildings (including historic buildings), construction of the 3D numerical model, and calibration of the subsoil model taking into account the actual results of geodetic measurements. Own research as well as the completed housing development complex in Poland, downtown Warsaw, including data from project design and implementation documentation serve as the basis for research and analysis. As a result of said research and analysis, it was found that 3D computational models allow mapping of actual impacts within the designed new buildings and neighboring buildings, and as consequence - after appropriate calibration - a good reflection of soil displacements in the area of the planned investment. The knowledge of the anticipated values of soil displacements related to erecting new buildings is necessary at the design and implementation stages to ensure safety in all phases of works of existing buildings.
Go to article

Authors and Affiliations

Hanna Michalak
1
ORCID: ORCID
Paweł Przybysz
1

  1. Warsaw University of Technology, Faculty of Architecture, 55 Koszykowa St, 00-659 Warsaw, Poland

This page uses 'cookies'. Learn more