Details
Title
Numerical analysis on the influence of suspended equipment on the ride comfort in railway vehiclesJournal title
Archive of Mechanical EngineeringYearbook
2018Volume
vol. 65Issue
No 4Authors
Affiliation
Dumitriu, Mădălina : Department of Railway Vehicles, University Politehnica of Bucharest, Bucharest, RomaniaKeywords
railway vehicle ; flexible carbody ; suspended equipment ; bending vibration ; ride comfortDivisions of PAS
Nauki TechniczneCoverage
477-496Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] T. Tomioka, T. Takigami, and Y. Suzuki. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics, 44:272–285, 2006. doi: 10.1080/00423110600871301.[2] C. Huang, J. Zeng, G. Luo, and H. Shi. Numerical and experimental studies on the car body flexible vibration reduction due to the effect of car body-mounted equipment. Proceedings of the Institution of Mechanical Engineering Part F: Journal Rail and Rapid Transit, 232(1):103–120, 2018. doi: 10.1177/0954409716657372.
[3] W. Sun, J. Zhou, D. Gong, and T. You. Analysis of modal frequency optimization of railway vehicle car body. Advances in Mechanical Engineering, 8(4):1–12, 2016. doi: 10.1177/1687814016643640.
[4] G.Yang, C.Wang, F. Xiang, and S. Xiao. Effect of train carbody’s parameters on vertical bending stiffness performance. Chinese Journal of Mechanical Engineering, 29(6): 1120–1127, 2016. doi: 10.3901/CJME.2016.0809.090.
[5] G. Diana, F. Cheli, A. Collina, R. Corradi, and S.Melzi. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics, 38(3):165–183, 2002. doi: 10.1076/vesd.38.3.165.8287.
[6] H. Ye, J. Zeng, Q. Wang, and X. Han. Study on carbody flexible vibration considering layout of underneath equipment and doors. In: 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015), pages 1177–1183, Shenzhen, China, 27–28 December, 2015.
[7] G. Luo, J. Zeng, and Q. Wang. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency. Journal of Modern Transportation, 22(4):206–213, 2014. doi: 10.1007/s40534-014-0060-0.
[8] M. Dumitriu. Influence of suspended equipment on the carbody vertical vibration behaviour of high-speed railway vehicles. Archive of Mechanical Engineering, 63(1):145–162, 2016. doi: 10.1515/meceng-2016-0008.
[9] H.C.Wu, P.B.Wu, J. Zeng, N.Wu, and Y.L.Shan. Influence of equipment under car on carbody vibration. Journal of Traffic and Transportation Engineering, 12(4):50–56, 2012. (in Chinese)
[10] H.L. Shi, P.B. Wu and R. Luo. Coupled vibration characteristics of flexible car body and equipment of EMU. Journal of Southwest Jiao Tong University, 49(3): 693–699, 2014. (in Chinese).
[11] Y. Sun, D. Gong and J. Zhou. Study on vibration reduction design of suspended equipment of high speed railway vehicles. Journal of Physics: Conference Series, 2016, 744: Paper No. 012212.
[12] K.-I. Aida, T. Tomioka, T. Takigami, Y. Akiyama, and H. Sato. Reduction of carbody flexural vibration by the high-damping elastic support of under-floor equipment. Quarterly Report of RTRI, 56(4):262–267, 2015. doi: 10.2219/rtriqr.56.4_262.
[13] H. Shi, R. Luo, P. Wu, J. Zeng, and J. Guo. Influence of equipment excitation on flexible carbody vibration of EMU. Journal of Modern Transportation, 22(4):195–205, 2014. doi: 10.1007/s40534-014-0061-z.
[14] H.L. Shi, R. Luo, P.B.Wu, J. Zeng, and J.Y. Guo. Application of DVA theory in vibration reduction of carbody with suspended equipment for high-speed EMU. Science China Technological Sciences, 57(7):1425–1438, 2014. doi: 10.1007/s11431-014-5558-5.
[15] H.L. Shi, R. Luo, P.B. Wu, and J. Zeng. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory. Journal of Mechanical Engineering, 50(14):155–161, 2014 (in Chinese).
[16] W. Sun, D. Gong, J. Zhou, and Y. Zhao. Influences of suspended equipment under car body on highspeed train ride quality. Procedia Engineering, 16:812–817, 2011. doi: 10.1016/j.proeng.2011.08.1159.
[17] Y.Z. Nie, J. Zeng, and F.G. Li.Research on resonance vibration simulation method of high-speed railway vehicle carbody. In: International Industrial Informatics and Computer Engineering Conference (IIICEC 2015), pages 1117–1121, Xi’an, Shaanxi, China, 10–11 January, 2015.
[18] H. Shi and P. Wu. Flexible vibration analysis for car body of high-speed EMU. Journal of Mechanical Science and Technology, 30(1):55–66, 2016. doi: 10.1007/s12206-015-1207-6.
[19] C 116. Interaction between vehicles and track. RP 1, Power spectral density of track irregularities, Part 1: Definitions, conventions and available data. Utrecht, 1971.
[20] ENV 12299. Railway applications ride comfort for passengers measurement and evaluation, 1997.
[21] UIC 513 R. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicle, International Union of Railways, 1994.
[22] J. Zhou, R. Goodall, L.Ren, and H. Zhang. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineering Part F: Journal Rail and Rapid Transit, 223(5):461–471, 2009. doi: 10.1243/09544097JRRT272.
[23] J. Zhou, W. Sun, and D. Gong. Analysis on geometric filtering phenomenon and flexible car body resonant vibration of railway vehicles. Journal of Tongji University, 37(9):1653–1657, 2009 (in Chinese).
[24] D. Gong, J. Zhou, and W. Sun. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. Journal of Vibration and Control, 19(5):649– 657, 2013. doi: 10.1177/1077546312437435.
[25] D. Gong, Y.J. Gu, and J.S. Zhou. Study on geometry filtering phenomenon and flexible car body resonant vibration of articulated trains. Advanced Materials Research, 787:542–547, 2013. doi: 10.4028/www.scientific.net/AMR.787.542.
[26] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part I: The theoretical model and the vehicle response functions. Journal of Engineering Science and Technology Review, 8(4):24–31, 2015.
[27] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part II: The numerical analysis. Journal of Engineering Science and Technology Review, 8(4):32–39, 2015.