The purpose of the paper is the investigation of possibility of utilization of a single-phase induction machine, designed and normally operating as a single-phase capacitor induction motor, as a self-excited single-phase induction generator, which can be used to generate electrical energy from non-conventional energy sources. The paper presents dq model of the self-excited single-phase induction generator for dynamic characteristics simulation and steady-state model based on double revolving field theory with two phase symmetrical components – a forward and backward revolving field for performance of the generator under resistive load. Excitation and load characteristics obtained by simulation showed considerable influence of method of capacitor configuration in the load stator winding on terminal voltage, current and output power of the generator under load. An specific construction of the stator windings together with capacitor requirements to obtain nominal output power at desired self-regulating terminal voltage over the operating range will be the aim of further research.
The purpose of this paper is to develop a dynamic thermal model of a permanent magnet excited synchronous motor (PMSM). The model estimates the temperature at specific points of the machine during operation. The model is implemented using thermal network theory, whose parameters are determined by means of analytical approaches. Usually thermal models are initialized and referenced to room temperature. However, this can lead to incorrect results, if the simulations are performed when the electrical machine operates under “warm” conditions. An approach is developed and discussed in this paper, which captures the model in critical states of the machine. The model gives feedback by online measured quantities to estimate the initial temperature. The paper provides an extended dynamic thermal model, which leads to a more accurate and more efficient thermal estimation.
The paper presents abilities and advantages following from the use of the harmonicbalance method for analysis of steady state of a multiphase system with switching devices on example of a matrix converter. Switching elements are modelled as resistances with step-wise variable parameters, what allows to describe the converter by a linear infinite set of equations. The analysis in frequency domain is presented on example of the one-periodic control strategy. External systems were also added using the Thevenin method approach. The numerical calculation results of a linear equations set were verified by the variable structure method in a time domain and the numerical convergence was confirmed. Furthermore, the exemplary complex system was analysed using the cascade method and current waveforms were obtained.
Long transmission lines have to be compensated to enhance the transport of active power. But a wrong design of the compensation may lead to subsynchronous resonances (SSR). For studies often park equivalent circuits are used. The parameters of the models are often determined analytically or by a three-phase short-circuit test. Models with this parameters give good results for frequencies of 50 Hz and 100 Hz resp. 60 Hz and 120 Hz. But SSR occurs at lower frequencies what arises the question of the reliability of the used models. Therefore in this publication a novel method for the determination of Park equivalent circuit parameters is presented. Herein the parameters are determined form time functions of the currents and the electromagnetic moment of the machine calculated by transient finite-element simulations. This parameters are used for network simulations and compared with the finite-element calculations. Compared to the parameters derived by a three-phase short-circuit a significant better accuracy of simulation results can be achieved by the presented method.
The transient thermal model of the permanent magnet linear actuator (PMLA) has been considered. The characteristics of heating have been calculated including the main subdomains of the actuator. The carcasses from various materials have also been considered. The calculations have been verified experimentally and a good conformity was obtained.
The Goss texture is a characteristic feature of grain-oriented transformer steel sheets. Generator sheets, which are produced as non-oriented steel sheets, should have isotropic features. However, measurement results of generator sheets, confirmed by crystallographic studies, indicate that these sheets are characterized by certain, quite significant anisotropy. The first purpose of this paper is to present the influence of textures of generator and transformer steel sheets on their magnetization characteristics. The second aim is to propose a method which takes into account the sheet textures in the calculations of magnetization curves. In calculations of magnetization processes in electrical steel sheets, models in which the plane of a sheet sample is divided into an assumed number of specified directions are used. To each direction a certain hysteresis loop, the so-called direction hysteresis, is assigned. The parameters of these direction hystereses depend, among other things, on the texture type in these steel sheets. This paper discusses the method which calculates the parameters of these direction hystereses taking into account the given sheet texture. The proposed method gives a possibility of determining the magnetization characteristics for any direction of the field intensity changes.
This research presents a 3D FE method for the simulation of the variable reluctance stepper motor dynamics. The proposed model is used to obtain the optimal minimum energy control law that minimizes the energy injected by the controller. The method is based on the strong coupling of field - circuit equations and extended to eddy current, motion and nonlinearity problem. The linearization technique for the coupled problem is presented. Also the lamination of the motor core is considered. In the paper the open - loop control problem is analyzed. The proposed model is validated by the comparison with measurements. Next, to demonstrate the effectiveness of the proposed optimal minimum energy control method is applied. In both cases, the examination of the variable reluctance stepper motor dynamics and the steel loss in the core is presented and compared.
This study presents the dependence of the level and harmonic structure of the cogging torque in permanent magnet synchronous motors (PMSM) to imperfections of permanent magnet (PM) dimensions and positions, which can not be avoided in massproduction. Slightly diverse dimensions and misplacements of PMs are introducing asymmetries in magnetic field distribution which cause additional harmonic components. A finite element method (FEM) and Fast Fourier transform (FFT) were used to calculate cogging torque harmonic components with regard to several combinations of PM assembly imperfections. It has been established and proved that unequal PMs cause magnetic asymmetries which give rise to additional cogging torque harmonic components and consequently increase the total cogging torque. It is also shown that in some particular combinations the influence of an individual PM imprecision could compensate with others due to different phase shifts which can result even in the decrease of cogging torque. Considering presented results it is possible to foresee which additional harmonic components will comprise the cogging torque of mass-produced PMSMs due to PM imperfections. In this way the designers are able to predetermine required manufacturing tolerances to keep the level of cogging torque in a admissible level. Simulation results were verified and confirmed by laboratory tests.
The paper presents an overview of a method of nanosecond-scale high voltage pulse generation using magnetic compression circuits. High voltage (up to 18 kV) short pulses (up to 1.4 μs) were used for Pulsed Corona Discharge generation. In addition, the control signal of parallel connection of IGBT and MOSFET power transistor influence on system losses is discussed. For a given system topology, an influence of core losses on overall pulse generator efficiency is analysed.
Both a classical instantaneous power method and a method based on equations of instantaneous power orthogonal components balance have been used to analyze power processes in electric circuits with semiconductor elements. Automated method of forming instantaneous power harmonic components was used to obtain analytical expressions and numerical values of instantaneous power components of analyzed electric circuits. A coefficient for estimation of a semiconductor converter nonlinearity degree has been offered.
The paper discuss a problem of determination of inductances for AC machine windings when saturation of magnetic circuit is not neglected. For such cases, computation of magnetic field distribution in the machine magnetic circuit is a starting point for post processing procedures leading to various values, among others the co-energy in a given area and linkage fluxes of windings. This paper shows how to determine winding inductances in a nonlinear magnetic circuit from these two values and also how to compute directly nonlinear inductances. Problem is not trivial because such inductances are not uniquely determined as for linear case. In the paper a definition of nonlinear inductances is proposed which makes the choice unique.
In this paper the way of modeling phenomena occurring during the voltage and current waves passing through a point connection of two lines, with different wave impedance operators, is presented. This connection point is called „the wave transformer”. The analyzes and the resulting formulas concern not the frequency domain, but the time domain. The appropriate transition matrices of waves through the wave transformer are defined. This matrices are the convolution integral-derivative operators of fractional order (the digital filters). For a lossless line the wave transition matrices through the wave transformer become number type instead of operator type. All matrix multiplications occurring in the formulas should be understood in convolution way.
The paper presents the problem of position control of DC motor with rated voltage 24 V loaded by flywheel. The fractional order PD controller implemented in National Instruments NI ELVIS II programmed in LabView is used for controlling. The simple method for determining stability regions in the controller parameters space is given. Knowledge of these regions permits tuning of the controller and ensures required the phase margin of the system.
ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.
Manuscript submission:
All manuscripts should be submitted electronically on Editorial System.
Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.
Template:
Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.
While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).
The articles that don’t conform to the above will not be processed and published.
The reviewing process:
Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:
a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE
b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place
c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected
d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.
The papers are published on average within 3 months after acceptance.
Requirements for preparation of manuscripts:
The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").
All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.
If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.
The manuscripts are published on average within 3 months after their acceptance.
Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.
The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.
Text:
The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.
Math:
Please use the MathML editor as well as MathType editor to build an equation in your manuscript.
Equations:
Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.
If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.
Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.
Unit Symbols, Abbreviations:
Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.
Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.
Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".
Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."
Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard
Tables, figures (illustrations) and captions:
The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.
All figures, figure captions, and tables in the text must be inserted into the correct places.
Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.
Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.
Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.
All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.
When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.
Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).
AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.
Conclusions:
A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.
References:
References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.
Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.
You can use the rules presented on the site: IEEE standard.
Examples of the ways in which references should be cited are given below:
Journal manuscript
[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).
example
[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).
[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.
[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.
Conference manuscript
[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).
example
[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).
Book, book chapter and manual
[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).
example
[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).
Patent
[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).
example
[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).
Thesis
[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).
example
[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).
For on electronic forms
[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].
example
[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259
Website
[9] http://www.aee.put.poznan.pl, accessed April 2010.
Proofs:
Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.
Fees for printing the papers in Archives of Electrical Engineering:
AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.
The fee for the publication of an article in the AEE journal is 200 Euro.
Abstracting & Indexing:
Archives of Electrical Engineering is covered by the following services:
Preparation of manuscript for Archives of Electrical Engineering (AEE)