Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 147
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this stud y, we attempt to analyse free nonlinear vibrations of buckling in laminated composite beams. Two new methods are applied to obtain the analytical solution of the nonlinear governing equation of the problem. The effects of different parameters on the ratio of nonlinear to linear natural frequencies of the beams are studied. These methods give us an agreement with numerical results for the whole range of the oscillation amplitude.

Go to article

Authors and Affiliations

G. Abdollahzadeh
M. Ahmadi
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of how the nonlinear boundary condition [1] may be applied in nonlinear problems of electromagnetic field theory. It is introduced for problems with nonlinear conductivity. An analytical procedure has been constructed, which seeks to reduce calculations related with the nonlinear region. In order to verify the proposed solutions, two problems have been formulated: one of linear and the other of cylindrical symmetry. These have been additionally solved by the authors’ modification of the perturbation method that has been described in previous papers [7, 8, 10]. The electromagnetic field distribution obtained thereby has served as a referential result since it can obtain very accurate solutions [10]. Relative errors of electric and magnetic field strength are introduced to verify the results.

Go to article

Authors and Affiliations

Marcin Sowa
Dariusz Spałek
Download PDF Download RIS Download Bibtex

Abstract

The task of electroacoustic devices is a transmission of audio signals. The transmitted signal should be distorted as little as possible. Nonlinear distortions are the distortions depending on signal level. The types of nonlinear distortions as well as their measures are presented in the paper. The weakest device in an electroacoustic chain is a loud-speaker. It causes the greatest degradation of the signal. It is usually the most nonlinear part of the electroacoustic system. The nonlinearities in loudspeakers are described in details. Other types of nonlinear distortions as transient intermodulation in power amplifiers and distortions caused by the A/C sampling are also presented.

Go to article

Authors and Affiliations

Andrzej Dobrucki
Download PDF Download RIS Download Bibtex

Abstract

The object of the present study is to investigate the influence of damping uncertainty and statistical correlation on the dynamic response of structures with random damping parameters in the neighbourhood of a resonant frequency. A Non-Linear Statistical model (NLSM) is successfully demonstrated to predict the probabilistic response of an industrial building structure with correlated random damping. A practical computational technique to generate first and second-order sensitivity derivatives is presented and the validity of the predicted statistical moments is checked by traditional Monte Carlo simulation. Simulation results show the effectiveness of the NLSM to estimate uncertainty propagation in structural dynamics. In addition, it is demonstrated that the uncertainty in damping indeed influences the system response with the effects being more pronounced for lightly damped structures, higher variability and higher statistical correlation of damping parameters.

Go to article

Authors and Affiliations

B. Tiliouine
B. Chemali
Download PDF Download RIS Download Bibtex

Abstract

An application of nonlinear optimisation methods to the solution of optimal brake torques for the ESP system is presented. The plane model of a vehicle is worked out and then used in the optimisation process. Two tasks are considered; the first when the vehicle motion is disturbed by bumps and ruts, the second when the vehicle changes the lane. The results of numerical calculation are included.
Go to article

Authors and Affiliations

Witold Grzegożek
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the general governing equations of electrodynamics and continuum mechanics that need to be considered while mathematically modelling the behaviour of electromagnetic acoustic transducers (EMATs). We consider the existence of finite deformations for soft materials and the possibility of electric currents, temperature gradients, and internal heat generation due to dissipation. Starting with Maxwell’s equations of electromagnetism and balance laws of nonlinear elasticity, we present the governing equations and boundary conditions in incremental form in order to solve wave propagation problems of boundary value type.

Go to article

Authors and Affiliations

Prashant Saxena
Download PDF Download RIS Download Bibtex

Abstract

The above-threshold operation of a Fabry-Perot laser with a nonlinear PT (parity time) mirror is investigated. For the first time, the analysis accounts for gain saturation of an active medium as well as gain and loss saturation effects in the PT mirror. The obtained laser output intensity characteristics have been demonstrated as a function of various PT mirror parameters such as: the ratio of the PT structure period to laser operating wavelength, number of PT mirror primitive cells, and gain and loss saturation intensities of the PT mirror gain and loss layers. Two functional configurations of the laser have been considered: laser operating as a discrete device, and as a component of an integrated circuit. It has been shown that, in general, the laser operation depends on the PT mirror orientation with respect to the active medium of the laser. Moreover, when the laser radiation is outcoupled through the PT mirror to the free space, bistable operation is possible, when losses of the mirror’s loss layer saturate faster than gain of the gain layer. Furthermore, for a given saturation intensity of the mirror loss layers, the increase of the saturation intensity of the mirror gain layers causes increasing output intensity, i.e., the PT mirror additionally amplifies the laser output signal.
Go to article

Bibliography

  1. C.M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5243–5246, Jun. 1998, doi: 10.1103/PhysRevLett.80.5243.
  2. Kulishov, J.M. Laniel, N. Bélanger, J. Azaña, and D.V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express, vol. 13, no. 8, pp. 3068–3078, Apr. 2005, doi: 10.1364/OPEX.13.003068.
  3. Kulishov, B. Kress, and H.F. Jones, “Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating,” Opt. Express, vol. 22, no. 19, pp. 23164–23181, Sep. 2014, doi: 10.1364/OE.22.023164.
  4. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett., vol. 106, no.  21, p. 213901, May 2011, doi: 10.1103/PhysRevLett.106.213901.
  5. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, and Z.H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett., vol. 100, no. 10, p. 103904, Mar. 2008, doi: 10.1103/PhysRevLett.100.103904.
  6. M.C. Zheng, D.N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A, vol. 82, no. 1, p. 010103, Jul. 2010, doi: 10.1103/PhysRevA.82.010103.
  7. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition,” Phys. Rev. Lett., vol. 112, no. 14, p. 143903, Apr. 2014, doi: 10.1103/PhysRevLett.112.143903.
  8. El-Ganainy, K.G. Makris, D.N. Christodoulides, and Z.H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett., vol. 32, no. 17, pp. 2632–2634, Sep. 2007, doi: 10.1364/OL.32.002632.
  9. Ge and R. El-Ganainy, “Nonlinear Modal Interactions in PT-Symmetric Lasers,” in Frontiers in Optics 2016, 2016, p.  JW4A.186, doi: 10.1364/FIO.2016.JW4A.186.
  10. Feng, J. Ma, Z. Yu, and X. Sun, “Circular Bragg lasers with radial PT symmetry: design and analysis with a coupled-mode approach,” Photonics Res., vol. 6, no. 5, pp. A38–A42, May 2018, doi: 10.1364/PRJ.6.000A38.
  11. Botey, W.W. Ahmed, J. Medina, R. Herrero, and K. Staliunas, “Non-Hermitian Broad Aperture Semiconductor Lasers Based on PT-Symmetry,” in 21st International Conference on Transparent Optical Networks (ICTON 2019), 2019, pp. 1–4, doi: 10.1109/ ICTON.2019.8840291.
  12. Mossakowska-Wyszyńska, P. Niedźwiedziuk, P. Witoński, and P. Szczepański, “Analysis of Light Generation in Laser with PT- Symmetric Mirror,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. JTu5A.50, doi: 10.1364/BGPPM.2018.JTu5A.50.
  13. Zhu, Y. Zhao, J. Fan, and L. Zhu, “Modal Gain Analysis of Parity-Time-Symmetric Distributed Feedback Lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 5, pp. 5–11, Sep.  2016, doi: 10.1109/JSTQE.2016.2537209.
  14. Phang, A. Vukovic, H. Susanto, T.M. Benson, and P. Sewell, “Ultrafast optical switching using parity–time symmetric Bragg gratings,” J. Opt. Soc. Am. B, vol. 30, no. 11, pp. 2984‒2991, 2013, doi: 10.1364/JOSAB.30.002984.
  15. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings,” Opt. Lett., vol. 39, no. 9, pp. 2603–2606, May 2014, doi: 10.1364/OL.39.002603.
  16. Liu, X.-T. Xie, C.-J. Shan, T.-K. Liu, R.-K. Lee, and Y. Wu, “Optical bistability in nonlinear periodical structures with PT-symmetric potential,” Laser Phys., vol. 25, no. 1, p. 015102, 2015, doi: 10.1088/1054-660X/25/1/015102.
  17. Mukherjee and P.C. Jana, “Controlled optical bistability in parity-time-symmetric coupled micro-cavities: Possibility of all-optical switching,” Physica E Low Dimens. Syst. Nanostruct., vol. 117, p. 113780, Mar. 2020, doi: 10.1016/j.physe.2019.113780.
  18. D.R. Paschotta, “Pockels Effect,” [Online]. Available: www.rp-photonics.com/pockels_effect.html. [Accessed: 11. Dec. 2020].
  19. Kamp, J. Hofmann, A. Forchel, and S. Lourdudoss, “Ultrashort InGaAsP/InP lasers with deeply etched Bragg mirrors,” Appl. Phys. Lett., vol. 78, no. 26, pp. 4074–4075, Jun. 2001, doi: 10.1063/1.1377623.
  20. Happach, et al., “Temperature-Tolerant Wavelength-Setting and -Stabilization in a Polymer-Based Tunable DBR Laser,” J. Light. Technol., vol. 35, no. 10, pp. 1797–1802, May 2017, doi: 10.1109/JLT.2017.2652223.
  21. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photonics, vol. 4, no. 5, p. 050901, May 2019, doi: 10.1063/1.5087862.
  22. F.M. Soares, M. Baier, T. Gaertner, N. Grote, M. Moehrle, T. Beckerwerth, P. Runge, and M. Schell, “InP-Based Foundry PICs for Optical Interconnects,” Appl. Sci., vol. 9, no. 8, p.  1588, Apr. 2019, doi: 10.3390/app90815a88.
  23. NeoPhotonics Corporation, “Indium Phosphide PICs,” [Online]. Available: www.neophotonics.com/technology/indium-phosphide-pics/. [Accessed: 23. May 2019].
  24. Phang, Theory and numerical modelling of parity-time symmetric structures for photonics, PhD thesis, University of Nottingham, 15 Jul. 2016. [Online]. Available: eprints.nottingham.ac.uk/32596/ [Accessed: 30. Nov. 2018]
  25. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of Nonlinear Loss and Gain in Multilayer PT-Symmetric Bragg Grating,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–11, Dec. 2017, doi: 10.1109/JQE.2017.2761380.
  26. O.V. Shramkova and G.P. Tsironis, “Resonant Combinatorial Frequency Generation Induced by a PT-Symmetric Periodic Layered Stack,” IEEE J. Sel. Top. QE., vol. 22, no. 5, p. 5000307, Sep./Oct. 2016, doi: 10.1109/JSTQE.2015.2505139.
  27. Haug and L. Banyai, Red., Optical Switching in Low-Dimensional Systems. Plenum Press, New York, Springer US, 1989, pp. 35‒48.
  28. Garmire and A. Kost, Red., Nonlinear Optics in Semiconductors I: Nonlinear Optics in Semiconductor Physics I, 1st edition. Academic Press US, 1998, pp. 364‒371.
Go to article

Authors and Affiliations

Agnieszka Mossakowska-Wyszyńska
1
ORCID: ORCID
Piotr Witoński
1
ORCID: ORCID
Paweł Szczepański
1 2
ORCID: ORCID

  1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The time period of a jet engines full acceleration (from idle run rotating speed to full thrust) is a very important operational parameter. Minimization of this period is an important problem to be solved during the design of the fuel supply and control system. There are many methods of acceleration process control, especially in the case of engines with complicated design configurations. This work presents the problem of acceleration of a simple, single spool turbine jet engine with a so-called stable geometry, in which only one input (control) signal exists - fuel flow rate. Two methods of acceleration control consisting of limitation of the maximum allowable temperature of working medium in front of and behind the turbine in transient states were analyzed. In order to avoid difficulties associated with the direct measurement of actual temperatures, the so-called nonlinear engine observer was applied. With the use of the computer simulation method it was proven that the control algorithm with the limited maximum temperature in front of the turbine makes it possible the shortening of the acceleration time period significantly in comparison with a similar algorithm, that realizes the limitation of temperature behind the turbine.
Go to article

Authors and Affiliations

Wojciech I. Pawlak
Download PDF Download RIS Download Bibtex

Abstract

Model predictive control (MPC) algorithms brought increase of the control system performance in many applications thanks to relatively easily solving issues that are hard to solve without these algorithms. The paper is focused on investigating how to further improve the control system performance using a trajectory of parameters weighting predicted control errors in the performance function of the optimization problem. Different shapes of trajectories are proposed and their influence on control systems is tested. Additionally, experiments checking the influence of disturbances and of modeling uncertainty on control system performance are conducted. The case studies were done in control systems of three control plants: a linear non- minimumphase plant, a nonlinear polymerization reactor and a nonlinear thin film evaporator. Three types of MPC algorithms were used during research: linear DMC, nonlinear DMC with successive linearization (NDMC–SL), nonlinear DMC with nonlinear prediction and linearization (NDMC–NPL). Results of conducted experiments are presented in greater detail for the control system of the polymerization reactor, whereas for the other two control systems only the most interesting results are presented, for the sake of brevity. The experiments in the control system of the linear plant were done as preliminary experiments with the modified optimization problem. In the case of control system of the thin film evaporator the researched mechanisms were used in the control system of a MIMO plant showing possibilities of improving the control system performance.

Go to article

Authors and Affiliations

Robert Nebeluk
Piotr Marusak
Download PDF Download RIS Download Bibtex

Abstract

A heterogeneous Bertrand duopoly game with bounded rational and adaptive players manufacturing differentiated products is subject of investigation. The main goal is to demonstrate that participation of one bounded rational player in the game suffices to destabilize the duopoly. The game is modelled with a system of two difference equations. Evolution of prices over time is obtained by iteration of a two dimensional nonlinear map. Equilibria are found and local stability properties thereof are analyzed. Complex behavior of the system is examined by means of numerical simulations. Region of stability of the Nash equilibrium is demonstrated in the plane of the speeds of adjustment. Period doubling route to chaos is presented on the bifurcation diagrams and on the largest Lyapunov characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors are depicted and their fractal dimensions are computed. Sensitive dependence on initial conditions is evidenced.

Go to article

Authors and Affiliations

Tomasz Dubiel-Teleszyński
Download PDF Download RIS Download Bibtex

Abstract

The acoustic properties of the sitar string are studied with the aid of a physical model. The nonlinearity of the string movement caused by the bridge acting as an obstacle to the vibrating string is of special interest. Comparison of the model's audio output to recordings of the instrument shows interesting similarities. The effects dispersion and bridge have on the sound of the instrument are demonstrated in the model.

Go to article

Authors and Affiliations

Sadjad Siddiq
Download PDF Download RIS Download Bibtex

Abstract

Since the so-called Hopf-type amplifier has become an established element in the modeling of the mammalian hearing organ, it also gets attention in the design of nonlinear amplifiers for technical applications. Due to its pure sinusoidal response to a sinusoidal input signal, the amplifier based on the normal form of the Andronov-Hopf bifurcation is a peculiar exception of nonlinear amplifiers. This feature allows an exact mathematical formulation of the input-output characteristic and thus deeper insights of the nonlinear behavior. Aside from the Hopf-type amplifier we investigate an extension of the Hopf system with focus on ambiguities, especially the separation of solution sets, and double hysteresis behavior in the input-output characteristic. Our results are validated by a DSP implementation.

Go to article

Authors and Affiliations

Marco Reit
Michael Berens
Wolfgang Mathis
Download PDF Download RIS Download Bibtex

Abstract

The global (absolute) stability of nonlinear systems with negative feedbacks and positive descriptor linear parts is addressed. Transfer matrices of positive descriptor linear systems are analyzed. The characteristics u = f(e) of the nonlinear parts satisfy the condition
ke  ≤ f(e) ≤ ke for some positive k, k. It is shown that the nonlinear feedback systems are globally asymptotically stable if the Nyquist plots of the positive descriptor linear parts are located in the right-hand side of the circles (–¹/k₁,  –¹/k₂).

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on different approaches to the safety assessment of concrete structures designed using nonlinear analysis. The method based on the concept of partial factors recommended by Eurocodes, and methods proposed by M. Holicky, and by the author of this paper are presented, discussed and illustrated on a numerical example. Global safety analysis by M. Holicky needs estimation of the resistance coefficient of variation from the mean and characteristic values of resistance, and requires two separate nonlinear analyses. The reliability index value and the sensitivity factor for resistance should be also identified. In the method proposed in this paper, the resistance coefficient of variation necessary to calculate the characteristic value of resistance may be adopted from test results and the resultant partial factor for materials properties, and may be calculated according to Eurocodes. Thus, only one nonlinear analysis from mean values of reinforcing steel and concrete is required.

Go to article

Authors and Affiliations

Sz. Woliński
Download PDF Download RIS Download Bibtex

Abstract

Nonlinear excitation of the entropy perturbations by magnetosonic waves in a uniform and infinite plasma model is considered. The wave vector of slow or fast mode forms an arbitrary angle θ (0≤θ≤π) with the equilibrium straight magnetic field, and all perturbations are functions of the time and longitudinal coordinate. Thermal conduction is the only factor which destroys isentropicity of wave perturbations and causes the nonlinear excitation of the entropy mode. A dynamic equation is derived which describes excitation of perturbation in the entropy mode in the field of dominant magnetosonic mode. Effects associatiated with temperature dependent and anisotropic thermal conduction are considered and discussed.
Go to article

Bibliography

1. Afanasyev A.N., Nakariakov V.M. (2014), Nonlinear slow magnetoacoustic waves in coronal plasma structures, Astronomy and Astrophysics, 573: A32, doi: 10.1051/0004-6361/201424516.
2. Ballai I. (2006), Nonlinear waves in solar plasmas – a review, Journal of Physics: Conference Series, 44(20): 20–29, doi: 10.1088/1742-6596/44/1/003.
3. Braginskii S.I. (1965), Transport processes in plasma, Reviews of Plasma Physics, M.A. Leontovich [Ed.], Vol. 1, p. 205, Consultants Bureau, New York.
4. Callen J.D. (2003), Fundamentals of Plasma Physics, Lecture Notes, University of Wisconsin, Madison.
5. Chin R., Verwichte E., Rowlands G., Nakariakov V.M. (2010), Self-organization of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17(32): 107–118, doi: 10.1063/1.3314721.
6. Dahlburg R.B., Mariska J.T. (1988), Influence of heating rate on the condensational instability, Solar Physics, 117(1): 51–56, doi: 10.1007/BF00148571.
7. Field G.B. (1965), Thermal instability, The Astrophysical Journal, 142: 531–567, doi: 10.1086/148317.
8. Heyvaerts J. (1974), The thermal instability in a magnetohydrodynamic medium, Astronomy and Astrophysics, 37(1): 65–73.
9. Hollweg J.V. (1985), Viscosity in a magnetized plasma: Physical interpretation, Journal of Geophysical Research, 90(A8): 7620–7622, doi: 10.1029/JA090iA08p07620.
10. Ibáñez S.M.H., Parravano A. (1994), On the thermal structure and stability of configurations with heat diffusion and a gain-loss function. 3: Molecular gas, The Astrophysical Journal, 424(2): 763–771, doi: 10.1086/173929.
11. Krall N.A., Trivelpiece A.W. (1973), Principles of Plasma Physics, McGraw Hill, New York.
12. Kumar N., Kumar P., Singh S. (2006), Coronal heating by MHD waves, Astronomy and Astrophysics, 453: 1067–1078, doi: 10.1051/0004-6361:20054141.
13. Leble S., Perelomova A. (2018), The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.
14. De Moortel I., Hood A.W. (2004), The damping of slow MHD waves in solar coronal magnetic fields, Astronomy and Astrophysics, 415: 705–715, doi: 10.1051/0004-6361:20034233.
15. Nakariakov V.M., Mendoza-Briceño C.A., Ibáñez M.H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas, The Astrophysical Journal, 528(2, Part 1): 767–775, doi: 10.1086/308195.
16. Ofman L., Wang T. (2002), Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction, The Astrophysical Journal, 580(1): L85–L88, doi: 10.1086/345548.
17. Parker E.N. (1953), Instability of thermal fields, The Astrophysical Journal, 117: 431–436, doi: 10.1086/145707.
18. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357: 42–47, doi: 10.1016/j.physleta.2006.04.014.
19. Perelomova A. (2008), Modelling of acoustic heating induced by different types of sound, Archives of Acoustics, 33(2): 151–160.
20. Perelomova A. (2018a), Magnetoacoustic heating in a quasi-isentropic magnetic gas, Physics of Plasmas, 25: 042116, doi: 10.1063/1.5025030.
21. Perelomova A. (2018b), Magnetoacoustic heating in nonisentropic plasma caused by different kinds of heating-cooling function, Advances in Mathematical Physics, 2018: Article ID 8253210, 12 pages, doi: 10.1155/2018/8253210.
22. Perelomova A. (2020), Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow, Physics of Plasmas, 27(10): 102101, doi: 10.1063/5.0015944.
23. Ruderman M.S., Verwichte E., Erdélyi R., Goossens M. (1996), Dissipative instability of the MHD tangential discontinuity in magnetized plasmas with an isotropic viscosity and thermal conductivity, Journal of Plasma Physics, 56(2): 285–306, doi: 10.1017/S0022377800019279.
24. Sabri S., Poedts S., Ebadi H. (2019), Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point, Astronomy and Astrophysics, 623, doi: 10.1051/0004-6361/201834286.
25. Soler R., Ballester J.L., Parenti S. (2012), Stability of thermal modes in cool prominence plasmas, Astronomy and Astrophysics, 540: A7, doi: 10.1051/0004-6361/201118492.
26. Spitzer L. (1962), Physics of Fully Ionized Gases, 2nd ed., New York, Interscience.
27. Vesecky J.F., Antiochos S.K., Underwood J.H. (1979), Numerical modeling of quasi-static coronal loops. I – Uniform energy input, The Astrophysical Journal, 233(3): 987–997, doi: 10.1086/157462.
28. Wang T. (2011), Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology, Space Science Reviews, 158: 397–419, doi: 10.1007/s11214-010-9716-1.
29. Zavershinskii D.I., Molevich N.E., Riashchikov D.S., Belov S.A. (2020), Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability, Physical Review E, 101(4): 043204, doi: 10.1103/PhysRevE.101.043204.
Go to article

Authors and Affiliations

Anna Perelomova
1

  1. Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The global stability of positive continuous-time standard and fractional order nonlinear feedback systems is investigated. New sufficient conditions for the global stability of these classes of positive nonlinear systems are established. The effectiveness of these new stability conditions is demonstrated on simple examples of positive nonlinear systems.

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The article is a continuation of a study on the synthesis of matching multi-terminal networks, also known as compensators. The reactive four-terminal-network compensators for linear loads were introduced in previous publications, but it appeared that they operate effectively with nonlinear loads too. The methods to create a compensator for a mono-harmonic source, which allows complete independence of input from output waveforms, ensuring optimal operating conditions for the source, are presented herein. The work for the first time presents the optimal four-terminal-network compensator applied to a nonlinear load.

Go to article

Authors and Affiliations

M. Jaraczewski
Download PDF Download RIS Download Bibtex

Abstract

The integration of chaos theory and history has been an issue ofmany scientific discussions, but failed to produce any results. Author reexamines the discussions, mathematical features of the theory and claims that proposed ways of integration couldn't have been used practically. Author asks if such integration is possible and i fit can have any intrinsic value for advancement of historical knowledge. Proposed solution is to use chaos theory as a tool, which enables historians to analyze causal relations in the past.
Go to article

Authors and Affiliations

Maciej Gablankowski
Download PDF Download RIS Download Bibtex

Abstract

Reliable evaluation of stress-strain characteristics can be done only in the laboratory where boundary conditions with respect to stress and strain can be controlled. The most popular laboratory equipment is a triaxial apparatus. Unfortunately, standard version of triaxial apparatus can reliable measure strain not smaller than 0.1 %. Such accuracy does not allow to determine stiffness referred to strain range most often mobilized in situ i.e. 10-3 ÷ 10-1%, in which stiffness distribution is highly nonlinear. In order to overcome this problem fundamental modifications of standard triaxial apparatus should be done. The first one concerns construction of the cell. The second refers to method of measurement of vertical and horizontal deformation of a specimen. The paper compares three versions of triaxial equipment i.e. standard cell, the modified one and the cell with system of internal measurement of deformation. The comparison was made with respect to capability of stiffness measurement in strain range relevant for typical geotechnical applications. Examples of some test results are given, which are to illustrate an universal potential of the laboratory triaxial apparatus with proximity transducers capable to trace stress-strain response of soil in a reliable way.

Go to article

Authors and Affiliations

Mirosław J. Lipiński
Małgorzata K. Wdowska
Anna Wudzka
Download PDF Download RIS Download Bibtex

Abstract

The implementation of a new, high-performance float flat glass manufacturing technology in Europe, in conjunction with the growing interest in new glass functions expressed by the construction industry, has led to significant developments in the theory of glass structures. Long time research conducted in the EU countries has been concluded by the technical document CEN/TC 250 N 1060, drawn up as a part of the work of the European Committee for Standardization on the second edition of Eurocodes (EC). The recommendations pertaining to the design of glass structures have been foreseen in the second edition of the Eurocodes, in particular the development of a separate design standard containing modern procedures for static calculations and stability of glass building structures (cf. works M. Feldmann, R. Kasper, K. Langosch and other).

In this paper new static analysis methods for glass plates made of monolithic and laminated glass, declared in th document CEN/TC 250 N 1060 (2014) and recommended in the national standarization document CNR-DT 210 (National Research Council of Italy, 2013) are presented. These static analysis methods are not commonly known in our national engineering environment, and thus require popularization and regional verification. Numerical and analytical simulations presented in this paper for rectangular plates made of monolithic and laminated glass and having various support conditions are of this character. The results of numerical calculations constitute a basis for the discussion of new static analysis methods for plates.

Go to article

Authors and Affiliations

Marian Gwóźdź
ORCID: ORCID
Piotr Woźniczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Double-beam model is considered in many investigations both theoretical and typically engineering ones. One can find different studies concerning analysis of such structures behaviour, especially in the cases where the system is subjected to dynamic excitations. This kind of model is successfully considered as a reliable representation of railway track. Inclusion of nonlinear physical and geometrical properties of rail track components has been justified by various computational studies and theoretical analyses. In order to properly describe behaviour of real structures their nonlinear properties cannot be omitted. Therefore a necessity to search appropriate analytical nonlinear models is recognized and highlighted in published literature. This paper presents essential extension of previously carried out double-beam system analysis. Two nonlinear factors are taken into account and parametrical analysis of the semi-analytical solution is undertaken with special emphasis on different range of parameters describing nonlinear stiffness of foundation and layer between beams. This study is extended by preliminary discussion regarding the dynamic effects produced by a series of loads moving along the upper beam. A new solution for the case of several forces acting on the upper beam with different frequencies of their variations in time is presented and briefly discussed.
Go to article

Authors and Affiliations

Piotr Koziol
1
ORCID: ORCID
Rafał Pilecki
2
ORCID: ORCID

  1. PhD, DSc, Assoc. Prof., Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
  2. MSc, Eng., former student of Cracow University of Technology

This page uses 'cookies'. Learn more