Details

Title

A theoretical analysis of vibrational stress relief in AISI 1008 as a mechanical treatment

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 4

Affiliation

Vardanjani, Mehdi Jafari : Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran. ; Senkara, Jacek : Department of Welding Engineering,Warsaw University of Technology,Warsaw, Poland.

Authors

Keywords

VSR ; equation ; theoretical analysis ; residual stress

Divisions of PAS

Nauki Techniczne

Coverage

353-374

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] R. Dawson. Residual stress relief by vibration. Ph.D. Thesis, University of Liverpool, UK, 1975.
[2] R.T. McGoldrick and H.E. Saunders. Experiments in stress-relieving castings and welded structures by vibration. Journal of the American Society of Naval Engineers, 55(4):589–609, 1943.
[3] P. Sędek and M.S. Węglowski. Application of mechanical vibration in the machine building technology. Key Engineering Materials, 504-506:1383–1388, 2012. doi: 10.4028/www.scientific.net/kem.504-506.1383.
[4] I.K. Lokshin. Vibration treatment and dimensional stabilization of castings. Russian Castings Production, 10:454–457, 1965.
[5] H. Moore. A study of residual stresses and size effect and a study of the effect of repeated stresses on residual stresses due to shot peening of two steels. Proceedings of the Society for Experimental Stress Analysis, 2(1):170–177, 1944.
[6] A. Jurcius, A.V Valiulis, O. Černašėjus, K.J. Kurzydlowski, A.Jaskiewicz, and M. Lech-Grega. Influence of vibratory stress relief on residual stresses in weldments and mechanical properties of structural steel joint. Journal of Vibroengineering, 12(1):133–141, 2010.
[7] K. Liao, Y-X. Wu, and J-K. Guo. Application of VSR technique in stress reduction of aluminum alloy thick plate and its limitation. Journal of Vibration and Shock, 31(14):70–73, 2012. (in Chinese).
[8] M.B. Khan and T. Iqbal. Vibratory stress relief in D-406 aerospace alloy. In: TMS Annual Meeting, pages 807–814, San Francisco, CA, USA, 2009.
[9] J-S. Wang, C-C. Hsieh, C-M. Lin, C-W. Kuo, and W. Wu. Texture evolution and residual stress relaxation in a cold-rolled Al-Mg-Si-Cu alloy using vibratory stress relief technique. Metallurgical and Materials Transactions A, 44(2):806–818, 2013. doi: 10.1007/s11661-012-1450-8.
[10] W. He, B.P. Gu, J.Y. Zheng, and R.J. Shen. Research on high-frequency vibratory stress relief of small Cr12MoV quenched specimens. Applied Mechanics and Materials, 157-158:1157–1161, 2012. doi: 10.4028/www.scientific.net/AMM.157-158.1157.
[11] J-S. Wang, C-W. Kuo, C-C. Hsieh, H-C. Liao, and W. Wu. The effects of waveform in residual stress relief by vibration technique. In: Trends in Welding Research 2012: Proceedings of the 9th International Conference, pages 427-431, Chicago, IL, USA, 4–8 June, 2012.
[12] C. Lin, S. Wu, S. Lü, P. An, and L. Wan. Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al–Si alloys with 2% Fe. Intermetallics, 32:176-183, 2013. doi: 10.1016/j.intermet.2012.09.001.
[13] T. Jia, Z. Zhang, C. Tang, and Y. Zhang. Numerical simulation of stress-relief effects of protective layer extraction. Archives of Mining Sciences, 58(2):521–540, 2013. doi: 10.2478/amsc-2013-0035.
[14] Y. Yang. Understanding of vibration stress relief with computation modeling. Journal of Materials Engineering and Performance, 18(7):856–86, 2009. doi: 10.1007/s11665-008-9310-9.
[15] S. Kwofie. Plasticity model for simulation, description and evaluation of vibratory stress relief. Materials Science and Engineering: A, 516(1-2):154–161, 2009. doi: 10.1016/j.msea.2009.03.014.
[16] S. Aoki, T. Nishimura, T. Hiroi, and S. Hirai. Reduction method for residual stress of welded joint using harmonic vibrational load. Nuclear Engineering and Design, 237(2):206–212. 2007. doi: 10.1016/j.nucengdes.2006.06.004.
[17] D. Rao, D. Wang, L. Chen, and C. Ni. The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress. International Journal of Fatigue, 29(1):192–196, 2007. doi: 10.1016/j.ijfatigue.2006.02.047.
[18] H. Wang and Z. Wang. The embedded VSR system design based on ARM and frequency spectrum analysis. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pages 488–492, Wuhan, China, 19-20 Dec., 2008. doi: 10.1109/PACIIA.2008.81.
[19] M.J. Vardanjani, M. Ghayour, and R.M. Homami. Analysis of the vibrational stress relief for reducing the residual stresses caused by machining. Experimental Techniques, 40(2):705–713, 2016. doi: 10.1007/s40799-016-0071-3.
[20] M.J. Vardanjani, A. Araee, J. Senkara, J. Jakubowski, and J. Godek. Metallurgical effects of shunting current on resistance spot-welded joints of AA2219 sheets. Journal of Materials Engineering and Performance, 25(8):3506–3517, 2016. doi: 10.1007/s11665-016-2168-3.
[21] M.J. Vardanjani, A. Araee, J. Senkara, M. Sohrabian, and R. Zarandooz. Influence of shunting current on the metallurgical and mechanical behaviour of resistance spot-welded joints in AA2219 joints. Strojniški vestnik – Journal of Mechanical Engineering, 62(11):625–635, 2016. doi: 10.5545/sv-jme.2016.3682.
[22] B. Kılıç and Ö. Özdemir. Vibration and stability analyses of functionally graded beams. Archive of Mechanical Engineering, 68(1):93–113, 2021. doi: 10.24425/ame.2021.137043.
[23] P. Vergeer. Vibration isolation of dimple plate heat exchangers. M.Sc. Thesis. North-West University, Potchefstroom Campus, North-West University, South Africa, 2013.
[24] S. Li, Y. Kang, G. Zhu, and S. Kuang. Effects of strain rates on mechanical properties and fracture mechanism of DP780 dual phase steel. Journal of Materials Engineering and Performance, 24(6):2426–2434, 2015. doi: 10.1007/s11665-015-1495-0.
[25] A. Grudz. Reducing welding stresses in plates by vibration. Automatic Welding USSR, 25(7):70–71, 1972.
[26] A.S.M.Y. Munsi, A.J. Waddell, and C.A. Walker. Modification of welding stresses by flexural vibration during welding. Science and Technology of Welding and Joining, 6(3):133–138, 2001. doi: 10.1179/136217101101538668.

Date

25.09.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.138398 ; ISSN 0004-0738, e-ISSN 2300-1895
×