Details

Title

Exact solution of flow in a composite porous channel

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 1

Affiliation

Singh, Sanjeeva Kumar : Department of Mathematics and Astronomy, University of Lucknow, India. ; Verma, Vineet Kumar : Department of Mathematics and Astronomy, University of Lucknow, India.

Authors

Keywords

composite cylindrical channel ; porous medium ; permeability variation ; Brinkman equation ; modified Bessel function

Divisions of PAS

Nauki Techniczne

Coverage

97-110

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] A.K. Al-Hadhrami, L. Elliot, D.B. Ingham, and X. Wen. Analytical solutions of fluid flows through composite channels. Journal of Porous Media, 4(2), 2001. doi: 10.1615/JPorMedia.v4.i2.50.
[2] A.K. Al-Hadhrami, L. Elliot, D.B. Ingham, and X. Wen. Fluid flows through two-dimensional channel of composite materials. Transport in Porous Media, 45(2):281–300, 2001. doi: 10.1023/A:1012084706715.
[3] A. Haji-Sheikh and K. Vafai. Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts. International Journal of Heat and Mass Transfer, 47(8-9):1889–1905, 2004. doi: 10.1016/j.ijheatmasstransfer.2003.09.030.
[4] A.V. Kuznetsov. Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid. International Journal of Heat and Mass Transfer, 41(16):2556–2560, 1998. doi: 10.1016/S0017-9310(97)00296-2.
[5] C.Y. Wang. Analytical solution for forced convection in a semi-circular channel filled with a porous medium. Transport in Porous Media, 73(3):369–378, 2008. doi: 10.1007/s11242-007-9177-5.
[6] D.A. Nield, S.L.M. Junqueira, and J.L. Lage. Forced convection in a fluid-saturated porous medium channel with isothermal or isoflux boundaries. Journal of Fluid Mechanics, 322:201–214, 1996. doi: 10.1017/S0022112096002765.
[7] H.C. Brinkman. On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1:81–86, 1949. doi: 10.1007/BF02120318.
[8] I. Pop and P. Cheng. Flow past a circular cylinder embedded in a porous medium based on the Brinkman model. International Journal of Engineering Science, 30(2):257–262, 1992. doi: 10.1016/0020-7225(92)90058-O.
[9] K. Hooman and H. Gurgenci. A theoretical analysis of forced convection in a porous saturated circular tube: Brinkman-Forchheimer model. Transport in Porous Media, 69:289–300, 2007. doi: 10.1007/s11242-006-9074-3.
[10] K. Vafai and S.J. Kim. Forced convection in a channel filled with a porous medium: An exact solution. Journal of Heat Transfer, 111(4):1103–1106, 1989. doi: 10.1115/1.3250779.
[11] M. Kaviany. Laminar flow through a porous channel bounded by isothermal parallel plates. International Journal of Heat and Mass Transfer, 28(4):851–858, 1985. doi: 10.1016/0017-9310(85)90234-0.
[12] M. Parang and M. Keyhani. Boundary effects in laminar mixed convection flow through an annular porous medium. Journal of Heat Transfer, 109(4):1039–1041, 1987. doi: 10.1115/1.3248179.
[13] P. Vadasz. Fluid flow through heterogenous porous media in a rotating square channel. Transport in Porous Media, 12(1):43–54, 1993. doi: 10.1007/BF00616361.
[14] S. Chikh, A. Boumedien, K. Bouhadef, and G. Lauriat. Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium. International Journal of Heat and Mass Transfer, 38(9):1543–1551, 1995. doi: 10.1016/0017-9310(94)00295-7.
[15] S. Govender. An analytical solution for fully developed flow in a curved porous channel for the particular case of monotonic permeability variation. Transport in Porous Media, 64:189–198, 2006. doi: 10.1007/s11242-005-2811-1.
[16] S.K. Singh and V.K. Verma. Flow in a composite porous cylindrical channel covered with a porous layer of varaible permeability. Special Topics & Reviews in Porous Media – An International Journal, 10(3):291–303, 2019.
[17] V.K. Verma and S. Datta. Flow in a channel filled by heterogeneous porous mediuum with a linear permeability variation. Special Topics & Reviews in Porous Media – An International Journal, 3(3):201–208, 2012. doi: 10.1615/SpecialTopicsRevPorousMedia.v3.i3.10.
[18] V.K. Verma and S.K. Singh. Flow in a composite porous cylindrical channel of variable permeability covered with porous layer of uniform permeability. International Journal of Pure and Applied Mathematics, 118(2):321–334, 2018.
[19] V.K. Verma and H. Verma. Exact solutions of flow past a porous cylindrical shell. Special Topics & Reviews in Porous Media – An International Journal, 9(1):91–99, 2018. doi: 10.1615/SpecialTopicsRevPorousMedia.v9.i1.110.
[20] M. Abramowitz and I.A. Stegun. A Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York, 1972.

Date

2020.04.09

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131685 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 1; 97-110
×