Details

Title

An Investigation on Acoustic Wave Focalization by a Square Lattice Flat Lens

Journal title

Archives of Acoustics

Yearbook

2012

Volume

vol. 37

Issue

No 1

Authors

Keywords

square lattice sonic crystal ; wave focusing ; plane-wave expansion method ; FDTD simulation

Divisions of PAS

Nauki Techniczne

Coverage

81-87

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Date

2012

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10168-012-0011-x

Source

Archives of Acoustics; 2012; vol. 37; No 1; 81-87

References

Alagoz S. (2009), Frequency-controlled wave focusing by a sonic crystal lens, Applied Acoustics, 70, 1400, doi.org/10.1016/j.apacoust.2009.06.001 ; Cicek A. (2011), Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases, J. Phys. D: Appl. Phys., 44, 205104, doi.org/10.1088/0022-3727/44/20/205104 ; Cubukcu E. (2003), Negative refraction by photonic crystals, Nature, 423, 604, doi.org/10.1038/423604b ; Economou E. (1993), Classical wave propagation in periodic structures: Cermet versus network topology, Phys. Rev. B, 48, 13434, doi.org/10.1103/PhysRevB.48.13434 ; Feng L. (2005), Negative refraction of acoustic waves in two-dimensional sonic crystals, Phys. Rev. B, 72, 033108, doi.org/10.1103/PhysRevB.72.033108 ; Garcia N. (2003), Theory for tailoring sonic devices: Diffraction dominates over refraction, Phys. Rev. E, 67, 046606, doi.org/10.1103/PhysRevE.67.046606 ; Gupta B. (2003), Theoretical analysis of the focusing of acoustic waves by two dimensional sonic crystals, Phys. Rev. E, 67, 036603, doi.org/10.1103/PhysRevE.67.036603 ; Jia W. (2007), Strongly frequency-dependent negative refraction of a two-dimensional sonic crystal wedge, Physics Letters A, 372, 721, doi.org/10.1016/j.physleta.2007.08.015 ; Kasai Y. (2011), Negative Refraction and Energy-Transmission Efficiency of Acoustic Waves in Two-Dimensional Phononic Crystal: Numerical and Experimental Study, Jpn. J. Appl. Phys., 50, 067301, doi.org/10.1143/JJAP.50.067301 ; Kosaka H. (1998), Superprism phenomena in photonic crystals, Phys. Rev. E, 58. ; Kosaka H. (1999), Self collimating phenomena in photonic crystals, Appl. Phys. Lett., 74, 1212, doi.org/10.1063/1.123502 ; Kuo C. (2004), Sonic crystal lenses that obey the lensmaker's formula, J. Phys. D: Appl. Phys., 37, 2155, doi.org/10.1088/0022-3727/37/15/017 ; Luo C. (2002), All-angle negative refraction without negative effective index, Phys. Rev. B, 65, 201104, doi.org/10.1103/PhysRevB.65.201104 ; Miyashita T. (2005), Sonic crystals and sonic wave-guides, Meas. Sci. Technol., 16. ; Notomi M. (2000), Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap, Phys. Rev. B, 62, 10696, doi.org/10.1103/PhysRevB.62.10696 ; Perez-Arjona I. (2007), Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media, Phys. Rev. B, 75, 014304, doi.org/10.1103/PhysRevB.75.014304 ; Qiu C. (2005), Far-field imaging of acoustic waves by a two-dimensional sonic crystal, Phys. Rev. B, 71, 054302, doi.org/10.1103/PhysRevB.71.054302 ; Robillard J. (2011), Resolution limit of a phononic crystal superlens, Phys. Rev. B, 83, 224. ; Sanchis L. (2003), Interferometers based on two dimensional arrays of rigid cylinders in air, Phys. Rev. B, 67, 035422, doi.org/10.1103/PhysRevB.67.035422 ; Sigalas M. (1998), Defect states of acoustic waves in a two-dimensional lattice of solid cylinders, J. Appl. Phys., 84, 3026, doi.org/10.1063/1.368456 ; Zhang X. (2004), Negative refraction of acoustic waves in two-dimensional phononic crystals, Appl. Phys. Lett., 85, 341, doi.org/10.1063/1.1772854
×