Details
Title
Influence of kaolinite crystallinity and calcination conditions on the pozzolanic activity of metakaolinJournal title
Gospodarka Surowcami Mineralnymi - Mineral Resources ManagementYearbook
2021Volume
vol. 37Issue
No 1Authors
Affiliation
Liu, Yuanyuan : Yangtze Normal University, Chongqing Engineering Research Center for Structure Full-Life-Cycle Health Detection and Disaster Prevention, China ; Huang, Qian : Yangtze Normal University, Chongqing Engineering Research Center for Structure Full-Life-Cycle Health Detection and Disaster Prevention, China ; Zhao, Liang : Yangtze Normal University, Chongqing Engineering Research Center for Structure Full-Life-Cycle Health Detection and Disaster Prevention, China ; Lei, Shaomin : Wuhan University of Technology, ChinaKeywords
kaolin ; crystallinity ; calcination conditions ; pozzolanic activityDivisions of PAS
Nauki TechniczneCoverage
39-56Publisher
Komitet Zrównoważonej Gospodarki Surowcami Mineralnymi PAN ; Instytut Gospodarki Surowcami Mineralnymi i Energią PANBibliography
1. Akahira, T. and Sunose, T. 1969. Trans. Joint Convention of Four Electrical Institutes. Paper No. 246. Research Report, Chiba Institute of Technology (Science Technology) 16, pp. 22.2. ASTM C618:2013. Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.
3. Badogiannis et al. 2005 – Badogiannis, E, Kakali, G. and Tsivilis, S. 2005. Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry 81(2), pp. 49–79.
4. Bich et al. 2009 – Bich, C., Ambroise, J. and Péra, J. 2009. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science 44(3), pp. 194–200.
5. Cao et al. 2016 – Cao, Z., Cao, Y., Dong, H., Zhang, J. and Sun, C. 2016. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. International Journal of Mineral Processing 146, pp. 23–28.
6. Cyr et al. 2006 – Cyr, M., Lawrence, P. and Ringot, E. 2006. Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research 36, pp. 264–277.
7. Donatello et al. 2010 – Donatello, S., Freeman-Pask, A., Tyrer, M. and Cheeseman, C.R. 2010. Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement and Concrete Composites 32, pp. 54–61.
8. EN 196-1:2005. Methods of Testing Cement. Part 1: Determination of strength.
9. EN 196-5:2005. Methods of Testing Cement. Part 5: Pozzolanicity Test for Pozzolanic Cement.
10. Ferraz et al. 2015 – Ferraz, E., Andrejkovičová, S., Hajjaji, W., Velosa, A.L., Silva, A.S. and Rocha, F. 2015. Pozzolanic activity of metakaolins by the french standard of the modified chapelle test: a direct methodology. Acta Geodynamica et Geomaterialia 179, pp. 289–298.
11. Frías et al. 2000 – Frías, M., Sánchez de Rojas, M.I. and Cabrera, J. 2000. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cement and Concrete Research 30, pp. 209–216.
12. Galos, K. 2011. Composition and ceramic properties of ball clays for porcelain stoneware tiles manufacture in Poland. Appled Clay Science 51(1), pp. 74–85.
13. Gao et al. 2001 – Gao, Z., Nakada, M. and Amasaki, I. 2001. A consideration of errors and accuracy in the isoconversional methods. Thermochimica Acta 369, pp. 137–142.
14. Janotka et al. 2010 – Janotka, I., Puertas, F., Palacios, M., Kuliffayová, M. and Varga, C. 2010. Metakaolin sand- -blended-cement pastes: rheology, hydration process and mechanical properties. Construction and Building Materials 791, pp. 802–24.
15. Kakali et al. 2001 – Kakali, G., Perraki, T., Tsivilis, S. and Badogiannis, E. 2001. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science 20, pp. 73–80.
16. Kissinger, HE. 1957. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29(11), pp. 1702–1706.
17. Liu et al. 2000 – Liu, Q, Xu, H. and Zhang, P. 2000. Crystallinity difference for various origin of kaolinites in coal measures. Journal of China Coal Society 25(6), pp. 576–580 (in Chinese).
18. Murat, M. 1983. Hydration reaction and hardening of calcined clays and related minerals I. Preliminary investigation on metakaolinite. Cement and Concrete Research 13, pp. 259–266.
19. NF P18-513:2010. Metakaolin. Pozzolanic addition for concrete. Definitions, specifications and conformity criteria.
20. Ozawa, T. 1965. A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan 38(11), pp. 1881–1886.
21. Qiu et al. 2014 – Qiu, X., Lei, X., Alshameri, A., Wang, H. and Yan, C. 2014. Comparison of the physicochemical properties and mineralogy of Chinese (Beihai) and Brazilian kaolin. Ceramics International 40, pp. 5397–5405.
22. Sabir et al. 2001 – Sabir, B.B., Wild, S. and Bai, J. 2001. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites 23, pp. 441–454.
23. Saikia et al. 2002 – Saikia, N., Sengupta, P., Gogoi, P.K. and Borthakur, P.C. 2002. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Applied Clay Science 22, pp. 93–102.
24. Samet et al. 2007 – Samet, B., Mnif, T. and Chaabouni, M. 2007. Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement. Cement and Concrete Composites 29(10), pp. 741–749.
25. Sinthaworn, S. and Nimityongskul, P. 2011. Effects of temperature and alkaline solution on electrical conductivity measurements of pozzolanic activity. Cement and Concrete Composites 33, pp. 622–627.
26. Tironi et al. 2012 – Tironi, A., Trezza, M.A., Irassar, E.F. and Scian, A.N. 2012. Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Materials Science 1, pp. 343–350.
27. Tironi et al. 2013 – Tironi, A., Trezza, M.A., Scian, A.N. and Irassar, E.F. 2013. Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites 37, pp. 319–327.
28. Tironi et al. 2014 – Tironi, A., Trezza, M.A., Scian, A.N. and Irassar, E.F. 2014. Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays. Journal of Thermal Analysis and Calorimetry 117, pp. 547–556.
29. Wild et al. 1996 – Wild, S., Khatib, J.M. and Jones, A. 1996. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research 26, pp. 1537–1544.
30. Zhang et al. 2015 – Zhang, Y., Xu, L., Seetharaman, S., Liu, L., Wang, X. and Zhang, Z. 2015. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization. Materials and Structures 48, pp. 2779–2793.