Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.

Go to article

Authors and Affiliations

D. Kisała
K. Furtak
Download PDF Download RIS Download Bibtex

Abstract

In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.

Go to article

Authors and Affiliations

Janusz Badur
Paweł Jóźwik
Michał Karcz
Download PDF Download RIS Download Bibtex

Abstract

The flow of the investigated fluid in a measuring system of a rheometer – a capillary or a slit between rotating parts – may be disturbed by anisotropic behavior of the fluid near the wall. This phenomenon, so-called wall slip, often takes place in concentrated suspensions and solutions of linear polymers and introduces experimental errors to measurement results. There are methods of correction of these errors in the case of capillary and coaxial cylinders measuring systems. In the cone and plate system the correction seems to be more difficult because the width of the gap between cone and plate changes along the radius and thus the influence of the wall slip on the shear stress varies along the radius in an unpredictable and complicated manner. This dependency of the shear stress on the distance from the axis underlies the presented method of correction of experimental results obtained in the cone and plate system. The method requires several series of measurements of shear stress vs. shear rate performed using one measuring set, at various degrees of filling the gap.

Go to article

Authors and Affiliations

Tomasz Kiljański
Download PDF Download RIS Download Bibtex

Abstract

In the article we address matters related to the stability of motion of the car subjected to the external lateral force. We show the possibility to compensate the effect of the external forces my means of the steering wheel angle. We have carried out the analysis for bicycle scheme vehicle and four-wheel model according to linear and nonlinear drift hypothesis. We have considered influence of speed of the car and size of external side force for the period of transition processes of stabilization of the movement.
Go to article

Authors and Affiliations

V. Verbitskii
R. Kuliev
K. Kravchenko
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to reconstruct the location mechanism of a Triassic sandstone wedge within folded Palaeozoic rocks. A vertically oriented Buntsandstein succession (Lower Triassic) from Józefka Quarry (Holy Cross Mountains, central Poland), steeply wedged within folded Devonian carbonates, is recognised as an effect of normal faulting within a releasing stepover. The sandstone succession, corresponding to the Zagnańsk Formation in the local lithostratigraphic scheme, is represented by two complexes, interpreted as deposits of a sand-dominated alluvial plain (older complex), and coarse-grained sands and gravels of a braided river system (younger complex). The sandstone complex was primarily formed as the lowermost part of the several kilometres thick Mesozoic cover of the Holy Cross Mountains Fold Belt (HCFB), later eroded as a result of the Late Cretaceous/Paleogene uplift of the area. Tectonic analysis of the present-day position of the deformed sandstone succession shows that it is fault-bounded by a system of strike-slip and normal faults, which we interpret as a releasing stepover. Accordingly, the formation of the stepover in the central part of the late Palaeozoic HCFB is evidence of a significant role of strike-slip faulting within this tectonic unit during Late Cretaceous/Paleogene times. The faulting was probably triggered by reactivation of the terminal Palaeozoic strike-slip fault pattern along the western border of the Teisseyre–Tornquist Zone.

Go to article

Authors and Affiliations

Stanisław Skompski
Andrzej Konon
Anna Wysocka
Urszula Czarniecka
Download PDF Download RIS Download Bibtex

Abstract

Shear connectors are designed in steel-concrete composite construction to transmit the longitudinal shear, to prevent separation of steel and concrete slabs, and also to increase the structural efficiency of the whole system. In this study, the performances of different types of shear connectors in steel-concrete composite specimens are evaluated by conducting push-out tests under monotonic loading conditions. An ISMB 200 @ 25.4 kg/m universal steel beam measuring 400 mm and a reinforced cement concrete slab measuring 300 mm with a breadth of 200 mm and a thickness of 200 mm reinforced with 8 mm diameter steel rods are used for the experimental study. The results reveal that the load-slip relationships for various types of shear connectors and failure mechanisms are obtained to identify those shear connectors which are more relevant to the steel – concrete composite members.

Go to article

Authors and Affiliations

V. Jayanthi
C. Umarani
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research program of bond between glass fiber reinforced polymer bars and concrete in reference to the steel bars. Bond between the reinforcement and concrete is a crucial parameter governing a behaviour of reinforced concrete members and transferring of the internal forces from concrete to the reinforcement. The use of FRP bars as an equivalent reinforcement to steel in concrete structures has increased in recent years. The FRP bars are very different from steel, mainly due to much lower elasticity modulus and their anisotropic structure. Good performance of FRP reinforced concrete requires sufficient interfacial bond between bars and concrete. However, there are no specific standards referring to the surface preparation of these bars, that leads to variable bond behaviour of the composite reinforcement to the concrete. The objective of the study was to investigate the influence of variable parameters on the bond behaviour to concrete. The experimental program consisted of eighteen beam bond specimens varying in: bar diameter (12 mm, 16 mm, 18 mm) and type of reinforcement (GFRP sand – coated and steel bars). Although the GFRP bars indicated good bond behaviour to concrete, the average bond strength was slightly lower than that of steel reinforcement of 16mm and 18 mm, while it was higher for the GFRP bars of 12 mm diameter.

Go to article

Authors and Affiliations

D. Szczech
R. Kotynia
Download PDF Download RIS Download Bibtex

Abstract

The subject of the study was the production and characterization of three ceramic-metal graded composites, which differed in addition of the metallic phase. The following composites systems were investigated: Al2O3-Mo, Al2O3-Cu, Al2O3-W. Composites were produced by centrifugal slip casting method. This technique combines the classic casting of the slurry into porous molds with the action of centrifugal force. As a result, sleeve-shaped shapes with a metallic phase gradient were obtained. X-ray phase analysis have not revealed new phases in the produced composites. The type of metallic phase and its distribution in the ceramic matrix influenced the hardness of the produced composites.

Go to article

Authors and Affiliations

M. Wachowski
W. Kaszuwara
A. Miazga
K. Konopka
J. Zygmuntowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of direct 3−D fault displacement monitoring along the northern shore of Hornsund Fjord, SW Spitsbergen, Svalbard. The fault displacements have been recorded using three permanently installed optical−mechanical crack gauges since 2009. The monitoring data from all three sites provided evidence for a remarkable slip event that lasted from September 2011 to May 2012. The cause is discussed in some detail with consideration given to both exogenic (temperature changes, surface processes) and endogenic processes (isostatic rebound and regional seismicity). It is proposed that transient fault slips recorded had a tectonic origin and were caused by approximately W−E oriented compression corresponding to regional compression in the Svalbard area.
Go to article

Authors and Affiliations

Josef Stemberk
Miloš Briestenský
Stefan Cacoń
Download PDF Download RIS Download Bibtex

Abstract

Stability control of the roof is the key to safe and efficient mining of the longwall working face for a steeply dipping coal seam. In this study, a comprehensive analysis was performed on the roof destruction, migration, and filling characteristics of a steeply dipping longwall working face in an actual coalmine. Elastic foundation theory was used to construct a roof mechanics model; the effect of the coal seam inclination angle on the asymmetric deformation and failure of the roof under the constraint of an unbalanced gangue filling was considered. According to the model, increasing the coal seam angle, thickness of the immediate roof, and length of the working face as well as decreasing the thickness of the coal seam can increase the length of the contact area formed by the caving gangue in the lower area of the slope. Changes to the length of the contact area affect the forces and boundary conditions of the main roof. Increasing the coal seam angle reduces the deformation of the main roof, and the position of peak deflection migrates from the middle of the working face to the upper middle. Meanwhile, the position of the peak rotation angle migrates from the lower area of the working face to the upper area. The peak bending moment decreases continuously, and its position migrates from the headgate T-junction to the tailgate T-junction and then the middle of the working face. Field test results verified the rationality of the mechanics model. These findings reveal the effect of the inclination coal seam angle on roof deformation and failure and provide theoretical guidance for engineering practice.
Go to article

Bibliography

[1] Y.P. Wu, D.F Yun, P.S. Xie et al., Progress, practice and scientific issues in steeply dipping coal seams fullymechanized mining. J. China Coal Soc. 45 (01):24-34 (2020) (in Chinese).
[2]. Y.P. Wu, B.S. Hu, D Lang et al., Risk assessment approach for rockfall hazards in steeply dipping coal seams. Int. J. Rock Mech. Min. Sci. 138, 104626 (2021). doi: 10.1016/j.ijrmms.2021.104626
[3] D .Y. Zhu, W.L. Gong, Y. Su et al., Application of High-Strength Lightweight Concrete in Gob-Side Entry Retaining in Inclined Coal Seam. Advances in Materials Science and Engineering (2020). doi: 10.1155/2020/8167038
[4] H .W. Wang, Y.P. Wu, J.Q. Jiao et al., Stability Mechanism and Control Technology for Fully Mechanized Caving Mining of Steeply Inclined Extra-Thick Seams with Variable Angles. Mining, Metall. Explor. (2020). doi: 10.1007/ s42461-020-00360-0
[5] R .A. Frumkin, Predicting rock behaviour in steep seam faces (in Russian). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20 (1), A12-A13 (1983). doi: 10.1016/0148-9062(83)91717-5
[6] A. Ladenko, Improvements in working steep seams. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 11 (12), 247. (1974). doi: 10.1016/0148-9062(74)92108-1
[7] Z. Rak, J. Stasica, Z. Burtan et al., Technical aspects of mining rate improvement in steeply inclined coal seams: A case study. Resources 9 (12), 1-16 (2020). doi: 10.3390/resources9120138
[8] H .S. Tu, S.H. Tu, C. Zhang et al., Characteristics of the Roof Behaviours and mine pressure manifestations during the mining of steep coal seam. Arch. Min. Sci. 62 (4), 871-890 (2020).
[9] P .S. Xie, Y.P. Wu, Deformation and failure mechanisms and support structure technologies for goaf-side entries in steep multiple seam mining disturbances. Arch. Min. Sci. 64 (3), 561-574 (2019). doi: 10.24425/ams.2019.129369
[10] Z.Y.Wang, L.M. Dou, J. He et al., Experimental investigation for dynamic instability of coal-rock masses in horizontal section mining of steeply inclined coal seams. Arabian Journal of Geosciences 13, 15 (2020). doi: 10.1007/ s12517-020-05753-5
[11] P .S. Xie, Y. Luo, Y.P. Wu et al., Roof Deformation Associated with Mining of Two Panels in Steeply Dipping Coal Seam Using Subsurface Subsidence Prediction Model and Physical Simulation Experiment. Mining, Metall. Explor. 37 (2), 581-591 (2020). doi: 10.1007/s42461-019-00156-x
[12] X.P. Lai, H. Sun, P.F. Shan et al., Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams. Int. J. Miner. Metall. Mater. 22 (12), 1233-1244 (2015). doi: 10.1007/s12613-015-1190-z
[13] Y.P. Wu, B.S. Hu, P.S. Xie, A New Experimental System for Quantifying the Multidimensional Loads on an on-Site Hydraulic Support in Steeply Dipping Seam Mining. Exp. Tech. 43 (5), 571-585 (2019). doi: 10.1007/s40799-019- 00304-4
[14] Y.D. Zhang, J.Y. Cheng, X.X. Wang et al., Thin plate model analysis on roof break of up-dip or down-dip mining stope. J. Min. Saf. Eng. 27 (4), 487 (2010) (in Chinese).
[15] J.R. Cao, L.M. Dou, G.A. Zhu et al., Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies 13 (22), 6043 (2020). doi: 10.3390/en13226043
[16] H .W. Wang, Y.P. Wu, M. Liu et al., Roof-breaking mechanism and stress-evolution characteristics in partial backfill mining of steeply inclined seams. Geomatics, Natural Hazards and Risk 11 (1), 2006-2035 (2020). doi: 10.1080/1 9475705.2020.1823491
[17] S.R. Islavath, D. Deb, H. Kumar, Numerical analysis of a longwall mining cycle and development of a composite longwall index. Int. J. Rock Mech. Min. Sci. 89, 43-54 (2016).
[18] H . Basarir, O.I. Ferid, O. Aydin, Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis. Int. J. Rock Mech. Min. Sci. 76, 88-97 (2015). doi: 10.1016/j.ijrmms.2015.03.001
[19] J.A. Wang, J.L. Jiao, Criteria of support stability in mining of steeply inclined thick coal seam. Int. J. Rock Mech. Min. Sci. 82, 22-35 (2016). doi: 10.1016/j.ijrmms.2015.11.008
[20] W.Y. Lv, Y.P. Wu, M. Liu et al., Migration law of the roof of a composited backfilling longwall face in a steeply dipping coal seam. Minerals 9 (3) (2019). doi: 10.3390/min9030188
[21] C.F. Huang, Q. Li, S.G.Tian, Research on prediction of residual deformation in goaf of steeply inclined extra- thick coal seam. PLoS ONE 15, 1-14 (2020). doi: 10.1371/journal.pone.0240428
[22] Y.C. Yin, J.C. Zou, Y.B. Zhang et al., Experimental study of the movement of backfilling gangues for goaf in steeply inclined coal seams. Arabian Journal of Geosciences 11 (12) (2018). doi: 10.1007/s12517-018-3686-0
[23] G .S.P Singh, U.K. Singh, Prediction of caving behavior of strata and optimum rating of hydraulic powered support for longwall workings. Int. J. Rock Mech. Min. Sci. 47, 1-16 (2010).
[24] P .S. Xie, Y.Y. Zhang, S.H. Luo et al., Instability Mechanism of a Multi-Layer Gangue Roof and Determination of Support Resistance Under Inclination and Gravity. Mining, Metall. Explor. 37 (5), 1487-1498 (2020). doi: 10.1007/ s42461-020-00252-3
[25] G .J. Wu, W.D. Chen, S.P. Jia et al., Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 130, 104324 (2020). doi: 10.1016/j.ijrmms.2020.104324
[26] Y.Q. Long, Numerical computation of beam on elastic foundation. People’s Education Press, Beijing (1981).

Go to article

Authors and Affiliations

Shenghu Luo
1
ORCID: ORCID
Tong Wang
2
ORCID: ORCID
Yongping Wu
2
ORCID: ORCID
Jingyu Huangfu
2
ORCID: ORCID
Huatao Zhao
3
ORCID: ORCID

  1. Xi’an University of Science and Technology, Department of Mechanics, China
  2. Xi’an University of Science and Technology, School of Energy Engineering, China
  3. Shandong Mining Machinery Group Co., Ltd. China
Download PDF Download RIS Download Bibtex

Abstract

In this scientific publication, research results of two newly developed hot-rolled Fe-Mn-Al-C (X105) and Fe-Mn-Al-Nb-Ti-C (X98) types of steel were compared. These types of steel are characterized by an average density of 6.68 g/cm³, a value 15% lower compared to conventional structural steel. Hot rolling was carried out on a semi-industrial line to evaluate the effect of hot plastic deformation conditions with different cooling variants on the structure. The detailed analysis of phase composition as well as microstructure allows us to state that the investigated steel is characterized by an austenitic-ferritic structure with carbides precipitates. The results of the transmission electron microscopy (TEM) tests of both types of steel after hot rolling showed the occurrence of various deformation effects such as shear bands, micro bands, and lens twins in the microstructure. Based on the research undertaken with the use of transmission electron microscopy, it was found that the hardening mechanism of the X98 and X105 steel is deformation-induced plasticity by the formation of shear bands (SIP) and micro shear bands (MBIP).
Go to article

Bibliography

  1.  M. Bausch, G. Frommeyer, H. Hofmann, E. Balichev, M. Soler, M. Didier, and L. Samek, Ultra high-strength and ductile FeMnAlC light- weight steels, European Commission Research Fund for Coal and Steel; Final Report Grant Agreement RFSR-CT-2006-00027, 2013.
  2.  Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima, “Microstructural control for strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys,” Mater. Sci. Eng. A, vol. 329, no. 331, pp. 680‒685, 2002.
  3.  K. Eipper, G. Frommeyer, W. Fussnegger, and A.K.W. Gerick, High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof, U.S. Patent 20070125454A1, 2002.
  4.  L. Sozańska-Jędrasik, Structure and properties of newly developed TRIPLEX high-manganese steels (title in Polish: Struktura i własności nowoopracowanych stali wysokomanganowych typu TRIPLEX), PhD. Thesis, Silesian University of Technology, Gliwice, Poland 2020, [in Polish].
  5.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and K. Matus, ”Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels,” Arch. Metall. Mater., vol. 63, no. 1, pp.  265‒276, 2018.
  6.  L. Sozańska-Jędrasik, J. Mazurkiewicz, K. Matus, and W. Borek, “Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot- Rolling,” Materials, vol. 13, no. 3, p. 739, 2020.
  7.  G. Frommeyer and U. Brüx, “Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels,” Steel Res. Int., vol. 77, no. 9‒10, pp. 627‒633, 2006.
  8.  M. Jabłońska, “Struktura i Właściwości Austenitycznej Stali Wysokomanganowej Umacnianej Wskutek Mechanicznego Bliźniakowania w Procesach Dynamicznej Deformacji,” Publishing house of the Silesian University of Technology (Wydawnictwo Politechniki Śląskiej), Gliwice, Poland, 2016, [in Polish].
  9.  S. Chen, R. Rana, A. Haldar and R.K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol.  89, pp. 345‒391, 2017.
  10.  A. Grajcar, “Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji,” STAL Metale & Nowe Technologie, vol.  7‒8, no. 10‒13, pp. 10‒13, 2013, [in Polish].
  11.  S.S. Sohn et al., “Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization,” Acta Mater., vol. 96, pp. 301‒310, 2015.
  12.  M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang and K.T. Park, “Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature,” Mater. Sci. Eng. A, vol. 586, pp. 276‒283, 2013.
  13.  U. Brüx, G. Frommeyer, and J. Jimenez, “Light-weight steels based on iron-aluminium – Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties,” Steel Res., vol. 73, no. 12, pp. 543‒548, 2002.
  14.  J.D. Yoo and K.T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Mater. Sci. Eng. A, vol. 496, no. 1‒2, pp. 417‒424, 2008.
  15.  J.D. Yoo, S.W. Hwang, and K.T. Park, “Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1520‒1523, 2009.
  16.  E. Welsch et al., “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel,” Acta Mater., vol. 116, pp. 188‒199, 2016.
  17.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, “Influence of high strain rates on the structure and mechanical properties of high- manganes austenitic TWIP-type steel,” Materialwiss. Werkstofftech., vol. 47, no. 5‒6, pp. 428‒435, 2016.
  18.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, „Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions,” Arch. Metall. Mater., vol. 61, no. 2, pp.  725‒730, 2016.
  19.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and L.A. Dobrzański, “Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24‒11 steel of TRIPLEX type,” Inżynieria Materiałowa, vol. 2, no. 216, pp. 69‒76, 2017.
  20.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 267‒279, 2010.
  21.  W. Borek, T. Tanski, Z. Jonsta, P. Jonsta, and L. Cizek, “Structure and mechanical properties of high-Mn TWIP steel after their thermo- mechanical and heat treatments” in Proc. METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 307‒313.
  22.  M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr Mo/Cr-Mo-V,” Arch. Metall. Mater., vol. 61, no. 3, pp. 969‒974, 2016.
  23.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 4, pp. 737‒741, 2017.
  24.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 913‒921, 2020.
  25.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, p. 2130, 2018.
  26.  L.A. Dobrzański and W. Borek, “Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels,” Mater. Sci. Forum, vol. 654‒656, no. 1‒3, pp. 266‒269, 2010.
  27.  M. Opiela, G. Fojt-Dymara, A. Grajcar, and W. Borek, “Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel,” Materials, vol. 13, no. 7, p. 1489, 2020.
  28.  L. Sozańska-Jędrasik, J. Mazurkiewicz, and W. Borek, “The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels,” MATEC Web Conf., vol. 252, p. 08005. 2019.
  29.  L. Sozanska-Jedrasik, J. Mazurkiewicz, W. Borek, K. Matus, B. Chmiela, and M. Zubko, “Effect of Nb and Ti micro-additives and thermo- mechanical treatment of high-manganese steel with aluminium and silicon on their microstructure and mechanical properties,” Arch. Metall. Mater., vol. 64, no. 1, pp. 133‒142, 2019.
Go to article

Authors and Affiliations

Liwia Sozańska-Jędrasik
1
Wojciech Borek
2
ORCID: ORCID
Janusz Mazurkiewicz
2

  1. Łukasiewicz Research Network–Institute for Ferrous Metallurgy, Department of Investigations of Properties and Structure of Materials, ul. K. Miarki 12-14, Gliwice 44-100, Poland
  2. Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper conducts research based on the hollow slab members in the reconstruction and expansion project of expressways, two types of numerical finite element models with and without considering bond-slip relationship of reinforcement and concrete are established, and verified by tests. The distribution characteristics of crack spacing in reinforced concrete beams are studied. The results show that the bond-slip characteristics of reinforced concrete have little effect on the load-deflection characteristics of 8m hollow slab beam. Due to the influence of the bond-slip relationship of reinforced concrete, the load-deflection curve is partially serrated, while without considering the bond-slip relationship of reinforced concrete, the load-deflection curve is smooth. In the numerical model without considering the bond-slip characteristics, almost all damage occurs in the longitudinal direction, and the distribution characteristics of cracks can’t be accurately determined. Regardless of whether the bond-slip is considered or not, the macroscopic characteristics of the stress distribution is: smaller near the support and larger at the mid-span. As secondary flexural cracks expand, models with and without consideration of bond-slip characteristics can’t calculate crack spacing based on the stress distribution characteristics of the reinforcement.
Go to article

Authors and Affiliations

Songtao Wang
1
ORCID: ORCID
Dawei Wang
2
ORCID: ORCID

  1. Shandong High-speed Group Co., Ltd., No.0, Longding Road, Jinan, China
  2. Geotechnical and Structural Engineering Research Center of Shandong University, 17923 Jingshi Road, Jinan, China
Download PDF Download RIS Download Bibtex

Abstract

The damage zones of exhumed strike-slip faults dissecting Jurassic carbonates in the south-western part of the Late Palaeozoic Holy Cross Mountains Fold Belt reveal second-order faults and fractures infilled with syntectonic calcite. The subsequent development of a structural pattern of microscopic fault-related structures and calcite infillings reflects the activity of strike-slip faults that began in the Late Cretaceous (Late Maastrichtian) and lasted until the early Miocene (Langhian). The fabric of the syntectonic veins provides insights into the evolution of the permeable fault-related structures that were the main pathways for fluid flow during fault activity. Microstructural study of calcite veins coupled with stable isotope and fluid inclusion data indicates that calcite precipitated primarily in a rock-buffered system related to strike-slip fault movement, and secondarily in a partly open system related to the local activity of the releasing Chmielnik stepover or the uplift of the area. The presence of meteoric fluids descending from the surface into damage zones suggest that the strike-slip faulting might have taken place in a nonmarine, continental environment.

Go to article

Authors and Affiliations

Barbara Rybak-Ostrowska
Andrzej Konon
Vratislav Hurai
Maciej Bojanowski
Agnieszka Konon
Michał Wyglądała

This page uses 'cookies'. Learn more