Details

Title

Thermal efficiency and hydraulic performance evaluation on Ag–Al2O3 and SiC–Al2O3 hybrid nanofluid for circular jet impingement

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 1

Affiliation

Datta, Abanti : Indian Institute of Engineering Science and Technology, Shibpur PO: Botanic Garden, Howrah-711103, West Bengal, India ; Halder, Pabitra : Indian Institute of Engineering Science and Technology, Shibpur PO: Botanic Garden, Howrah-711103, West Bengal, India

Authors

Keywords

hybrid nanofluid ; thermal performance factor ; pumping power ; merit number

Divisions of PAS

Nauki Techniczne

Coverage

163-182

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Sun B., Zhang Y., Yang D., Li H.: Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl. Therm. Eng. 151(2019), 556–566
[2] Vafaei M., Afrand M., Sina N., Kalbasi R., Sourani F., Teimouri H.: Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E (Lowdim. Sys. Nanostruct.) 85(2017), 90–96.
[3] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sustain. Energy Rev. 81(2017), 2, 1669–1689.
[4] Minea A.A.: Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain. Energy Rev. 71(2016), 426–434.
[5] Sidik N.A.C., Adamu I.M., Jamil M.M., Kefayati G.H.R., Mamat R., Najafi G.: Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int. Commun. Heat Mass 78(2016), 68–79.
[6] Nabil M.F., Azmi W.H., Hamid K.A., Zawawi N.N.M., Priyandoko G., Mamat R.: Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int. Commun. Heat Mass 83(2017), 30–39.
[7] Hamzah M.H., Sidik N.A.C, Ken T.L., Mamat R., Najafi G.: Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int. J. Heat Mass Tran. 115(2017), 12, 630–46.
[8] Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M.: A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int. J. Heat Mass Tran. 127(2018), B, 997–1012.
[9] Kumar D.D., Arasu A.V.: A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sust. Energ. Rev. 81(2018), 1669–89.
[10] Sidik N.A.C., Jamil M.M., Japar W.M., Adamu I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sust. Energ. Rev. 80 (2017), 1112–1122.
[11] Madhesh D., Kalaiselvam S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97(2014), 1667–1675.
[12] Suresh S., Venkitaraj K.P, Selvakumar P., Chandrasekar M.: Synthesis of Al2O3—Cu/water hybrid nanofluids using two step method and its thermophysical properties. Colloids Surface A Physicochem. Eng. Asp. 388(2011), 41–48.
[13] Jana S., Khojin A.S.,.Zhong W.H: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(2007), 1–2, 45–55.
[14] Abbasi S.M., Nemati A., Rashidi A., Arzani K.: The effect of functionalization method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39(2013), 3885–3891.
[15] Nine M.J., Munkhbayar B., Rahman M.S., Chung H., Jeong H.: Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater. Chem. Phys. 141(2013), 636–642.
[16] Chen L.F., Cheng M., Yang D.J., Yang L.: Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl. Mech. Mater. 548–549(2014), 118–123.
[17] Sundar L.S., Singh M.K., Sousa A.C.M.: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass 52(2014), 73–83.
[18] Baby T.T., Ramaprabhu S.: Surfactant free magnetic nanofluids based on coreshell type nanoparticle decorated multiwalled carbon nanotubes. J Appl. Phys. 110(2011), 064325–31.
[19] Esfe M.H., Abbasian A.A., Rezaie M., Yan W.M., Karimipour A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass 66(2015), 189–195.
[20] Das P.K.: A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 240(2017), 420–446.
[21] Soltani S., Kasaeian A., Sarrafha H. et al.: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 155(2017) 1033–1043.
[22] Leong K.Y., Ahmad K.Z., Ong H.C., Ghazali M.J., Baharum A.: Synthesis and thermal conductivity characteristic of hybrid nanofluids — A review. Renew. Sust. Energ. Rev. 75(2017), 868–878.
[23] Nimmagadda R., Venkatasubbaiah K.: Conjugate heat transfer analysis of microchannel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur. J. Mech. B. Fluids 52 (2015), 19–27.
[24] Sajid M.U., Ali H.M.: Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Tran. 26 (2018), 211–234.
[25] Allahyar H.R., Hormozi F., Zarenezhad B.: Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp. Therm. Fluid Sci. 76 (2016), 324–329.
[26] Olatomide G.F., Adebimpe A.A., Ayodeji O.S., David O.O., Johnson A.O., Francis I.I., Fatai A.B.: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop ofAl2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 1, 3–30
[27] Sarkar J., Ghosh P., Adil A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sust. Energ. Rev. 43 (2015), 164–177.
[28] Moghadassi A., Ghomi E., Parvizian F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92 (2015), 50–57.
[29] Esfe M.H., Rostamian S.H., Alirezaie A.: An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Therm. Eng. 111(2016), 1202–1210.
[30] Suresh S., Venkitaraj K.P., Selvakumar P. et al.: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38 (2012), 54–60.
[31] Esfe M.H., Esfandeh S., Saedodin S. et al.: Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125 (2017), 673– 685.
[32] Munkhbayar B., Tanshen M.R., Jeoun J. et al.: Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39 (2013), 6, 6415–6425.
[33] Minea A.A.: Pumping power and heat transfer efficiency evaluation on Al2O3, TiO2 and SiO2 single and hybrid water-based nanofluids for energy application. J. Therm. Anal. Calorim. 139 (2020), 2, 1171–1181.
[34] Manninen M., Veikko T., Sirpa K.: On the mixture model for multiphase flow. VTT, Espoo 1996, 3–67.
[35] Schiller L., Naumann Z.: A Drag Coefficient Correlation. Zeitschrift des Vereins Deutscher Ingenieure 77 (1935), 318–320.
[36] Sagot B., Antonini G., Christgen A., Buron F.: Jet impingement heat transfer on a flat plate at a constant wall temperature. Int. J. Therm. Sci. 47 (2008), 12, 1610– 1619.
[37] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994), 8, 1598–1605.
[38] Krieger I.M.,. Dougherty T.J.: A mechanism for non-Newtonian flow in suspension of 528 rigid spheres. J. Trans. Soc. Rheol. 3(1956), 37–152
[39] Maxwell J.C.: A Treastise on Electricity and Magnetism (2nd Edn.). Oxford Univer. Press, Cambridge 1881.
[40] ANSYS Inc. ANSYS Fluent 15.0 UDF Manual, Canonsburg, PA: ANSYS Inc, 2013.
[41] Gherasim I., Roy G., Nguyen, C.T., Vo-Ngoc, D.: Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int. J. Therm. Sci. 50(2011), 3, 369–377.
[42] Maradiya C., Vadher J., Agarwal R.: The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef Uni. J. Basic Appl. Sci. 7(2018), 1, 1–21.

Date

2021.03.31

Type

Article

Identifier

DOI: 10.24425/ather.2021.136953

Source

Archives of Thermodynamics; 2021; vol. 42; No 1; 163-182

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×