Details
Title
Numerical investigation of the basilar membrane vibration induced by the unsteady fluid flow in the human inner earJournal title
Archive of Mechanical EngineeringYearbook
2020Volume
vol. 67Issue
No 4Authors
Affiliation
Wahl, Philipp : Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany ; Ziegler, Pascal : Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany ; Eberhard, Peter : Institute of Engineering and Computational Mechanics, University of Stuttgart, GermanyKeywords
human cochlea ; basilar membrane ; unsteady viscous fluid flow ; fluid-structure interaction ; pressure-displacement-based fluid element ; viscous boundary layer ; layer tonotopy ; auditory thresholdDivisions of PAS
Nauki TechniczneCoverage
381-414Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] L. Robles and M.A. Ruggero. Mechanics of the mammalian cochlea. Physiological Reviews, 81(3):1305–1352, 2001. doi: 10.1152/physrev.2001.81.3.1305.[2] M. Fleischer. Mehrfeldmodellierung und Simulation der äußeren Haarsinneszelle der Cochlea (Multifield modelling and simulation of the outer hair cells of the cochlea). Doctoral Thesis. Technische Universität Dresden, Germany, 2012. (in German).
[3] J. Baumgart. The hair bundle: Fluid-structure interaction in the inner ear. Doctoral Thesis. Technische Universität Dresden, Germany, 2010 .
[4] J. Tian, X. Huang, Z. Rao, N. Ta, and L. Xu. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. Journal of Mechanics in Medicine and Biology, 15(4):1–19, 2015. doi: 10.1142/S0219519415500487.
[5] R.Z. Gan, B.P. Reeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Annals of Biomedical Engineering, 35:2180–2195, 2007. doi: 10.1007/s10439-007-9366-y.
[6] L. Xu, X. Huang, N. Ta, Z. Rao, and J. Tian. Finite element modeling of the human cochlea using fluid-structure interaction method. Journal of Mechanics in Medicine and Biology, 15(3):1–13, 2015. doi: 10.1142/S0219519415500396.
[7] H.W. Ades and H. Engström. Anatomy of the inner ear. In: Keidel W.D., Neff W.D. (eds) Auditory System. Handbook of Sensory Physiology, vol. 5/1. Springer, Berlin, 1974. doi: 10.1007/978-3-642-65829-7_5.
[8] C.R. Steele, G.J. Baker, J.A. Tolomeo, and D.E. Zetes-Tolometo. Cochlear mechanics. In: J.D. Bronzino (ed.) The Biomedical Engineering Handbook, CRC Press, 2006.
[9] S. Iurato. Functional implications of the nature and submicroscopic structure of the tectorial and basilar membranes. The Journal of the Acoustical Society of America, 34(9):1386–1395, 1962. doi: 10.1121/1.1918355.
[10] H. Herwig. Strömungsmechanik: Einführung in die Physik von technischen Strömungen (Introduction to the Physics of Technical Flows). Springer Vieweg, Wiesbaden; 2008. (in German).
[11] H. Schlichting and K. Gersten. Boundary-Layer Theory, vol. 7. Springer-Verlag, Berlin, 2017.
[12] G.H. Keulegan and L.H. Carpenter. Forces on cylinders and plates in an oscillating fluid. Journal of Research of the National Bureau of Standards, 60:423–440, 1958.
[13] E. Zwicker. Über die Viskosität der Lymphe im Innenohr des Hausschweines (About the viscosity of the lymph in the inner ear of the domestic pig). Acta Otolaryngologica, 78(1-6): 65–72, 1974. (in German). doi: 10.3109/00016487409126327.
[14] M. Lesser and D. Berkley. Fluid mechanics of the cochlea. Part 1. Journal of Fluid Mechanics, 51(3):497–512, 1972. doi: 10.1017/S0022112072002320.
[15] A. De Paolis, H. Watanabe, J. Nelson, M. Bikson, M. Marom, M. Packer, and L. Cardoso. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study. Journal of Biomechanics, 50:209–216, 2017. doi: 10.1016/j.jbiomech.2016.11.020.
[16] L. Papula. Mathematische Formelsammlung (Mathematical Formula Collection). Springer Verlag, Wiesbaden, 2014. (in German).
[17] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals, 6 ed. Elsevier Butterworth-Heinemann, Oxford, 2006.
[18] J.E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 84(1):64–76, 1998. doi: 10.1063/1.368002.
[19] E. de Boer. Auditory physics. Physical principles in hearing theory. Part 1. Physics Reports, 62(2):87–174, 1980. doi: 10.1016/0370-1573(80)90100-3.
[20] M.J. Wittbrodt, C.R. Steele, and S. Puria. Developing a physical model of the human cochlea using microfabrication methods. Audiology and Neurotology, 11(2):104–112, 2006. doi: 10.1159/000090683.
[21] C.R. Steele and J.G. Zais. Effect of coiling in a cochlear model. The Journal of the Acoustical Society of America, 77(5):1849–1852, 1985. doi: 10.1121/1.391935.
[22] J. Wysocki. Dimensions of the human vestibular and tympanic scalae. Hearing Research, 135(1-2):39–46, 1999. doi: 10.1016/S0378-5955(99)00088-X.
[23] M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, O.W. Henson, and S.L. Gewalt. Cochlear fluid space dimensions for six species derived from reconstructions of resonance images. Annals of Otology, Rhinology & Laryngology, 109(10):1661–1668, 1999. doi: 10.1097/00005537-199910000-00021.
[24] G. Herrmann and H. Liebowitz. Mechanics of Bone Fractures. Academic Press, New York, 1972.
[25] J. Kirikae. The Middle Ear. Tokyo: University of Tokyo Press, 1960.
[ 26] F. Atturo, M. Barbara, and H. Rask-Andersen. Is the human round window really round? An anatomic study with surgical implications. Otology and Neurotology, 35(8):1354–1360, 2014. doi: 10.1097/MAO.0000000000000332.
[27] M.V. Goycoolea and L. Lundman. Round window membrane. Structure, function and permeability. A review. Microscopy Research and Technique, 36(3):201–211, 1997. doi: 10.1002/(SICI)1097-0029(19970201)36:3201::AID-JEMT8>3.0.CO;2-R.
[28] M. Kwacz, M. Mrówka, and J. Wysocki. Round window membrane motion before and after stapedotomy surgery. An experimental study. Acta of Bioengineering and Biomechanics, 13(3):27–33, 2011.
[29] X. Zhang and R.Z. Gan. Dynamic properties of human round window membrane in auditory frequencies running head: Dynamic properties of round window membrane. Medical Engineering & Physics, 35(3):310–318, 2013. doi: 10.1016/j.medengphy.2012.05.003.
[30] A.A. Poznyakovskiy, T. Zahnert, Y. Kalaidzidis, N. Lazurashvili, R. Schmidt, H.J. Hardtke, B. Fischer, and Y.M. Yarin. A segmentation method to obtain a complete geometry model of the hearing organ. Hearing Research, 282(1-2):25–34, 2011. doi: 10.1016/j.heares.2011.06.009.
[31] P. Leichsenring. Aufbereitung von Geometriedaten der menschlichen Cochlea (Preparation of geometry data for the human cochlea). Master Thesis. Technische Universität Dresden, Germany, 2012. (in German).
[32] E.G. Wever. The width of the basilar membrane in man. Annals of Otology, Rhinology & Laryngology, 47:37–47, 1938.
[33] F. Böhnke. Finite Elemente Analysen zur Berechnung der Signalverarbeitung in der Cochlea (Analyses for computation of signal processing in the cochlea). Doctoral Thesis. Technische Universität Ilmenau, Germany, 1999. (in German).
[34] L.M. Cabezudo. The ultrastructure of the basilar membrane in the cat. Acta Oto-Laryngologica, 86(1-6):160–175, 1978. doi: 10.3109/00016487809124733.
[35] S. Newburg, A. Zosuls, P. Barbone, and D. Mountain. Mechanical response of the basilar membrane to lateral micromanipulation. In: Concepts and Challenges in the Biophysics of Hearing. Proceedings of the 10th International Workshop on the Mechanics of Hearing, pages 240–246, 2009. doi: 10.1142/9789812833785_0038.
[36] V. Tsuprun and P. Santi. Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea. Hearing Research, 129(1-2):35–49, 1999. doi: 10.1016/S0378-5955(98)00219-6.
[37] I.U. Teudt and C.P. Richter. The hemicochlea preparation of the guinea pig and other mammalian cochleae. Journal of Neuroscience Methods, 162(1-2):187–197, 2007. doi: 10.1016/j.jneumeth.2007.01.012.
[38] M. Fleischer, R. Schmidt, and A.W. Gummer. Compliance profiles derived from a three-dimensional finite-element model of the basilar membrane. The Journal of the Acoustical Society of America, 127(5):2973–2991, 2010. doi: 10.1121/1.3372752.
[39] J. Baumgart, M. Fleischer, and C. Steele. The traveling wave in the human inner ear studied by means of a finite-element model including middle and outer ear. In: Proceedings of the 23rd International Congress on Sound and Vibration, Greece, 2016.
[40] H. Altenbach, J.W. Altenbach, and W. Kissing. Mechanics of Composite Structural Elements. Springer-Verlag, Berlin, 2013.
[41] R.C. Naidu and D.C. Mountain. Basilar membrane tension calculations for the gerbil cochlea. The Journal of the Acoustical Society of America, 121(2):994–1002, 2007. doi: 10.1121/1.2404916.
[42] S. Liu and R.D. White. Orthotropic material properties of the gerbil basilar membrane. The Journal of the Acoustical Society of America, 123(4):2160–2171, 2008. doi: 10.1121/1.2871682.
[43] C.E. Miller. Structural implications of basilar membrane compliance measurements. The Journal of the Acoustical Society of America, 77(4):146–1474, 1985. doi: 10.1121/1.392041.
[44] L. Schweitzer, C. Lutz, M. Hobbs, and S.P. Weaver. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hearing Research, 97(1-2):84–94, 1996. doi: 10.1016/S0378-5955(96)80010-4.
[45] R.C. Naidu and D.C. Mountain. Measurements of the stiffness map challenge. A basic tenet of cochlear theories. Hearing Research, 124(1-2):124–131, 1998. doi: 10.1016/S0378-5955(98)00133-6.
[46] H. Wada and T. Kobayashi. Dynamical behavior of middle ear: Theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. The Journal of the Acoustical Society of America, 87(1):237–245, 1990. doi: 10.1121/1.399290.
[47] M. Kwacz, P. Marek, P. Borkowski, and M. Mrówka. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Biomechanics and Modeling in Mechanobiology, 12:1243–1261, 2013. doi: 10.1007/s10237-013-0479-y.
[48] P. Wahl. Simulation der Fluidströmung und Basilarmembranschwingung im menschlichen Innenohr (Simulation of fluid flow and basilar membrane vibrations in the human inner ear). Doctoral Thesis. Universität Stuttgart, Germany, 2018. (in German).
[49] J.H. Sim, M. Chatzimichalis, M. Lauxmann, C. Röösli, A. Eiber, and A. Huber. Complex stapes motion in human ears. Journal of the Association for Research in Otolaryngology, 11(3):329–341, 2010. doi: 10.1007/s10162-010-0207-6.
[50] S. Huang and E.S. Olson. Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion. Journal of the Association for Research in Otolaryngology, 12:559–575, 2011. doi: 10.1007/s10162-011-0272-5.
[51] G. von Békésy. Experiments in Hearing. McGraw-Hill, New York, 1960.
[52] T.Ren. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences, 99(26):17101–17106, 2002. doi: 10.1073/pnas.262663699.
[53] S. Stenfelt, S. Puria, N. Hato, and R.L. Goode. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hearing Research, 181(1-2):131–143, 2003. doi: 10.1016/S0378-5955(03)00183-7.
[54] S. Ramamoorthy, N.V. Deo, and K. Grosh. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. The Journal of the Acoustical Society of America, 121(5):2758–2773, 2007. doi: 10.1121/1.2713725.
[55] W.E. Langlois and M.O. Deville. Slow Viscous Flow. 2nd ed. Springer, Cham, 2014. doi: 10.1007/978-3-319-03835-3.
[56] E. Olson. Direct measurement of intra-cochlear pressure waves. Nature, 402:526–529, 1999. doi: 10.1038/990092.
[57] D.D. Greenwood. A cochlear frequency-position function for several species – 29 years later. The Journal of the Acoustical Society of America, 87(6):2592–2605, 1990. doi: 10.1121/1.399052.
[58] H.G. Boenninghaus and T. Lenarz. HNO: Hals-Nasen-Ohrenheilkunde (Otorhinolaryngology). Springer, Berlin, 2007. (in German).