Details

Title

Aluminum Alloy Development for Wheel Production by Low Pressure Die Casting with New Generation Computational Materials Engineering Approaches

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 4

Affiliation

Yağcı, T. : Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey ; Cöcen, Ü. : Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey ; Çulha, O. : Manisa Celal Bayar University, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey

Authors

Keywords

Aluminum Alloys ; Application of information technology to the foundry industry ; Low pressure die casting ; Computational materials engineering ; Microstructural and mechanical properties

Divisions of PAS

Nauki Techniczne

Coverage

35-46

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Cullen, J.M. & Allwood, J.M. (2013). Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environmental Science & Technology. 47(7), 3057-3064. DOI: 10.1021/es304256s.
[2] Liu, G. & Müller, D.B. (2012). Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. Journal of Cleaner Production. 35, 108-117. DOI: 10.1016/j.jclepro.2012.05.030.
[3] Ashkenazi, D. (2019). How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change. 143, 101-113. DOI: 10.1016/j.techfore.2019.03.011.
[4] Musfirah, A.H. & Jaharah, A.G. (2012). Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research. 8(9): 4865-4875.
[5] Davies, J.R. (1993). Aluminum and Aluminum Alloys. ASM International, OH.
[6] Mondolfo, L.F. (1976). Aluminum alloys: Structure and Properties. London, Butterworths.
[7] Rana, R.S., Purohit, R. & Das S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications. 2(6).
[8] Heusler, L. & Schneider, W. (2002). Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. Journal of Light Metals. 2(1), 17-26. DOI: 10.1016/s1471-5317(02)00009-3.
[9] Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280(1), 37-49. DOI: 10.1016/s0921-5093(99)00653-x.
[10] Krol, M., Tanski, T., Snopinski, P. & Tomiczek, B. (2017). Structure and properties of aluminium–magnesium casting alloys after heat treatment. Journal of Thermal Analysis and Calorimetry. 127, 299-308.
[11] Callister, W.D. (1997). Materials science and engineering: An introduction. New York: John Wiley & Sons.
[12] Allison J., Backman D. & Christodoulou L. (2006). Integrated computational materials engineering: A new paradigm for the global materials profession. JOM. 58, 25-27.
[13] Allison, J., Li M., Wolverton, C. & Su, X.M. (2006). Virtual aluminum castings: an industrial application of ICME. JOM. 58, 28-35.
[14] Schmid-Fetzer, R. & Gröbner, J. (2001). Focused development of magnesium alloys using the CALPHAD approach. Advanced Engineering Materials. 3(12), 947-961. DOI: 10.1002/1527-2648(200112)3:1.
[15] Jung, J.-G., Cho, Y.-H., Lee, J.-M., Kim, H.-W. & Euh, K. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. CALPHAD. 64, 236-247. DOI: 10.1016/j.calphad.2018.12.010.
[16] Jha, R. & Dulikravich, G.S. (2020). Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science. 182, 109749. DOI: 10.1016/j.commatsci.2020.109749.
[17] Assadiki A., Esin V.A., Bruno, M. & Martinez, R. (2018). Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations. Computational Materials Science. 145, 1-7. DOI: 10.1016/j.commatsci.2017.12.056.
[18] Jiao, X.Y., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y. et al. (2020). The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy. Journal of Materials Science & Technology. 51, 54-62. DOI: 10.1016/j.jmst.2020.02.040.
[19] Pehlivanoglu, U., Yağcı, T. & Çulha, O. (2021). Effects of air-cooling-hole geometries on a low-pressure die-casting process. Materials and Technology. 55(4), 549-558. DOI: 10.17222/mit.2021.043
[20] Lumley, R. (2011). Fundamentals of Aluminium Metallurgy. Wood Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi.
[21] Snugovsky, L., Major, J.F., Perovic, D.D. & Rutter, J.W. (2000). Silicon segregation in aluminium casting alloy. Materials Science and Technology. 16(2), 125-128. DOI: 10.1179/026708300101507604.
[22] Ebhota, W.S. & Jen, T.C. (2017). Effects of modification techniques on mechanical properties of Al-Si cast alloys. In Subbarayan Sivasankaran (Eds.), Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. London, UK: IntechOpen. DOI: 10.5772/intechopen.70391
[23] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. DOI: 10.3390/ma12010010
[24] Yıldırım, M. & Özyürek, D. (2013). The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Materials and Design. 51, 767-774. DOI: 10.1016/j.matdes.2013.04.089.
[25] Kumar V., Mehdi, H., Kumar A. (2015). Effect of silicon content on the mechanical properties of aluminum alloy. International Research Journal of Engineering and Technology. 2(4), 1326-1330.
[26] Li, W., Cui, S., Han, J. & Xu, C. (2006). Effect of silicon on the casting properties of Al-5.0% Cu alloy. Rare Metals. 25, 133-135. DOI: 10.1016/s1001-0521(08)60067-4
[27] Yang, Y.S. & Tsao, C.Y.A. (1997). Viscosity and structure variations of Al-Si alloy in the semi-solid state. Journal of Materials Science, 32(8), 2087-2092. DOI: 10.1023/A:1018522805543.
[28] Campbell, J. (2003). Castings: the new metallurgy of cast metals. 2nd Edition, Elsevier Butterworth-Heinemann, Oxford.
[29] Atasoy, Ö.A. (1990). Ötektik Alaşımlar: Katılaşma Mekanizmaları ve Uygulamaları. İstanbul Technical University, İstanbul.
[30] Sahoo, M. & Sahu, S. (2014). Principles of metal casting. 3rd Edition, McGraw-Hill Education.
[31] Clemex, Dendrite Arm Spacing in Aluminum Alloy Report. Retrieved August 24, 2021, from https://clemex.com/analysis/dentritic-arm-spacing/
[32] Peres, M.D., Siqueira, C.A. & Garcia, A. (2004). Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 381(1-2), 168-181. DOI: 10.1016/j.jallcom.2004.03.107.
[33] Spear, R.E. & Gardner, G.R. (1963). Dendrite cell size. AFS Transactions. 71, 209-215. [34] Rhadhakrishna, K, Seshan, S. & Seshadri, M.R. (1980). Dendrite arm spacing in aluminium alloy castings, AFS Transactions. 88, 695-702.
[35] Flemings, M. Kattamis, T.Z. & Bardes, B.P. (1991). Dendrite arm spacing in aluminium alloys. AFS Transactions. 99, 501-506.

Date

2021.11.23

Type

Article

Identifier

DOI: 10.24425/afe.2021.138677
×