Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 70
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Go to article

Bibliography

[1] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes. Techniques and Design. Elsevier Science.
[2] Bonollo, F., Urban, J., Bonatto, B. & Botter, M. (2005). Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark. La Metallurgia Italiana. 6, 23-32.
[3] Dispinar, D. & J. Campbell, (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294.
[4] Raiszadeh, R., & Griffiths, W.D. (2006). A method to study the history of a double oxide film defect in liquid aluminum alloys. Metallurgical and Materials Transactions B. 37(6), 865-871.
[5] Raiszadeh, R., & Griffiths, W.D. (2008). A semi-empirical mathematical model to estimate the duration of the atmosphere within a double oxide film defect in pure aluminum alloy. Metallurgical and Materials Transactions B. 39(2), 298-303.
[6] Raiszadeh, R., & Griffiths, W.D. (2011). The effect of holding liquid aluminum alloys on oxide film content. Metallurgical and Materials Transactions B. 42(1), 133-143.
[7] Aryafar, M., Raiszadeh, R., & Shalbafzadeh, A. (2010). Healing of double oxide film defects in A356 aluminium melt. Journal of materials science. 45(11), 3041-3051.
[8] Farhoodi, B., Raiszadeh, R., & Ghanaatian, M. H. (2014). Role of double oxide film defects in the formation of gas porosity in commercial purity and Sr-containing Al alloys. Journal of Materials Science & Technology. 30(2), 154-162.
[9] Amirinejhad, S., Raiszadeh, R., & Doostmohammadi, H. (2013). Study of double oxide film defect behaviour in liquid Al–Mg alloys. International Journal of Cast Metals Research. 26(6), 330-338.
[10] Bakhtiarani, F.N., & Raiszadeh, R. (2011). Healing of double-oxide film defects in commercial purity aluminum melt. Metallurgical and Materials Transactions B. 42(2), 331-340.
[11] Bagherpour-Torghabeh, H., Raiszadeh, R., & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurgical and Materials Transactions B. 48(6), 3174-3184.
[12] Nateghian, M., Raiszadeh, R., & Doostmohammadi, H. (2012). Behavior of Double-Oxide Film Defects in Al-0.05 wt pct Sr Alloy. Metallurgical and Materials Transactions B. 43(6), 1540-1549.
[13] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings - a review. International Journal of Cast Metals Research. 18, 129-143.
[14] Zhu, J.D., Cockcroft, S.L., Maijer, D.M. & Ding, R. (2005). Simulation of microporosity in A356 aluminium alloy castings. International Journal of Cast Metals Research. 18, 229-235.
[15] Merlin, M., Timelli, G., Bonollo, F. & Garagnani, G.L. (2009). Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology. 209(2), 1060-1073.
[16] Zhang, B., Maijer, D.M. & Cockcroft, S.L. (2007). Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.
[17] Zhang, B., Cockcroft, S.L., Maijer, D.M., Zhu, J.D. & Phillion, A.B. Casting defects in low-pressure die-cast aluminum alloy wheels. JOM Journal of the Minerals, Metals and Materials Society, 57(11), 36-43.
[18] Campbell, J. (1968). Hydrostatic tensions in solidifying materials. Transactions of the Metallurgical Society of AIME, 242 (February), 264-267.
[19] Campbell, J. (1968). Hydrostatic tensions in solidifying alloys. Transactions of the Metallurgical Society of AIME, 242 (February), 268-271.
[20] Campbell, J. (1967), Shrinkage pressure in castings (The solidification of a Metal Sphere). Transactions of the Metallurgical Society of AIME, 239 (February), 138-142.
[21] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280-286.
[22] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(16-17), 3719-3725.
[23] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J.L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0. 3 alloy: Modelling and experimental validation of mould filling. Materials & Design. 94, 384-391.
[24] El-Sayed, M.A. & Essa, K. (2018). Effect of mould type and solidification time on bifilm defects and mechanical properties of Al–7si–0.3 mg alloy castings. Computational and Experimental Studies, 23.
[25] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. [26] Gyarmati, G., Fegyverneki, G., Tokár, M., & Mende, T. (2020). The Effects of Rotary Degassing Treatments on the Melt Quality of an Al–Si Casting Alloy. International Journal of Metalcasting. 1-11.
[27] Tiryakioğlu, M. (2020). The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality. Metals. 10(3), 368.
[28] Tiryakioğlu, M. (2019). Solubility of hydrogen in liquid aluminium: reanalysis of available data. International Journal of Cast Metals Research. 32(5-6), 315-318.
[29] Tiryakioğlu, M. (2020). A simple model to estimate hydrogen solubility in liquid aluminium alloys. International Journal of Cast Metals Research. 1-3.
Go to article

Authors and Affiliations

O. Gursoy
1
A. Nordmak
2
F. Syvertsen
2
M. Colak
3
K. Tur
4
D. Dispinar
5
ORCID: ORCID

  1. University of Padova, Italy
  2. SINTEF, Norway
  3. University of Bayburt, Turkey
  4. Atilim University, Turkey
  5. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The present paper is concerned with the practical interconnection between virtual engineering tools and additive model manufacturing technologies and the subsequent production of a ceramic shell by rapid prototyping with the use of Cyclone technology to produce the aluminium casting prototype. Prototypes were developed as part of the student formula project, where several parts originally produced by machining were replaced by castings. The techniques of topological optimization and the combination with the tools of the numerical simulation were used to optimise the virtual prototype before a real production of the first prototype. 3D printing of wax pattern ensured direct and fast assembly of the cluster without any additional operations and troubles during dewaxing. The shell was manufactured in 6 hours thanks to a system of quick-drying of individual layers of ceramic shell. It has been verified that the right combination of individual virtual tools with the rapid prototyping can shorten the development time and delivery of the first prototypes from a few months to a few weeks.
Go to article

Bibliography

[1] Xiao, A., Bryden, K.M. (2004). Virtual engineering: A vision of the next-generation product realization using virtual reality technologies. Proceedings of the ASME 2004 Design Engineering Technical Conferences – DETC’04, 28 September – 2 October, pp 1-9.Salt Lake City, Utah, #57698.
[2] Pekkola, S. & Jäkälä, M. (2007) From technology engineering to social engineering: 15 years of research on virtual worlds. The DATA BASE for Advances in Information Systems. 38(4), 11-16.
[3] Bao, Jin, J.S., Gu, Y., Yan, M.Q. & Ma, J.Q. (2002). Immersive virtual product development. Journal of Materials Processing Technology. 129(1-3), 592-596. DOI: 10.1016/S0924-0136(02)00655-6.
[4] Van der Auweraer, H. (2010). Virtual engineering at work: The challenges for designing intelligent products. In: Proceedings of the TMCE 2010 Symposium, April 12-16, (pp. 3-18), Ancona, Italy.
[5] Stawowy, A., Wrona, R., Brzeziński, M. & Ziółkowski, E. (2013). Virtual factory as a method of foundry design and production management. Archives of Foundry Engineering. 13(1), 113-118. DOI: 10.2478/afe-2013-0022
[6] Dépincé, P., Chablat, D., Woelk, P.O. (2004) Virtual manufacturing: tools for improving design and production, Dans International Design Seminar - CIRP International Design Seminar, Egypt.
[7] Kumar, P., Ahuja, I.P.S. & Singh, R. (2013). Framework for developing a hybrid investment casting process. Asian Review of Mechanical Engineering, 2(2), 49-55.
[8] Kügelgen, M. (2008). From 7 days to 7 hours – Investment casting parts within the shortest time, 68th WFC - World Foundry Congress, 7th - 10th February, 2008, (pp. 147-151).

Go to article

Authors and Affiliations

V. Krutiš
1
ORCID: ORCID
P. Šprta
1
V. Kaňa
1
ORCID: ORCID
A. Zadera
1
J. Cileček
2

  1. Brno University of Technology, Czech Republic
  2. Alucast s.r.o., Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Chromium low alloyed steel substrate was subjected to aluminizing by hot dipping in pure aluminium and Al-Si eutectic alloy at 750°C and 650°C respectively, for dipping time up to 45 minutes. The coated samples were subjected for investigation using an optical microscope, scanning electron microscopy (SEM), Energy-dispersive X-ray analyzer (EDX) and X-ray diffraction (XRD) technique. Cyclic thermal oxidation test was carried out at 500°C for 72 hours to study the oxidation behaviour of hot-dipped aluminized steel. Electrochemical corrosion behavior was conducted in 3wt. %NaCl aqueous solution at room temperature. The cyclic thermal oxidation resistance was highly improved for both coating systems because of the formation of a thin protective oxide film in the outermost coating layer. The gain in weight was decreased by 24 times. The corrosion rate was decreased from 0.11 mmpy for uncoated specimen to be 2.9 x10-3 mmpy for Aluminum coated steel and 5.7x 10-3 mmpy for Al-Si eutectic coated specimens. The presence of silicon in hot dipping molten bath inhabit the growth of coating intermetallic layers, decrease the total coating thickness and change the interface boundaries from tongue like shape to be more regular with flatter interface. Two distinct coating layers were observed after hot dipping aluminizing in Al bath, while three distinct layers were observed after hot dipping in Al-Si molten bath.
Go to article

Bibliography

[1] Kuruveri, U.B., Huilgol, P., Joseph, J. (2013). Aluminising of mild steel plates. ISRN Metallurgy. 1-6.
[2] Isiko, M.B. (2012). A luminizing of plain carbon steel: Effect of temperature on coating and alloy phase morphology at constant holding time. Norway. Institute for material technology. 1-2.
[3] Davis, J.R. (1990). Surface engineering. vol. 5 of ASM Metals Handbook. Ohio, USA Materials Park.
[4] Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. London: UK. Elsevier. 17.
[5] Burakowski T., Weirzchok, T. (2000). S urface engineering of Metals- Principles, Equipments, Technologies. CRC Press, London, UK.
[6] Pattankude1, B.G., Balwan,. A.R. (2019). A review on coating process. International Research Journal of Engineering and Technology (IRJET). 06(3), 7980.
[7] Huilgol, P., Bhat, S. & Bhat, K.U. (2013). Hot-dip aluminizing of low carbon steel using Al- 7Si-2Cu alloy baths. Journal of Coatings. 2013, 1-6.
[8] Lin, M.-B. Wang, C.-J. & Volinsky, A.A. (2011). Isothermal and thermal cycling oxidation of hot- dip aluminide coating on flake/spheroidal graphite cast iron. Surface and Coatings Technology. 206, 1595-1599.
[9] Dngik Shin, Jeong-Yong Lee, Hoejun Heo, & Chung-Yun Kang. (2018). Formation procedure of reaction phases in Al hot dipping process of steel. Metals journal. 1.
[10] Yu Zhang, Yongzhe Fan, Xue Zhao, An DU, Ruina Ma, & Xiaoming Cao. (2019). Influence of graphite morphology on phase, microstructure and properities of hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron. Metals journal. 1.
[11] Voudouris, N. & Angelopoulos, G. (1997). Formation of aluminide coatings on nickel by a fluidized bed CVD process. Surface Modification Technologies XI. 558-567.
[12] Wang, D. & Shi, Z. (2004). Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied surface science. Volume (227). 255-260.
[13] Murakami, K., Nishida, N., Osamura, K. & Tomota, Y. (2004). Aluminization of high purity iron by powder liquid coating. Acta Materialia. 52(5), 1271-1281.
[14] Cheng, W.-J. & Wang, C.-J. (2013). High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents. Applied surface science. 274. 258-265.
[15] Mishra, B., Ionescu, M. & Chandra, T. (2013). The effect of Si on the intermetallic formation during hot dip aluminizing. Advanced Materials Research. Volume 922, 429-434.
[16] Kee-Hyun, et. Al. (2006). Observations of intermetallic compound formation of hot dip aluminized steel. Materials Science Forum. 519-521, 1871-1875.
[17] Fry, A., Osgerby, S., Wright, M. (2002). Oxidation of alloys in steam environments. United Kingdom: NPL Materials Centre. 6.
[18] Scott, D.A. (1992). Metallography and microstructure in ancient and historic metals. London. Getty publications. 57-63.
[19] Lawrence J. Korb, Rockwell, David L. Olson. (1992). ASM Handbook Vol 13: Corrosion: Fundametals, Testing and Protection. Florida, USA: ASM International Handbook Committee.
[20] Nicholls, J. E. (1964). Corr. Technol. 11.16.
[21] Azimaee, H. et. al. (2019). Effect of silicon and manganese on the kinetics and morphology of the intermetallic layer growth during hot-dip aluminizing. Surface and Coatings Technology. 357. 483-496.
[22] Sun Kyu Kim, (2013). Hot-dip aluminizing with silicon and magnesium addition I. Effect on intermertallic layer thickness. Journal of the Korean Institute of Metals and Materials. 51(11), 795-799.
[23] Springer, H., Kostka, A., Payton, Raabe, D., Kaysser, A. & Eggeler, G. (2011). On the formation and growth of intermetallic phases during interdiffusion growth between low-carbon steel and aluminum alloys. Acta Materialia. 59, 1586-1600.
[24] Kab, M., Mendil, S. & Taibi, K. (2020). Evolution of the microstructure of intermetallic compounds formed on mild steel during hot dipping in molten Al alloy bath. M etallography, Microstructure and Analysis. Journal 4.
[25] Bahadur A. & Mohanty, O.N. (1991). Materials Transaction. JIM. 32(11), 1053-1061.
[26] Bouche, K., Barbier, F. & Coulet, A. (1998). Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering A. 249(1-2), 167-175.
[27] Maitra, T. & Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part II. Materials Characterization. 49(4), 293-311.
[28] Nychka, J.A. & Clarke, D.R. (2005). Quantification of aluminum outward diffusion during oxidation of FeCrAl alloys. Oxidation of Metals. 63 (Nos.5/6), 325-351.
[29] Lars, P.H. et. All. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics. 92(3), 1649-1656.
[30] Murray, J.L. (1992). Fe–Al binary phase diagram, in: H. Baker (Ed.), Alloy Phase Diagrams. ASM International. OH- USA. Materials Park. 54.

Go to article

Authors and Affiliations

G.M. Attia
1
W.M.A. Afify
1
M.I. Ammar
1

  1. Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of research on steel castings GX120Mn13 (L120G13 by PN-89/H-83160), zone-reinforced by elektrocorundum particles (Al2O3), with a grain size from 2 to 3.5 mm. Studies revealed continuity at interface between composite components and formation of a diffusion zone in the surface layer of electrocorundum grains. In the area of this zone, simple manganese segregation and reverse iron and chromium segregation were found. The transfer of these elements from cast steel to electrocorundum grains resulted superficial depletion in aluminum and oxygen in this area. No porosity was observed at the interface between two components of the composite. We found it very beneficial from an exploitation point of view, as confirmed by the study of resistance to abrasive wear.
Go to article

Bibliography

[1] Matthews, F.L., Rawlings, R.D. (1999). Composite Materials. Engineering and Science. CRC Press: Boca Raton, FL, USA.
[2] Kocich, R., Kunčická, L., Král, P. & Strunz, P. (2018). Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Materials Design. 160, 828-835. Materials 2020. 13, 4161, p. 13 of 15.
[3] Kunčická, L., Kocich, R., Dvořák, K. & Macháčková, A. (2019). Rotary swaged laminated Cu-Al composites. Effect of structure on residual stress and mechanical and electric properties. Materials Science Engineering A. 742, 743-750.
[4] Kunčická, L., Kocich, R. (2018) Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 369, Kitakyushu City, Japan.
[5] Clyne, T.W., Withers, P.J. (1993) An Introduction to Metal Matrix Composites. Cambridge University Press: New York, NY, USA.
[6] Tjong, S. & Ma, Z. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science Engineering R: Reports 29, 49-113.
[7] Górny, Z., Sobczak, J. (2005). Modern casting materials based on non-ferrous metals. Krakow. Ed. ZA-PIS.
[8] Sobczak, J. & Sobczak, N. (2001). Pressure infiltration of porous fibrous structures with aluminum and magnesium alloys. Composites. 1(2), 155-158.
[9] Klomp, J. (1987). Fundamentals of diffusion bonding. Amsterdam Ed. Ishida, Elsevier Science Publishers, 3-24.
[10] Kaczmar, J., Janus, A., Samsonowicz, Z. (1997). Influence of technological parameters on production of selected machine parts reinforced with ceramic fibers. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 5.
[11] Kaczmar, J., Janus, A., Kurzawa, A. (2002). Development of basics technology of manufacturing machine and device parts from aluminum composites reinforced with zones of ceramic particles. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 11.
[12] Dmitruk, A.G., Naplocha, K., Żak, A. M., Strojny-Nędza, A., Dieringa, H. & Kainer, K. (2019). Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration. Journal of Materials Engineering and Performance. 28(10), 6248-6257.
[13] Maj, J., Basista, M., Węglewski, W., Bochenek, K., Strojny-Nędza, A., Naplocha, K., Panzner, T., Tatarková, M., Fiori, F. (2018). Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing. 715,154-162.
[14] Szajnar, J., Wróbel, P., Wróbel, T. (2008). Model castings with composite surface layer - application. Archive of Foudry Enginnering. 8(3), 105-110.
[15] Gawroński, J., Szajnar, J., Wróbel, P. (2005). Surface composite layers of cast iron - ceramic particles. Archive of Foundry. 5(17), 107-114.
[16] Marcinkowska, J. (1986). Wear-resistant casting coatings on cast steel. Solidification of Metals and Alloys. 6, 37-42.
[17] Baron, Cz., Gawroński, J. (2006). Abrasive wear resistance of sandwich composites based on iron alloys. Composites. 6(3), 45-49.
[18] Operation and maintenance documentation of test stand T-07.
Go to article

Authors and Affiliations

Daniel Medyński
ORCID: ORCID
A.J. Janus
1

  1. Witelon State University of Applied Science in Legnica ul. Sejmowa 5A, 59 – 220 Legnica, Poland
Download PDF Download RIS Download Bibtex

Abstract

For research purposes and to demonstrate the differences between materials obtained from the carbonaceous additives to classic green moulding sands, five lustrous carbon carriers available on the market were selected. The following carbonaceous additives were tested: two coal dusts (CD1 and CD2), two hydrocarbon resins (HR1 and HR2) and amorphous graphite (AG1). The studies of products and material effects resulting from the high-temperature pyrolysis of lustrous carbon carriers were focused on determining the tendency to gas evolution, including harmful compounds from the BTEX group (benzene, toluene, ethylbenzene and xylene). Moreover, the content of lustrous carbon (LC), the content of volatile matter and loss on ignition (LOI) of the carbonaceous additives were tested. The solid products formed during high-temperature pyrolysis were used for the quantitative and qualitative evaluation of elemental composition after the exposure to temperatures of 875oC in a protective atmosphere and 950oC in an oxidizing atmosphere. The conducted studies have indicated the necessity to examine the additives to classic green moulding sands, which is of particular importance for the processing, rebonding and storage of waste sand. The studies have also revealed some differences in the quantitative and qualitative composition of elements introduced to classic moulding sands together with the carbonaceous additives that are lustrous carbon carriers. It was also considered necessary to conduct a research on lustrous carbon carriers for their proper and environmentally friendly use in the widely propagated technology of classic green sand system.
Go to article

Bibliography

[1] Said, R.M., Kamal, M.R.M., Miswan, N.H. & Ng, S.J. (2018). Optimization of Moulding Composition for Quality Improvement of Sand Casting. Journal of Advanced Manufacturing Technology (JAMT). 12(1), 301-310.
[2] Saikaew, C. & Wiengwiset, S. (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67, 26-31. DOI: 10.1016/j.clay.2012.07.005.
[3] Kwaśniewska-Królikowska, D. & Holtzer, M. (2013). Selection criteria of lustrous carbon carriers in the aspect of properties of greensand system. Metalurgija. 52(1), 62-64.
[4] LaFay, V. & Crandell, G. (2009). Three Methods of Reducing Seacoal by Adding Graphite into Greensand Molds. Transactions of the American Foundrymen's Society. 117, 789.
[5] Lewandowski J.L. (2000). Lustrous carbon carrier, Przegląd Odlewnictwa, 10, 384-386. (in Polish)
[6] Lewandowski, J.L. (1998). The effect of coal dust on the toxicity of classic moulding sand. Przegląd Odlewnictwa, 10 322-325. (in Polish)
[7] Jelínek, P. & Beňo, J. (2008). Morphological forms of carbon and their utilizations at formation of iron casting surfaces. Archives of Foundry Engineering. 8(2008), 67-70.
[8] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911. DOI: 10.1007/s11665-019-03947-x.
[9] Holtzer, M. (2012). Technologies of moulding and core sands in the aspect of environmental protection. 3rd Conference Hüttenes-Albertus Poland. 19-40. (in Polish)
[10] Holtzer, M., Bobrowski, A., Grabowska, B., Eichholzb, S., & Hodorc, K. (2010). Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Archives of Foundry Engineering. 10(4), 61-68.
[11] Lewandowski, J.L. (1997). Materials for Foundry Moulds. Kraków: WN Akapit. ISBN: 83-7108-21-2. (in Polish)
[12] Holtzer, M. (2005). Can we eliminate coal dust from classic moulding sands? Przegląd Odlewnictwa. 12, 794-798. (in Polish).
[13] Naro, R.L. (2002). Formation and control of lustrous carbon surface defects in iron and steel castings. Transactions-American Foundrymens Society. 1, 815-834.
[14] Naro, R.L. (2002). An Update on the Formation and Control of Lustrous Carbon Surface Defects in Iron Castings. Ductile Iron News. 3.
[15] Campbell, J., & Naro, R.L. (2010). Lustrous Carbon on Gray Iron (10-136). Transactions of the American Foundrymen's Society, 118, 277.
[16] Jelinek, P., Buchtele, J., Fiala, J. (2004). Lustrous carbon and pyrolysis of carbonaceous additives to bentonite sands, Casting Technology, 66 World Foundry Congress, 455-467.
[17] Engelhardt, T. (2016). Low-emission additives to bentonite-bonded moulding sands. Przegląd Odlewnictwa. 66, 220-223. (in Polish)
[18] Holtzer, M., Żymankowska-Kumon, S., Kubecki, M., & Kwaśniewska-Królikowska, D. (2013). Harmfulness assessment of resins used as lustrous carbon carriers in bentonite moulding sands. Archives of Metallurgy and Materials. 58(3), 817-822. DOI: 10.2478/amm-2013-0078M.
[19] Stefański, Z. (2008). New coal dust substitutes for bentonite moulding sands used in manufacture of castings from malleable iron and aluminium alloys. Transactions of the Foundry Research Institute. 4, 5-18.
[20] Wang, Y., Huang, H., Cannon, F.S., Voigt, R.C., Komarneni, S. & Furness, J.C. (2007). Evaluation of volatile hydrocarbon emission characteristics of carbonaceous additives in green sand foundries. Environmental Science & Technology. 41(8), 2957-2963.
[21] Wang, Y., Cannon, F.S. & Li, X. (2011). Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science & Technology. 45(19), 8529-8535. DOI: 10.1021/es2023048.
[22] Jelinek, P., Buchtele, J., Kriz, V., Nemecek, S., Kriz, A., & Fiala, J. (2002). Morphology and Formation of Pyrolytic Carbon in Moulding Mixtures. Acta Metallurgica Slovaca. 8(4), 415-422.
[23] Michta-Stawiarska, T. (1998). Difficulties in stabilizing the properties of classic molding sands. Krzepnięcie Metali i Stopów. 35, PAN - Oddział Katowice PL. ISSN 0208-9386 (in Polish)
[24] Ji, S., Wan, L., & Fan, Z. (2001). The toxic compounds and leaching characteristics of spent foundry sands. Water, Air, and Soil Pollution. 132(3-4), 347-364, DOI: 10.1023/A:1013207000046.
[25] Orlenius, J. (2008). Factors Related to the Formation of Gas Porosity in Grey Cast Iron: Investigation of Core Gas Evolution and Gas Concentrations in Molten Iron. Research Series from Chalmers University of Technology, ISSN 1653-8891, Licentiate Theses.
[26] Bobrowski, A. & Grabowska, B. (2012). The impact of temperature on furan resin and binders structure. Metallurgy and Foundry Engineering. 38, 73-80.
[27] Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica. 52, 238-244.
[28] Bobrowski, A., Drożyński, D., Grabowska, B., Kaczmarska, K., Kurleto-Kozioł, Ż., & Brzeziński, M. (2018). Studies on thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20–500° C. China Foundry. 15(2), 145-151.
[29] Liu, L., Cao, Y. & Liu, Q. (2015). Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel. 146, 103-110.
[30] Sonibare, O.O., Haeger, T., & Foley, S.F. (2010). Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy. 35(12), 5347-5353.
[31] Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H. & Silva, S.R.P. (1996). Raman spectroscopy on amorphous carbon films. Journal of Applied Physics. 80(1), 440-447.
Go to article

Authors and Affiliations

J. Kamińska
1
ORCID: ORCID
M. Stachowicz
2
ORCID: ORCID
M. Kubecki
3

  1. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
  2. Wroclaw University of Technology, Faculty of Mechanical Engineering, Poland
  3. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an overview of a research on six practical cases that were solved in a precise casting company where parts are cast by the mean of the low-wax casting method (investment casting) in order to decrease poor quality production. The steel cast parts production technology by the lost-wax method requires the detailed work procedures observation. On the base of statistical processing data of given types of casting products, it was possible to assess the significance of each particular checking events by using the statistical hypothesis testing. The attention was focused on wax and ceramic departments. The data in technological flow were compared before and after the implementation of the change and statistical confirmative influences were assessed. The target consisted in setting such control manners in order to get the right conditions for decreasing poor quality parts. It was evidenced that the cast part defect cause correct identification and interpretation is important.
Go to article

Bibliography

[1] Elbel, T., Havlíček, F., Jelínek, P., Levíček, P., Rous, J., Stránský, K. (1992). Defects of iron alloy castings (classification, causes and prevention). Brno: MATECS. (in Czech).
[2] Nenadál, J. (2004). Measurement in quality management systems. Praha: Management Press. (in Czech).
[3] Lakomá, R., Čamek, L. (2013). Possibilities for quality control of casting products . In 22nd International Conference on Metallurgy and Materials, Metal, 15th-17th May 2013 (p. 40). Brno, Czech Republic, TANGER s. r. o. Ostrava. ISBN 978-80-87294-39-0.
[4] Plura, J. (2001). Planning and continuous quality improvement. Praha: Computer Press. (in Czech).
[5] Čamek, L., Lichý, P., Kroupová, I., Duda, J., Beňo, J., Korbáš, M., Radkovský, F., Bliznyukov, S. (2016). Effect of cast steel production metallurgy on the emergence of casting defect. Metalurgija. 55(4), 701-704. ISSN 0543-5846.
[6] Jezierski, J., Dojka, K., Kubiak, K., et al. (2016). Experimental approach for optimization of gating system in castings. In 25th International Conference on Metallurgy and Materials, Metal 25th-27th May (pp. 104-109). Brno, Czech Republic, TANGER s. r. o. Ostrava. ISSN 0543-5846.
[7] Jaromin, M., Dojka, R., Jezierski, J., Dojka, M. (2019). Influence of Type and Shape of the Chill on Solidification Process of Steel Casting. Archives of Foundry Engineering. 19(1), 35-40. ISSN (1897-3310).
[8] Richtarech, L., Bolibruchova, D.; Bruna, M.; Caiss, J. (2015). Influence of Nickel Addition on Properties of Secondary AlSi7Mg0.3 Alloy‎. Archives of Foundry Engineering. 15(2), 95-98. ISSN (1897-3310). DOI: 10.1515/afe-2015-0046.
[9] Merta, V., Lána, I. (2020). Manufacturing of Cast-metal Sponges from Copper Alloys. Materiali in Technologije. 54(1), 117-119. DOI: 10.17222/mit.2019.159.
Go to article

Authors and Affiliations

R. Lakomá
1
L. Čamek
2
P. Lichý
2
ORCID: ORCID
I. Kroupová
1
ORCID: ORCID
F. Radkovský
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical university of Ostrava, Czech Republic
  2. Brno University of Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research related to the possibility of inoculation of the AZ91 magnesium alloy casted into ceramic moulds by gadolinium. Effects of gadolinium content (0.1–0.6 wt%) on microstructure of the AZ91 alloy under as-cast state were investigated. The influence of the inoculator on the formation of the microstructure investigated by means of the thermal and derivative analysis by analysing the thermal effects arising during the alloy crystallization resulting from the phases formed. The degree of fragmentation of the microstructure of the tested alloys was assessed by means of the light microscopy studies and an image analysis with statistical analysis was performed. Conducted analyses have aimed at examining on the effect of inoculation of the gadolinium on the differences between the grain diameters and average size of each type of grain by way of measuring their perimeters of all phases, preliminary αMg and eutectics αMg+γ(Mg17Al12) in the prepared examined material.
Go to article

Bibliography

[1] Wang, Y.N. & Huang, J.C. (2007). The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn. Alloy Acta Materialia. 55(3), 897-905. DOI: 10.1016/ j.actamat.2006.09.010.
[2] Yu, Zhang et. al (2017). Effects of samarium addition on as-cast microstructure, grain fragmentation and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy. Journal of Rare Earths. 167(1), 31-33. DOI: 10.1016/S1002-0721(17)60939-6.
[3] Cao, F.Y, Song, G.L. & Atrens, A. (2016). Corrosion and passivation of magnesium alloys. Corrosion Science, 111(10), 835-845. DOI: 10.1016/j.corsci.2016.05.041.
[4] Mao, X., Yi, Y., Huang, S. & He, H. (2019). Bulging limit of AZ31B magnesium alloy tubes in hydroforming with internal and external pressure. The International Journal of Advanced Manufacturing Technology. 101, 2509-2517. DOI: https://doi.org/10.1007/s00170-018-3076-5.
[5] Władysiak, R. & Kozuń, A. (2015). Structure of AlSi20 alloy in heat treated die casting. Archives of Foundry Engineering.15(1), 113-118. DOI: 10.1515/afe-2015-0021.
[6] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AZ91 with a chromium addition on the microstructure and mechanical properties of the casting. Archives of Metallurgy and Materials. 62(4), 2199-2204. DOI: 10.1515/amm-2017-0324.
[7] Zhao, H.L., Guan, S.K. & Zheng, F.Y. (2007). Effects of Sr and B addition on microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Research. 22, 2423-2428. DOI: 10.1557/jmr.2007.0331.
[8] Bonnah, R.C., Fu, Y. & Hao, H. (2019). Microstructure and mechanical properties ofAZ91 magnesium alloy with minor additions of Sm, Si and Ca elements. China Foundry. 16(5), 319-325. DOI: 10.1007/s41230-019-9067-9.
[9] Jafari, H. & Amiryavari, P. (2016). The effects of zirconium and beryllium on microstructure evolution, mechanical properties and corrosion behaviour of as-cast AZ63 alloy. Materials Science & Engineering A. 654, 161-168 DOI: 10.1016/j.msea.2015.12.034.
[10] Boby, A., Ravikumar, K.K., Pillai, U.T.S. & Pai, B.C. (2013). Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy. Procedia Engineering 55. 355(5), 98-102. DOI: 10.1016/j.proeng. 2013.03.226.
[11] Huang, W., Yang, X., Mukai, T. & Sakai, T. (2019). Effect of yttrium addition on the hot deformation behaviors and microstructure development of magnesium alloy. Journal of Alloys and Compounds. 786, 118-125. DOI: 10.1016/ j.jallcom.2019.01.269.
[12] Pourbahari, B., Mirzadeh, H., Emamy, M. & Roumina, R. (2018). Enhanced ductility of afine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion. Advanced Engineering Materials. 20, 1701171. DOI: 10.1002/adem.201701171.
[13] Tardif, S., Tremblay, R. & Dubé, D. (2010). Influence of cerium on the microstructure and mechanical properties of ZA104 and ZA104 + 0.3Ca magnesium alloys. Material Science and Engineering A. 527, 7519-7529. DOI: 10.1016/j.msea.2010.08.082.
[14] Wang, X.J. et al. (2018). What is going on in magnesium alloys? Journal of Materials Science & Technology. 34(2), 245-247. DOI: 10.1016/j.jmst.2017.07.019.
[15] Nan, J. et. al (2016) Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy. Journal of Rare Earths. 34(6), 632-637. DOI: 10.1016/S1002-0721(16)60072-8.
[16] Miao, Y., Yaohui, L., Jiaan, L. & Yulai, S. (2014). Corrosion and mechanical properties of AM50 magnesium alloy after being modified by 1 wt.% rare earth element gadolinium. Journal of Rare Earth. 723, 558-563. DOI: 10.1016/S1002-0721(14)60108-3.
[17] Mingbo, Y., Caiyuan, Q., Fusheng, P. & Tao, Z. (2011). Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy. Journal of Rare Earths. 29(6), 550-557. DOI: 10.1016/S1002-0721(10)60496-6.
[18] Sumida, M., Jung, S. & Okane, T. (2009). Microstructure, solute partitioning and material properties of gadolinium-doped magnesium alloy AZ91D. Journal of Alloys and Compounds. 475. 903-910. DOI: 10.1016/j.jallcom. 2008.08.067/
[19] Pietrowski, S. & Rapiejko, C. (2011). Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method. Archives of Foundry Engineering. 11(3), 177-186.
[20] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
[21] Rapiejko, C., Pisarek, B, Czekaj, E. & Pacyniak, T. (2014). Analysis of AM60 and AZ91 Alloy Crystallisation in ceramic moulds by thermal derivative analisys (TDA). Archive of Metallurgy and Materials. 59(4) DOI: 10.2478/amm-2014-0246.
Go to article

Authors and Affiliations

C. Rapiejko
1
ORCID: ORCID
D. Mikusek
1
P. Just
1
T. Pacyniak
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Materials Engineering and Production Systems, ul. Stefanowskiego 1, 90-924 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Go to article

Bibliography

[1] Li, H.S., Miao, Q. & Zhou, R.M. (2014). Research on control algorithm of ceramic kiln temperature control system. Journal of Wuhan University of Technology. 36(10), 135-139. DOI: 10.3963/j.issn.1671-4431.2014.10.024.
[2] Zhu, D.Q. & Jiang, K.R. (2009). Design and simulation of fuzzy neural network controller for drying process. Journal of System Simulation. 21(15), 4768-4771. DOI: 10.16182/j.cnki.joss.2009.15.079.
[3] Zhang, Z.M., Zhang, J.Y. & Feng, X.G. (2019). Design of hot blast stove temperature control system based on RBF neural network tuning. Journal of Hebei University of Science and Technology. 40(06), 503-511. DOI: 10.7535/hbkd.2019yx06007.
[4] Bai, G.Z. & Yu, J.H. (2016). PID parameter self-tuning based on improved fuzzy neural network. Computer Application Research. 33(11), 3358-3363+3368. DOI: 10.3969/j.issn.1001-3695.2016.11.035.
[5] Li, C.L. & Huang, C.Z. (2010). Design of temperature control system based on fuzzy neural network. Microcomputer Information. 26(07), 75-76+98. DOI: 10.3969/j.issn.2095-6835.2010.07.031.
[6] Li, G.Q., Tong, S.H. & Lu, L.X. (2013). Analysis of the temperature field in a continuous sintering furnace for solar cells. Computer Simulation. 30(01), 188-192+218. DOI: 10.3969/j.issn.1006-9348.2013.01.043.
[7] Huang, B., Xie, G.J., Liang, W.S. & Zhang, J.W. (2018). Application of heating furnace temperature control system based on hybrid fuzzy PID. Electric Drive. 48(02), 43-46. DOI: 10.19457/j.1001-2095.20180208.
[8] Zhou, G.L., Peng, Y.F. & Dong, H.S. (2007). Design of adaptive fuzzy PID controller based on T-S model. Industrial Instrumentation and Automation. 2, 22-25. DOI: CNKI: SUN: GYZD.0.2007-02-005.
[9] Tan, M., Cheng, C.H. & Lu, C. (2006). Research on the temperature control system of vacuum sintering furnace based on neural network. Measurement and Control Technology. 2, 31-32+53. DOI: 10.19708/j.ckjs.2006.02.010.
[10] Wang, J.P. & Ku, M.S. (2010). Application of FNN on atmospheric heating furnace of distillation unit. Computer Measurement and Control. 18(11), 2649-2651. DOI: 10.16526/j.cnki.11-4762/tp.2010.11.003. [11] Chen, B.F., Yin, P.L. & Ma, L. (2010). Research on temperature control system based on fuzzy neural network. Computer and Digital Engineering. 38(07), 54-57. DOI: 10.3969/j.issn.1672-9722.2010.07.016.
[12] Li, M.H. & Li, Z.Q. (2012). Research on Decoupling Control Strategy of Injection Molding Machine Barrel Temperature Based on Neural Network. Ceramics. 4, 17-19. DOI: 10.19397/j.cnki.ceramics.2012.04.004.
[13] Hu, Y.N. & Ma, W.M. (2017). Research and application of paper quantitative moisture control strategy based on FNN decoupling. China Paper. 36(07), 48-53. DOI: 10.11980/j.issn.0254-508X.2017.07.009. [14] Zhang, L., Zhang, J.C., Han, H.G. & Qiao, J.F. (2020). Process control of biochemical phosphorus removal in sewage treatment based on fuzzy neural network. CIESC Journal. 71(03). 1217-1225. DOI: 10.11949/0438-1157.20191514.
[15] Tao, X.M., Luo, L. & Liu, Z.G. (2015). Research and simulation of injection molding machine barrel temperature control algorithm based on segmented PID. Plastics. 44(03), 68-70. DOI: CNKI: SUN: SULA.0.2015-03-022.
[16] Zhou, P.Q. (2016). Research on synchronization control technology of double winches based on fuzzy neural network. Machine Design and Manufacture. 9, 64-68. DOI: 10.19356/j.cnki.1001-3997.2016.09.017.
[17] Li, J.J., Xu, Y., Zhang, G., Wei, Z.Y. & Zhang, Y.B. (2015). Irrigation controller design based on BP neural network prediction and fuzzy control. Machine Design and Research. 31(05), 150-154. DOI: 10.13952/j.cnki.jofmdr. 2015.0207.
[18] Luo, C.N., Hao, R.K. & Yang, W. (2018). Boiler temperature control simulation in industrial production process. Computer simulation. 35(09), 358-362. DOI: 10.3969/j.issn.1006-9348.2018.09.074.
[19] Zhao, J. & Xu, H. (2016). Computer simulation study on segmental control of barrel temperature of injection molding machine. Synthetic Resin and Plastics. 33(05), 61-63. DOI: 10.3969/j.issn.1002-1396.2016.05.018.
Go to article

Authors and Affiliations

Zou Chaoxin
1
Li Rong
1
Xie Zhiping
1
Su Ming
1
Zeng Jingshi
2
Ji Xu
1
Ye Xiaoli
1
Wang Ye
1

  1. Guizhou Normal University, China
  2. Guizhou Zhenhua New Material Co., Ltd., China
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to gain a deeper understanding of the separation effects and particle movement during filtration of non-metallic inclusions in aluminum casting on a macroscopic level. To understand particle movement, complex simulations are performed using Flow 3D. One focus is the influence of the filter position in the casting system with regard to filtration efficiency. For this purpose, a real filter geometry is scanned with computed tomography (CT) and integrated into the simulation as an STL file. This allows the filtration processes of particles to be represented as realistically as possible. The models provide a look inside the casting system and the flow conditions before, in, and after the filter, which cannot be mapped in real casting tests. In the second part of this work, the casting models used in the simulation are replicated and cast in real casting trials. In order to gain further knowledge about filtration and particle movement, non-metallic particles are added to the melt and then separated by a filter. These particles are then detected in the filter by metallographic analysis. The numerical simulations of particle movement in an aluminum melt during filtration, give predictions in reasonable agreement with experimental measurements.
Go to article

Bibliography

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang, Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346-355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G. (2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813-833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
Go to article

Authors and Affiliations

B. Baumann
1
A. Keßler
1
E. Hoppach
1
G. Wolf
1
M. Szucki
1
ORCID: ORCID
O. Hilger
2

  1. Foundry Institute, Technische Universität Bergakademie Freiberg, 4 Bernhard-von-Cotta-Str., 09599 Freiberg, Germany
  2. Simcast GmbH, Westring 401, 42329 Wuppertal, Germany
Download PDF Download RIS Download Bibtex

Abstract

Investment casting is very well-known manufacturing process for producing relatively thin and multifarious industrial components with high dimensional tolerances as well as admirable surface finish. Investment casting process is further comprised of sub-processes including pattern making, shell making, dewaxing, shell backing, melting and pouring. These sub-processes are usually followed by heat treatment, finishing as well as testing & measurement of castings. Investment castings are employed in many industrial sectors including aerospace, automobile, bio-medical, chemical, defense, etc. Overall market size of investment castings in world is nearly 12.15 billion USD and growing at a rate of 2.8% every year. India is among the top five investment casting producers in the world, and produces nearly 4% (considering value of castings) of global market. Rajkot (home town of authors) is one of largest clusters of investment casting in India, and has nearly 175 investment casting foundries that is almost 30% of investment casting foundries of India. An industrial survey of nearly 25% of investment casting foundries of Rajkot cluster has been conducted in the year 2019-20 in order to get better insight related to 5 Cs (Capacity; Capability; Competency; Concerns; Challenges) of investment casting foundries located in the cluster. Specific set of questionnaires was design for the survey to address 5 Cs of investment casting foundries of Rajkot cluster, and their inputs were recorded during the in-person survey. The industrial survey yielded in providing better insight related to 5 Cs of foundries in Rajkot cluster. It will also help investment casting producer to identify the capabilities and quality issues as well as leads to benchmarking respective foundry.
Go to article

Bibliography

[1] Market Publishers (2020). Investment Casting Market Size, Share & Trends Analysis Report By Application (Aerospace & Defense, Energy Technology), By Region (North America, Europe, APAC, Central & South America, MEA), And Segment Forecasts, 2020 – 2027, 2020. Retrieved September, 2021, from https://pdf.marketpublishers.com/grand/investment-casting-market-size-share-trends-analysis-report-by-application-by-region-n-segment-forecasts-2020-2027.pdf
[2] Investment Casting Institute (2021). INCAST International Magazine of the Investment Casting Institute and the European Investment Casters Federation, 2021, XXXIV. Retrieved September, 2021, from https://www.investmentcasting.org/current-issue-public.html
[3] Online Learning Resources in Casting Design and Simulation. Retrieved September, 2021, from www.efoundry.iitb.ac.in
Go to article

Authors and Affiliations

A.V. Sata
1
N.R. Maheta
1

  1. Department of Mechanical Engineering, Marwadi University, India
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys, due to appropriate strength to weight ratio, are widely used in various industries, including automotive engines. This type of structures, due to high-temperature operations, are affected by the creep phenomenon; thus, the limited lifetime is expected for them. Therefore, in designing these types of parts, it is necessary to have sufficient information about the creep behavior and the material strength. One way to improve the properties is to add nanoparticles and fabricate a metal-based nano-composite. In the present research, failure mechanisms and creep properties of piston aluminum alloys were experimentally studied. In experiments, working conditions of combustion engine pistons were simulated. The material was composed of the aluminum matrix, which was reinforced by silicon oxide nanoparticles. The stir-casting method was used to produce the nano-composite by aluminum alloys and 1 wt.% of nanoparticles. The extraordinary model included the relationships between the stress and the temperature on the strain rate and the creep lifetime, as well as various theories such as the regression model. For this purpose, the creep test was performed on the standard sample at different stress levels and a specific temperature of 275 ℃. By plotting strain-time and strain rate-time curves, it was found that the creep lifetime decreased by increasing stress levels from 75 MPa to 125 MPa. Moreover, by comparing the creep test results of nanoparticle-reinforced alloys and nanoparticle-free alloys, 40% fall was observed in the reinforced material lifetime under 75 MPa. An increase in the strain rate was also seen under the mentioned stress. It is noteworthy that under 125 MPa, the creep lifetime and the strain rate of the reinforced alloy increased and decreased, respectively, compared to the piston alloy. Finally, by analyzing output data by the Minitab software, the sensitivity of the results to input parameters was investigated.
Go to article

Bibliography

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang,Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346- 355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G.(2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813- 833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
[23] Zolfaghari, M., Azadi, M. & Azadi, M. (2021). Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting. 15, 152-168.
[24] Balachandran, M., Devanathan, S., Muraleekrishnan, R. & Bhagawan, S.S. (2012). Optimizing properties of nano-clay-nitrile rubber (NBR) composites using face central composite design. Materials and Design. 35, 854-862.
[25] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology, International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2), 66-79.
[26] Sreedev, E.P., Govind, H.K., Raj, A., Adithyan, P.S., Narayan, H.A., Shankar, K.V. & Balachandran, M. (2020). Determining the significance of cobalt addition on the wear characteristics of Al-6.6Si-0.4Mg hypoeutectic alloy using design of experiment. Tribology in Industry. 42(2), 299-309.
[27] Shankar, K.V., Balachandran, M., Pillai, B.S., Krishnanunni, R.S., Harikrishnan, N.S., Harinarayanan, A.R. & Kumar, V.S. (2021). Influence of T6 heat treatment analysis on the tribological behavior of cast Al-12.2Si-0.3Mg-0.2Sr alloy using response surface methodology. Journal of Bio- and Tribo-Corrosion. 7(3), 96. [28] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behavior of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in Industry. DOI: 10.24874/ti.988.10.20.04.
[29] Jiang, X., Zhang, Y., Yi, D., Wang, H., Deng, X. & Wang, B. (2017). Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Materials Characterization. 130, 181-187.
[30] Azadi, M., Safarloo, S., Loghman, F., Rasouli, R. Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles. In AIP Conference Proceedings, 1920, (2018), 020027. DOI: 10.1063/1.5018959
[31] Khisheh, S., Khalili, K., Azadi, M. & Zaker Hendouabadi, V. (2021). Influences of roughness and heat treatment on high-cycle bending fatigue properties of A380 aluminum alloy under stress-controlled cyclic loading. Materials Chemistry and Physics. 264, 124475.
[32] Rashnoo, K., Sharifi, M.J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441.



Go to article

Authors and Affiliations

M. Azadi
1
ORCID: ORCID
A. Behmanesh
1
H. Aroo
1

  1. Faculty of Mechanical Engineering, Semnan University, Iran
Download PDF Download RIS Download Bibtex

Abstract

The influence of rapid solidification from the liquid state on the structure of Al71Ni24Fe5 alloy was studied. The samples were prepared by induction melting (ingots) and high pressure die casting into a copper mold (plates). The structure was examined by X-ray diffraction (XRD), light microscopy and high resolution transmission electron microscopy (HRTEM). The mechanism of crystallization was described on the basis of differential scanning calorimetry (DSC) heating and cooling curves, XRD patterns, isothermal section of Al-Ni-Fe alloys at 850°C and binary phase diagram of Al-Ni alloys. The fragmentation of the structure was observed for rapidly solidified alloy in a form of plates. Additionally, the presence of decagonal quasicrystalline phase D-Al70.83Fe9.83Ni19.34 was confirmed by phase analysis of XRD patterns, Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) of transmission electron microscopy images. The metastable character of D-Al70.83Fe9.83Ni19.34 phase was observed because of the lack of thermal effects on the DSC curves. The article indicates the differences with other research works and bring up to date the knowledge about Al71Ni24Fe5 alloys produced by two different cooling rates.
Go to article

Bibliography

[1] Tsai, A.P., Inoue, A. & Masumoto, T. (1989). New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Materials Transactions, JIM. 30(2), 150-154. DOI: 10.2320/matertrans1989.30.150.
[2] Lin, Y., Mao, S., Yan, Z., Zhang, Y. & Wang, L. (2017). The enhanced microhardness in a rapidly solidified Al alloy. Material Science and Engneering: A. 692, 182-191. DOI: 10.1016/j.msea.2017.03.052.
[3] Kula, A., Blaz, L. & Lobry, P. (2016) Structure and properties studies of rapidly solidified Al-Mn alloys. Key Engineering Materials. 682, 199-204. DOI: 10.4028/www.scientific.net/KEM.682.199.
[4] Lavernia, E.J. & Srivatsan, T.S. (2010). The rapid solidification processing of materials: Science, principles, technology, advances, and applications. Journal of Materials Science. 45, 287-325. DOI: 10.1007/s10853-009-3995-5.
[5] Sukhova, O.V., Polonskyy, V.A. & Ustinovа, K.V. (2017). Structure formation and corrosion behaviour of quasicrystalline Al-Ni-Fe alloys. Physics and Chemistry of Solidstate. 18(2), 222-227. DOI: 10.15330/pcss.18.2.222-227.
[6] Kridli, G.T., Friedman, P.A. & Boileau, J.M. (2010). Manufacturing processes for light alloys. In P.K. Mallick (Eds.), Materials, Design and Manufacturing for Lightweight Vehicles (pp. 235-274). Woodhead Publishing.
[7] Bonollo, F., Gramegna, N. & Timelli, G. (2015). High-pressure die-casting: Contradictions and challenges. JOM: The Journal of the Minerals, Metals & Materials Society. 67, 901-908. DOI: 10.1007/s11837-015-1333-8.
[8] Naglič, I., Samardžija, Z., Delijić, K., Kobe, S., Dubois, J.M., Leskovar, B. & Markoli, B. (2017). Metastable quasicrystals in Al–Mn alloys containing copper, magnesium and silicon. Journal of Material Science. 52, 13657-13668. DOI: 10.1007/s10853-017-1477-8.
[9] He, Z., Ma, H., Li, H., Li, X. & Ma, X. (2016). New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy. Scientific Reports. 6, 22337. DOI: 10.1038/srep22337.
[10] Kühn, U., Eckert, J., Mattern, N. & Schultz, L. As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Applied Physics Letter. 77, 3176-3178. DOI: 10.1063/1.1326036.
[11] Avar, B., Gogebakan, M., Yilmaz, F. (2008). Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al-Cu-Fe alloys. Zeitschrift Für Kristallographie- Crystalline Materials. 223, 731-734. DOI: 10.1524/zkri.2008.1077.
[12] Surowiec, M.R. (2017). Quasicrystals. Warsaw: Polish Scientific Publishers PWN. (in Polish) [13] Ishimasa, T. (2016). Mysteries of icosahedral quasicrystals: How are the atoms arranged? IUCrJ. 3, 230-231. DOI: 10.1107/S2052252516009842.
[14] Pedrazzini, S., Galano, M., Audebert, F., Siegkas, P., Gerlach, R., Tagarielli, V.L. & Smith, G.D.W. (2019). High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites. Materials Science and Engineering: A. 764, 138201. DOI: 10.1016/j.msea.2019.138201.
[15] Shadangi, Y., Shivam, V., Singh, M.K., Chattopadhyay, K., Basu, J. & Mukhopadhyay, N.K. (2019). Synthesis and characterization of Sn reinforced Al-Cu-Fe quasicrystalline matrix nanocomposite by mechanical milling. Journal of Alloys and Compounds. 797, 1280-1287. DOI: 10.1016/j.jallcom.2019.05.128.
[16] Audebert, F., Prima, F., Galano, M., Tomut, M., Warren, P.J., Stone, I.C. & Cantor, B. (2002). Structural characterisation and mechanical properties of nanocomposite Al-based alloys. Materials Transactions. 43, 2017-2025. DOI: 10.2320/matertrans.43.2017.
[17] Inoue, A. & Kimura, H. (2000). High-strength aluminum alloys containing nanoquasicrystalline particles. Materials Science and Engineering: A. 286, 1-10. DOI: 10.1016/S0921-5093(00)00656-0.
[18] Li, F.C., Liu, T., Zhang, J.Y., Shuang, S., Wang, Q., Wang, A.D., Wang, J.G. & Yang, Y. (2019). Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances. 4, 100027. DOI: 10.1016/j.mtadv.2019.100027.
[19] Qiang, J., Wang, D., Bao, C., Wang, Y., Xu, W. & Song, M. (2001). Formation rule for Al-based ternary quasi-crystals : Example of Al–Ni– Fe decagonal phase. Journal of Materials Reserach. 16(9) 2653-2660. DOI: 10.1557/JMR.2001.0364.
[20] Audebert, F. (2005). Amorphous and nanostructured Al-Fe and Al-Ni based alloys. In Idzikowski B., Švec P., Miglierini M. (Eds.) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series (Series II: Mathematics, Physics and Chemistry). Dordrecht: Springer.
[21] Milman, Y.V., Sirko, A.I., Iefimov, M.O., Niekov, O.D., Sharovsky, A.O. & Zacharova, N.P. (2006). High strength aluminum alloys reinforced by nanosize quasicrystalline particles for elevated temperature application. High Temperature Materials and Processes. 25(1-2), 19-29. DOI: 10.1515/HTMP.2006.25.1-2.19.
[22] Yadav, T.P., Mukhopadhyay, N.K., Tiwari, R.S. & Srivastava, O.N. (2007). Studies on Al-Ni-Fe decagonal quasicrystalline alloy prepared by mechanical alloying, Philosophical Magazine. 87(18-21), 3117-3125. DOI: 10.1080/14786430701355208.
[23] Babilas, R., Młynarek, K., Łoński, W., Lis, M., Łukowiec, D., Kądziołka-Gaweł, M., Warski, T., Radoń, A. (2021). Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance. Journal of Alloys and Compounds. 868, 159241. DOI: 10.1016/j.jallcom.2021.159241.
[24] Grushko, B., Lemmerz, U., Fischer, K. & Freiburg, C. (1996). The low-temperature instability of the decagonal phase in Al-Ni-Fe. Physica Status Solidi (a). 155, 17-30. DOI: 10.1002/pssa.2211550103.
[25] Raghavan, V. (2009). Al-Fe-Ni (Aluminum-Iron-Nickel). Journal of Phase Equilibria and Diffusion. 30(4), 85-88. DOI: 10.1007/s11669-008-9452-3.
[26] Konieczny, M., Mola, R., Thomas, P. & Kopcial, M. (2011). Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Archives of Metallurgy and Materials. 56(3), 693-702. DOI: 10.2478/v10172-011-0076-y.
[27] Čelko, L., Klakurková, L. & Švejcar, J. (2010). Diffusion in Al-Ni and Al-NiCr interfaces at moderate temperatures. Defect and Diffusion Forum. 297-301, 771-777. DOI: 10.4028/www.scientific.net/DDF.297-301.771.
[28] Titran, R.H., Vedula, K.M. & Anderson, G.G. (1984). High temperature properties of equialomic FeAl with ternary additions. MRS Proceedings. 39(309), 1471-1478. DOI: 10.1557/PROC-39-309.
Go to article

Authors and Affiliations

K. Młynarek
1
T. Czeppe
2
R. Babilas
1

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
  2. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta 5 St., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Metallurgy is one of the key industries both in Russia and in the world. It has a significant influence on the situation in related industries. Therefore, the current state analysis of ferrous metallurgy production and its formation based on the short-term technological forecast is essential. Based on the foregoing, the research was aimed at analyzing the current state of ferrous metallurgy production in Russia and the impact of the COVID-19 pandemic on the prospects for industry development in the short term. The research studies the state of the ferrous metallurgy production in Russia and abroad before the COVID-19 pandemic, as well as the volume of industrial production in ferrous metallurgy and the industry structure. The COVID-19 pandemic has triggered a serious global recession, necessitating an analysis of the forecast for the development of the ferrous metallurgy industry. The research concludes that the Russian ferrous metals market is so far affected to a lesser extent compared to the European one.
Go to article

Bibliography

[1] Ryabov, I.V. (2013). Institutional factors of economic development in the steel industry in the Russian Federation. Ekonomika: vchera, segodnya, zavtra. 7-8, 59-71.
[2] Shatokha, V. (2016). Post-Soviet issues and sustainability of iron and steel industry in Eastern Europe. Mineral Processing and Extractive Metallurgy. 126, 1-8.
[3] MIT Emerging Trends Report (2013). Cambridge, MA: Massachusetts Institute of Technology. Retrieved from http://2013.forinnovations.org/upload/MIT_Technology_Review.pdf.
[4] Cuhls, K. (2003). From forecasting to foresight processes. new participative foresight activities in Germany. Journal of Forecasting. 22, 93-111.
[5] Harrington, E.C.Jr. (1965). The desirability function. Industrial quality control. 21(1), 494-498.
[6] Profile. 2017/2018. World steel association. Retrieved from https://www.worldsteel.org/en/dam/jcr:cea55824-c208-4d41-b387-6c233e95efe5/worldsteel+Profile+2017.pdf.
[7] World Steel Association (2018). Monthly crude steel and iron production statistics. Retrieved from https://www.worldsteel.org/publications/bookshop/productdetails.~2018-Monthly-crude-steel-and-iron-productionstatistics~PRODUCT~statistics2018~.html.
[8] Metalinfo.ru (2018). China continues to cut off excessive capacity. Retrieved from http://www.metalinfo.ru/ru/news/100765.
[9] World Steel Association (2017). Steel Statistical Yearbook 2017. Retrieved from https://www.worldsteel.org/en/dam/jcr:3e275c73-6f11-4e7f-a5d8-23d9bc5c508f/Steel% 2520Statistical%2520Yearbook%25202017_updated%2520version090518.pdf.
[10] World Steel Association (2017). 50 years of the World Steel Association. World Steel Association. Retrieved from https://www.worldsteel.org/en/dam/jcr:80fe4bd6-4eff-4690-96e6-534500d35384/50%2520years%2520of%2520worldsteel_EN.pdf.
[11] Dudin, M.N., Bezbakh, V.V., Galkina, M.V., Rusakova, E.P., Zinkovsky, S.B. (2019). Stimulating Innovation Activity in Enterprises within the Metallurgical Sector: the Russian and International Experience. TEM Journal. 8(4), 1366-1370.
[12] Kharlamov, A.S. (2012). Competitiveness issues of metallurgy. Position of Russia. Monograph. Moscow: Nauchnaya Kniga.
[13] Golubev, S.S, Chebotarev, S.S., Sekerin, V.D. & Gorokhova, A.E. (2017). Development of Employee Incentive Programmes regarding Risks Taken and Individual performance. International Journal of Economic Research. 14(7), 37-46.
[14] Deloitte (2020). Overview of the ferrous metallurgy market. Retrieved from https://www2.deloitte.com/ru/ru/pages/research-center/articles/overview-of-steel-and-ironmarket-2020.html.
[15] Katunin, V.V., Zinovieva, N.G., Ivanova, I.M., Petrakova, T.M. (2021). The main performance indicators of the ferrous metallurgy of Russia in 2020. Ferrous metallurgy. Bulletin of Scientific. Technical and Economic Information. 77(4), 367- 392. DOI: https://doi.org/10.32339/0135-5910-2021-4-367-392.
[16] National Credit Ratings (NCR) (2021). The metamorphoses of the pandemic. The forecast of recovery of the Russian economy branches as of June 2, 2021. Analytical Research. June 2, 2021. Retrieved from https://www.ratings.ru/files/research//corps/NCR_Recovery_Jun2021.pdf 24.
[17] Mingazov, S. (2021). Russian metallurgists have doubled payments to the budget. Forbes. Retrieved from https://www.forbes.ru/newsroom/biznes/430855-rossiyskiemetallurgi-udvoili-vyplaty-v-byudzhet.
Go to article

Authors and Affiliations

S.S. Golubev
1
V.D. Sekerin
1
A.E. Gorokhova
1
D.A. Shevchenko
1
A.Z. Gusov
2

  1. Moscow Polytechnic University, Bolshaya Semenovskaya Street, 38, Moscow, 107023, Russian Federation
  2. Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow, 117198, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

The paper is a summary of a project aimed at identifying and eliminating or minimizing the causes of frequent failures of the Krakow water supply network related to corrosion damage. The paper presents the method of searching for factors responsible for frequent corrosion damage. There were taken into account several factors that may destroy the pipes associated with corrosion processes, such as the composition of the water, aggressiveness of ground, or stray currents. The monitoring method of the corrosion processes applied to observe the condition of the water supply network was discussed. The study showed that the main problem appeared to be stray currents related to the electrical infrastructure widely present in a large city, such as a tram or railway network. To eliminate this threat, a cathodic protection system has been implemented to prevent further failures. There were also demonstrated results of research proving that the applied solutions are effective.
Go to article

Bibliography

[1] Zimoch, I. (2008). Reliability Analysis of Water Distribution Subsystem. Journal of KONBiN. 7(4), 307-326.
[2] Jażdżewska, A., Gruszka, M., Mazur, R., Orlikowski, J. & Banaś, J. (2020). Determination of the effect of environmental factors on the corrosion of water distribution system based on analysis of on-line corrosion monitoring results. Archives of Metallurgy and Materials. 65(1), 109-116.
[3] Orlikowski, J., Zielinski, A., Darowicki, K., Krakowiak, S., Zakowski, K., Slepski, P., Jazdzewska, A., Gruszka, M. & J. Banas (2016). Research on causes of corrosion in the municipal water supply system. Case Studies in Construction Materials. 4, 108-115.
[4] Zakowski, K., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Gruszka, M., & Banas, J. (2016). Electrolytic corrosion of water pipeline system in the remote distance from stray currents - Case study. Case Studies in Construction Materials. 4, 116-124.
[5] Jazdzewska, A., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Zakowski, K., Gruszka, M., & Banas, J. (2016). Critical analysis of laboratory measurements and monitoring system of water-pipe network corrosion-case study. Case Studies in Construction Materials. 4, 102-107.
[6] Loewenthal, R.E., Morrison, I. & Wentzel, M.C. (2004). Control of corrosion and aggression in drinking water systems. Water Science and Technology. 49(2), 9-18. DOI: https://doi.org/10.2166/wst.2004.0075
[7] Booth, G.H., Cooper, A.W., Cooper, P.M. & Wakerley, D.S. (1967). Criteria of Soil Aggressiveness Towards Buried Metals. I. Experimental Methods. British Corrosion Journal. 2(3), 104-108. DOI: https://doi.org/10.1179/000705967798326957
[8] Bertolini, L., Carsana, M. & Pedeferri, P. (2007). Corrosion behaviour of steel in concrete in the presence of stray current. Corrosion Science. 49(3), 1056-1068. DOI: https://doi.org/10.1016/j.corsci.2006.05.048
[9] Chen, Z., Koleva D. & van Breugel, K. (2017). A review on stray current-induced steel corrosion in infrastructure. Corrosion Reviews. 35(6), 397-423. DOI: https://doi.org/10.1515/corrrev-2017-0009
[10] Cui, G., Li, ZL., Yang, C. & Wang, M. (2016). The influence of DC stray current on pipeline corrosion. Petroleum Science. 13(1), 135-145. DOI: https://doi.org/10.1007/s12182-015-0064-3
[11] Memon, M. (2013). Understanding Stray Current Mitigation, Testing and Maintenance on DC Powered Rail Transit Systems. In Proceedings of the 2013 Joint Rail Conference. 2013 Joint Rail Conference, April 15-18, 2013. Knoxville, Tennessee, USA: ASME.
[12] Zhu, Q., Cao, A., Zaifend, W., Song, J. & Shengli, C. (2011). Stray current corrosion in buried pipeline. Anti-Corrosion Methods and Materials. 58(5), 234-237. DOI: https://doi.org/10.1108/00035591111167695
[13] M. Ormellese & A. Brenna (2017). Cathodic Protection and Prevention: Principles, Applications and Monitoring. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
[14] Peng, P., Zeng, X., Leng, Y., Yu, K. & Ni, Y. (2020). A New On-line Monitoring Method for Stray Current of DC Metro System. IEEJ Transactions on Electrical and Electronic Engineering. 15(10), 1482-1492.
[15] Yang, L. (2008). Techniques for Corrosion Monitoring. (2nd Ed.). USA: Woodhead Publishing.
[16] Banaś, J., Mazurkiewicz, B., Solarski W., Lelek-Borkowska, U. (2018). Development of the optimal corrosion monitoring system for inner surface of production tubing. In: J. Lubas (Ed.), Development of optimal concepts for the development of unconventional deposits (pp. 78-158). Kraków: Instytut Nafty i Gazu. (in polish)
[17] Scully, J.R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 56(2), 199-218.
[18] Yang, L., Pan, Y., Dunn, D.S. & Sridhar, N. (2005). RealTime Monitoring of Carbon Steel Corrosion in Crude Oil and Brine Mixtures using Coupled Multielectrode Sensors. In Corrosion 2005, April 2005 (05293). Houston, Texas.
[19] A.S. G01.05, ASTM G1 - 03(2017)e1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM, 2017, pp. 9.
[20] E.S.E. 12954:2019, General principles of cathodic protection of buried or immersed onshore metallic structures, CEN, 2019, pp. 44.
[21] E.S.E. 50162:2004, Protection against corrosion by stray current from direct current systems, CEN, 2004, pp. 44.
[22] Evitts, R.W. & Kennell, G.F. (2018). Chapter 15 - Cathodic Protection. In M. Kutz (Edt.), Handbook of Environmental Degradation of Materials (3rd Ed.) (pp. 301-321). UK, USA: William Andrew Publishing.
[23] Peabody, A.W. (2018). Control of Pipeline Corrosion. NACE E-Book
[24] Riskin, J. (2008). Chapter 2 - Corrosion and Protection of Underground and Underwater Structures Attacked by Stray Currents. In: J. Riskin (Edt.), Electrocorrosion and Protection of Metals (pp. 23-35). Amsterdam: Elsevier.
Go to article

Authors and Affiliations

U. Lelek-Borkowska
1
M. Gruszka
2
J. Banaś
1

  1. AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland
  2. WMK S.A., Senatorska 1, 30-106 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium additives.
Go to article

Bibliography

[1] Kopyciński, D. (2015). Shaping the structure and mechanical properties of cast iron intended for operation in difficult conditions of use (selected issues). Katowice-Gliwice: Monography. Archives of Foundry Engineering. (in Polish).
[2] Kleiner, S. & Track K. (2010). SiMo 1000 - Ein aluminium - legiertes gusseisen für Hochtemperatur-anwendungen. Giesserei. 97, 28-34.
[3] Papis, K., Tunziniand, S., Menk, W. (2014). Cast iron alloys for exhaust applications. In 10th International Symposium on the Science and Processing of Cast Iron - SPCI10, November 2014. Mar del Plata, Argentina.
[4] Öberg, Ch., Zhu, B. & Jonsson, S. (2017). Plastic deformation and creep of two ductile cast irons, SiMo51 and SiMo1000, during thermal cycling with large strain. Materials Science Forum. 925, 361-368. DOI: https://doi.org/10.4028/www.scientific.net/MSF.925.361.
[5] Guzik, E. (2001). Cast iron refining processes, selected issues. Katowice: Archiwum Odlewnictwa PAN. (in Polish).
[6] Collective work (2013). Foundry's guide. Kraków: STOP. 138-139. (in Polish).
[7] Keivan A. Kasvayee, & Ghasemali E. (2017). Characterization and modeling of the mechanical behavior of high silicon ductile iron. Material Science & Engineering A. 708, 159-170. DOI: https://doi.org/10.1016/j.msea.2017.09.115.
[8] Li, D., Perrin,. R., Burger, G., McFarlan, D., Black, B., Logan, R. & Williams, R. (2004). Solidification behavior, microstructure, mechanical properties, hot oxidation and thermal fatigue resistance of high silicon SiMo nodular cast irons. SAE International, Warrendale, 1-12. DOI: https://doi.org/10.4271/2004-01-0792.
[9] Muller, J., Wolf, G. (2001). Optimierte magnesiumdrahtinjektionstechnik zur herstellung von hochwertigem gusseisen mit kugelgraphit aus kupolofenbasiseisn. Giessereiforschung. 53(3), 85-103.
[10] Hampl, J. & Elbert, T. (2010). On modelling of the effect of oxygen on graphite morphology and properties of modified cast irons. Archives of Foundry Engineering. 10(4), 55-60.
[11] Mocek, J., Chojecki, A. (2009). Changes in the gas atmosphere of the casting mould during pouring iron alloys. In XXXIII Scientific Founder's Day Conference. Kraków. (in Polish).
Go to article

Authors and Affiliations

Ł. Dyrlaga
1 2
D. Kopyciński
1
E. Guzik
1

  1. AGH University of Science and Technology, Department of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. METALPOL Węgierska Górka ul. Kolejowa 6, 34-350 Węgierska Górka, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of research on the influence of the mould material on selected mechanical properties of wax models used for production of casting in investment casting method. The main goal was to compare the strength and hardness of samples produced in various media in order to analyse the applicability of the 3D printing technology as an alternative method of producing wax injection dies. To make the wax injection dies, it was decided to use a milled steel and 3D printed inserts made using FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) technology from HIPS (High Impact Polystyrene) and ABS (Acrylonitrile Butadiene Styrene). A semi-automatic vertical reciprocating injection moulding machine was used to produce the wax samples made of Freeman Flakes Wax Mixture – Super Pink. During injection moulding process, the mould temperature was measured each time before and after moulding with a pyrometer. Then, the samples were subjected to a static tensile test and a hardness test. It was shown that the mould material influences the strength properties of the wax samples, but not their final hardness.
Go to article

Bibliography

[1] Campbell, J. (2015). Complete casting handbook: metal casting processes, techniques and design. (2nd ed.). Oxford: Butterworth-Heinemann.
[2] Tamta, K. & Karunakar, D.B. (2020). Development of hybrid pattern material for investment casting process: an experimental investigation on improvement in pattern characteristics. Materials and Manufacturing Processes. 36(6), 744-751. DOI: 10.1080/10426914.2020.1854471.
[3] Bernat, L. & Popielarski, P. (2020). Identification of substitute thermophysical properties of gypsum mould. Archives of Foundry Engineering. 20(1), 5-8. DOI: 10.24425/afe.2020.131274.
[4] Guzera, J. (2010). Casting production in autoclaved gypsum moulds using investment casting method. Archives of Foundry Engineering. 10(3), 307-310. (in Polish).
[5] Sarbojeet, J. (2016). Crystallization behavior of waxes. Doctoral dissertation. Utah State University, Logan, United States of America.
[6] Unknown author, Investment casting process steps (lost wax). Retrieved January 12, 2021, from http://americancastingco.com/investment-casting-process.
[7] Ruwoldt, J., Humborstad Sørland, G., Simon, S., Oschmann, H-J. & Sjoblom, J. (2019). Inhibitor-wax interactions and PPD effect on wax crystallization: New approaches for GC/MS and NMR, and comparison with DSC, CPM, and rheometry. Journal of Petroleum Science and Engineering. 177. 53-68. DOI: 10.1016/j.petrol.2019.02.046
[8] Jung, T., Kim, J-N. & Kang, S-P. (2016). Influence of polymeric additives on paraffin waxes crystallization in model oils. Korean Journal of Chemical Engineering. 33(6), 1813-1822. DOI: https:://doi.org/10.1007/s11814-016-0052-3.
[9] Simnofske, D. & Mollenhauer, K. (2017). Effect of wax crystallization on complex modulus of modified bitumen after varied temperature conditioning rates. IOP Conference Series: Materials Science and Engineering. 236. DOI: 10.1088/1757-899X/236/1/012003.
[10] Edwards, R.T. (1957). Crystal Habit of Paraffin Wax. Industrial & Engineering Chemistry. 49(4), 750-757. DOI: https://doi.org/10.1021/ie50568a042.
[11] Dantas Neto A.A., Gomes, E.A.S. & Barros Neto, E.L., Dantas, T.N.C. & Moura C.P.A.M. (2009). Determination of wax appearance temperature (WAT) in paraffin/solvent systems by photoelectric signal and viscosimetry. Brazilian Journal of Petroleum and Gas. 3(4), 149-157. ISSN: 1982- 0593.
[12] Unknown author, Freeman super pink flake wax: technical data sheet. Retrieved January 12, 2021, from https://www.freemanwax.com/datasheets/Injection/tdssuperpink.pdf.
[13] Unknown author, M-series-specification. Retrieved January 12, 2021, from https://support.zortrax.com/m-seriesspecification/.
[14] Clarke, E.W. (1951). Crystal Types of Pure Hydrocarbons in the Paraffin Wax Range. Industrial & Engineering Chemistry. 43(11), 2526–2535. DOI: https://doi.org/10.1021/ie50503a037
Go to article

Authors and Affiliations

A. Kroma
1
P. Brzęk
1

  1. Poznan University of Technology, Institute of Materials Technology, Division of Foundry, Piotrowo 3, 61-138 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production of the defect-free casting of aluminium alloys is the biggest challenge. Porosity is known to be the most important defect. Therefore, many cast parts are subjected to several non-destructive tests in order to check their acceptability. There are several standards, yet, the acceptance limit of porosity size and distribution may change according to the customer design and requirements. In this work, the aim was targeted to evaluate the effect of size, location, and distribution of pores on the tensile properties of cast A356 alloy. ANSYS software was used to perform stress analysis where the pore sizes were changed between 0.05 mm to 3 mm by 0.05 mm increments. Additionally, pore number was changed from 1 to 5 where they were placed at different locations in the test bar. Finally, bifilms were placed inside the pore at different sizes and orientations. The stress generated along the pores was recorded and compared with the fracture stress of the A356 alloy. It was found that as the bifilm size was getting smaller, their effect on tensile properties was lowered. On the other hand, as bifilms were larger, their orientation became the dominant factor in determining the fracture.
Go to article

Bibliography

[1] Buffiere, J.-Y., Savelli, S., Jouneau, P.-H., Maire, E. & Fougeres, R. (2001). Experimental study of porosity and its relation to fatigue mechanisms of model Al–Si7–Mg0. 3 cast Al alloys. Materials Science and Engineering: A. 316(1-2), 115-126. DOI: 10.1016/S0921-5093(01)01225-4.
[2] Dispinar, D. & Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A. 528(10-11), 3860-3865. DOI: 10.1016/j.msea.2011.01.084.
[3] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17, 280-286. DOI: 10.1179/136404604225020696.
[4] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17, 287-294. DOI: 10.1179/136404604225020704.
[5] Dispinar, D. & Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality. International Journal of Cast Metals Research. 19, 5-17. DOI: 10.1179/136404606225023300.
[6] Dispinar, D. & Campbell, J. (2007). Effect of casting conditions on aluminium metal quality. Journal of Materials Processing Technology. 182, 405-410. DOI: 10.1016/j.jmatprotec.2006.08.021.
[7] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[8] Dispinar, D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. in Shape Casting: 5th International Symposium 2014, 243-251.
[9] Asadian Nozari, M., Taghiabadi, R., Karimzadeh, M. & Ghoncheh, M. H. (2015). Investigation on beneficial effects of beryllium on entrained oxide films, mechanical properties and casting reliability of Fe-rich Al–Si cast alloy. Materials Science and Technology. 31, 506-512. DOI: 10.1179/1743284714Y.0000000656.
[10] Bagherpour-Torghabeh, H., Raiszadeh, R. & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurigical and Materials Transactions B. 48, 3174-3184. DOI: 10.1007/s11663-017-1067-9.
[11] Bjurenstedt, A., Seifeddine, S. & Jarfors, A. E. W. (2015). On the complexity of the relationship between microstructure and tensile properties in cast aluminum. International Journal of Modern Physics B. 29, 1540011. DOI: 10.1142/S0217979215400111.
[12] Bozchaloei, G. E., Varahram, N., Davami, P. & Kim, S. K. (2012). Effect of oxide bifilms on the mechanical properties of cast Al–7Si–0.3 Mg alloy and the roll of runner height after filter on their formation. Materials Science and Engineering A. 548, 99-105. DOI: 10.1016/j.msea.2012.03.097.
[13] Çolak, M., Kayikci, R. & Dispinar, D. (2016). Melt cleanliness comparison of chlorine fluxing and ar degassing of secondary Al-4Cu. Metallurgical and Materials Transactions B. 47, 2705-2709. DOI: 10.1007/s11663-016-0745-3.
[14] Davami, P., Kim, S. K. & Varahram, N. (2012). Effects of hydrogen and oxides on tensile properties of Al–Si–Mg cast alloys. Materials Science and Engineering A. 552, 36-47. DOI: 10.1016/j.msea.2012.04.111.
[15] Davami, P., Kim, S. K. & Tiryakioğlu, M. (2013). The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al–7% Si–Mg alloy castings. Materials Science and Engineering A. 579, 64-70. DOI: 10.1016/j.msea.2013.05.014.
[16] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering A. 527, 3719-3725. DOI: 10.1016/j.msea.2010.01.088.
[17] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Bifilm defects and porosity in Al cast alloys. The International Journal of Advanced Manufacturing Technology. 86, 1173-1179. DOI: 10.1007/s00170-015-8240-6.
[18] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Effect of casting practice on the reliability of Al cast alloys. International Journal of Cast Metals Research. 29, 350-354. DOI: 10.1080/13640461.2016.1145966.
[19] El-Sayed, M. A., Salem, H. A. G., Kandeil, A. Y. & Griffiths, W. D. (2014). Determination of the lifetime of a double-oxide film in al castings. Metallurgical and Materials Transactions B. 45, 1398-1406. DOI: 10.1007/s11663-014-0035-x.
[20] Erzi, E., Gürsoy, Ö., Yüksel, Ç., Colak, M. & Dispinar, D. (2019). Determination of acceptable quality limit for casting of A356 aluminium alloy: supplier’s quality index (SQI). Metals. 9, 957. DOI: 10.3390/met9090957.
[21] Fiorese, E., Bonollo, F., Timelli, G., Arnberg, L. & Gariboldi, E. (2015). New classification of defects and imperfections for aluminum alloy castings. International Journal of Metalcasting. 9, 55-66. DOI: 10.1007/BF03355602.
[22] Gopalan, R. & Prabhu, N. K. (2011). Oxide bifilms in aluminium alloy castings–a review. Materials Science and Technology. 27, 1757-1769. DOI: 10.1179/1743284711Y.0000000033.
[23] Hsu, F.-Y., Jolly, M. R. & Campbell, J. (2007). The design of L-shaped runners for gravity casting. in Metals & Materials Society The Minerals, Proceedings of Shape Casting: 2nd International Symposium, Orlando, FL, USA.
[24] Kang, M. et al. (2014). Tensile properties and microstructures of investment complex shaped casting. Materials Science and Technology. 30, 1349-1353. DOI: 10.1179/1743284713Y.0000000444.
[25] Mostafaei, M., Ghobadi, M., Eisaabadi, G., Uludağ, M. & Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B. 47, 3469-3475. DOI: 10.1007/s11663-016-0786-7.
[26] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J. L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: modelling and experimental validation of mould filling. Materials and Design. 94, 384-391. DOI: 10.1016/j.matdes.2016.01.059.
[27] Stefanescu, D. M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18, 129-143. DOI: 10.1179/136404605225023018.
[28] Tiryakioğlu, M., Campbell, J. & Nyahumwa, C. (2011). Fracture surface facets and fatigue life potential of castings. Metallurgical and Materials Transactions B. 42, 1098-1103. DOI: 10.1007/s11663-011-9577-3.
[29] Tunçay, T. & Bayoğlu, S. (2017). The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metallurgical and Materials Transactions B. 48, 794-804. DOI: 10.1007/s11663-016-0909-1.
[30] Tunçay, T., Tekeli, S., Özyürek, D. & Dispinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30, 20-29. DOI: 10.1080/13640461.2016.1192826.
[31] Uludağ, M., Çetin, R., Dispinar, D. & Tiryakioğlu, M. (2017). Characterization of the Effect of Melt Treatments on Melt Quality in Al-7wt %Si-Mg Alloys. Metals. 7(5), 157. DOI: 10.3390/met7050157.
[32] Uludağ, M., Çetin, R., Dişpinar, D. & Tiryakioğlu, M. (2018). On the interpretation of melt quality assessment of A356 aluminum alloy by the reduced pressure test: the bifilm index and its physical meaning. International Journal of Metalcasting. 12, 853–860. DOI: 10.1007/s40962-018-0217-4.
[33] Yorulmaz, A., Erzi, E., Gursoy, O. & Dispinar, D. (2019). End product rejection rate and its correlation with melt treatment in direct-chill casted hot rolling slabs. International Journal of Cast Metals Research. 32, 164-170. DOI: 10.1080/13640461.2019.1598684.
[34] Zahedi, H. et al. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38, 659-670. DOI: 10.1007/s11661-006-9068-3.
[35] Kuwazuru, O. et al. (2008). X-ray CT inspection for porosities and its effect on fatigue of die cast aluminium alloy. Journal of Solid Mechanics and Materials Engineering. 2(9), 1220-1231. DOI: 10.1299/jmmp.2.1220.
[36] Le, V.-D., Saintier, N., Morel, F., Bellett, D. & Osmond, P. (2018). Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography. International Journal of Fatigue. 106, 24-37. DOI: 10.1016/j.ijfatigue.2017.09.012.
[37] Wang, L. et al. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering A. 673, 362-372. DOI: 10.1016/j.msea.2016.07.036.
[38] Vincent, M., Nadot-Martin, C., Nadot, Y. & Dragon, A. (2014). Fatigue from defect under multiaxial loading: efect Stress Gradient (DSG) approach using ellipsoidal Equivalent Inclusion Method. International Journal of Fatigue. 59, 176-187. DOI: 10.1016/j.ijfatigue.2013.08.027.
[39] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI: 10.1016/j.matchar.2019.109925.
[40] Kobayashi, M., Dorce, Y., Toda, H. & Horikawa, H. (2010). Effect of local volume fraction of microporosity on tensile properties in Al–Si–Mg cast alloy. Materials Science and Technology. 26, 962-967. DOI: 10.1179/174328409X 441283.
[41] Nikishkov, G. P. (2004). Introduction to the finite element method. Univ. Aizu 1-70.
Go to article

Authors and Affiliations

H. Sahin
1
ORCID: ORCID
M. Atik
1
F. Tezer
1
S. Temel
1
O. Aydin
1
O. Kesen
1
O. Gursoy
2
D. Dispinar
3
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. University of Padova, Italy
  3. Foseco, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

Disposable foundry models constitute an increasingly important role in a unitary large-size foundry. These models have many benefits, but technologies using such materials require an understanding of degradation kinetics at the time of filling. The studies presented in the article determine the size of the polystyrene combustion products used for disposable foundry models. The results were obtained by carrying out the combustion process of the polystyrene model in a special combustion chamber, in different configurations. The pressures generated during thermal degradation vary depending on process parameters such as model density or the use of an additional adhesive binder. The results of laboratory tests may suggest what values of pressure are generated when filling in full-mold and lost foam technologies. The studies provide a prelude to further analysis of materials used for disposable foundry models and quantitative evaluation of their thermal degradation products for computer simulation.
Go to article

Bibliography

[1] Pacyniak, T. (2013). Full mold casting. Selected aspects. Lodz: A Series of Monographs, Lodz University of Technology. (in Polish)
[2] Pysz, S., Żółkiewicz, Z., Żuczek, R., Maniowski, Z., Sierant, Z., Młyński, M. (2010). Simulation studies of mould filling conditions with molten metal in evaporative pattern technology. The Transactions of the Foundry Research Institute. 10(3), 27-37.
[3] Shroyer, H.F. (1958). Cavityless Casting Mold and Method of Making Same. U.S. Patent No. 2,830, 343.
[4] Kaczorowski, R., Just, P. & Pacyniak, T. (2013), Test bench for analyzing the lost foam process. Archives of Foundry Engineering. 13(1), 57-62.
[5] Buczkowska, K., Just, P., Świniarska, J. & Pacyniak, T. (2015). The effect of the type, the ceramic coating thickness and the pattern set density on the degree of gas porosity in casting. Archives of Foundry Engineering. 15(2), 7-12.
[6] Żmudzińska, M., Faber, J., Perszewska, K., Żółkiewicz, Z., Maniowski, Z. (2011). Studying the emission of products formed during evaporation of polystyrene patterns in the lost foam process in terms of the work environment. The Transactions of the Foundry Research Institute. 50(1), 23-33.
[7] Żółkiewicz, Z., Baliński, A., Żółkiewicz M. (2017). Characteristics of the thermal process of polystyrene model gasification. The Transactions of the Foundry Research Institute. 17(3), 201 - 210.
[8] Mocek, J. & Chojecki, A. (2014). Gas atmosphere formed in casting by full mold process. Archives of Metallurgy and Materials. 59(3), 1045-1049.
[9] Żółkiewicz, Z. & Żółkiewicz, M. (2010). Characteristic properties of materials for evaporative patterns. Archives of Foundry Engineering. 10(spec. 3), 289-292.
[10] Pielichowski, J., Sobczak, J.J., Żółkiewicz, Z., Hebda, E., Karwiński, A. (2011). The thermal analysis of polystyrene foundry model. The Transactions of the Foundry Research Institute. 11(1), 15-21.
Go to article

Authors and Affiliations

M. Jureczko
1 2
Dariusz Bartocha
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Str. 44-100 Gliwice, Poland
  2. Joint Doctoral School, Silesian University of Technology, 2A Akademicka Str. 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Computational Materials Engineering (CME) is a high technological approach used to design and develop new materials including the physical, thermal and mechanical properties by combining materials models at multiple techniques. With the recent advances in technology, the importance of microstructural design in CME environments and the contribution that such an approach can make in the estimation of material properties in simulations are frequently discussed in scientific, academic, and industrial platforms. Determination of the raw material characteristics that can be modeled in a virtual environment at an atomic scale by means of simulation programs plays a big role in combining experimental and virtual worlds and creating digital twins of the production chain and the products. In this study, a new generation, alternative and effective approach that could be used to the development of Al-Si based wheel casting alloys is proposed. This approach is based on the procedure of optimizing the physical and thermodynamic alloy properties developed in a computer environment with the CME technique before the casting phase. This article demonstrates the applicability of this approach in alloy development studies to produce Al-Si alloy wheels using the low pressure die casting (LPDC) method. With this study, an alternative and economical way is presented to the alloy development studies by trial and error in the aluminum casting industry. In other respects, since the study is directly related to the automotive industry, the reduction in fuel consumption in vehicles is an expected effect, as the new alloy aims to reduce the weight of the wheels. In addition to conserving energy, reducing carbon emissions also highlights the environmental aspects of this study.
Go to article

Bibliography

[1] Cullen, J.M. & Allwood, J.M. (2013). Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environmental Science & Technology. 47(7), 3057-3064. DOI: 10.1021/es304256s.
[2] Liu, G. & Müller, D.B. (2012). Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. Journal of Cleaner Production. 35, 108-117. DOI: 10.1016/j.jclepro.2012.05.030.
[3] Ashkenazi, D. (2019). How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change. 143, 101-113. DOI: 10.1016/j.techfore.2019.03.011.
[4] Musfirah, A.H. & Jaharah, A.G. (2012). Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research. 8(9): 4865-4875.
[5] Davies, J.R. (1993). Aluminum and Aluminum Alloys. ASM International, OH.
[6] Mondolfo, L.F. (1976). Aluminum alloys: Structure and Properties. London, Butterworths.
[7] Rana, R.S., Purohit, R. & Das S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications. 2(6).
[8] Heusler, L. & Schneider, W. (2002). Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. Journal of Light Metals. 2(1), 17-26. DOI: 10.1016/s1471-5317(02)00009-3.
[9] Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280(1), 37-49. DOI: 10.1016/s0921-5093(99)00653-x.
[10] Krol, M., Tanski, T., Snopinski, P. & Tomiczek, B. (2017). Structure and properties of aluminium–magnesium casting alloys after heat treatment. Journal of Thermal Analysis and Calorimetry. 127, 299-308.
[11] Callister, W.D. (1997). Materials science and engineering: An introduction. New York: John Wiley & Sons.
[12] Allison J., Backman D. & Christodoulou L. (2006). Integrated computational materials engineering: A new paradigm for the global materials profession. JOM. 58, 25-27.
[13] Allison, J., Li M., Wolverton, C. & Su, X.M. (2006). Virtual aluminum castings: an industrial application of ICME. JOM. 58, 28-35.
[14] Schmid-Fetzer, R. & Gröbner, J. (2001). Focused development of magnesium alloys using the CALPHAD approach. Advanced Engineering Materials. 3(12), 947-961. DOI: 10.1002/1527-2648(200112)3:1.
[15] Jung, J.-G., Cho, Y.-H., Lee, J.-M., Kim, H.-W. & Euh, K. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. CALPHAD. 64, 236-247. DOI: 10.1016/j.calphad.2018.12.010.
[16] Jha, R. & Dulikravich, G.S. (2020). Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science. 182, 109749. DOI: 10.1016/j.commatsci.2020.109749.
[17] Assadiki A., Esin V.A., Bruno, M. & Martinez, R. (2018). Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations. Computational Materials Science. 145, 1-7. DOI: 10.1016/j.commatsci.2017.12.056.
[18] Jiao, X.Y., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y. et al. (2020). The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy. Journal of Materials Science & Technology. 51, 54-62. DOI: 10.1016/j.jmst.2020.02.040.
[19] Pehlivanoglu, U., Yağcı, T. & Çulha, O. (2021). Effects of air-cooling-hole geometries on a low-pressure die-casting process. Materials and Technology. 55(4), 549-558. DOI: 10.17222/mit.2021.043
[20] Lumley, R. (2011). Fundamentals of Aluminium Metallurgy. Wood Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi.
[21] Snugovsky, L., Major, J.F., Perovic, D.D. & Rutter, J.W. (2000). Silicon segregation in aluminium casting alloy. Materials Science and Technology. 16(2), 125-128. DOI: 10.1179/026708300101507604.
[22] Ebhota, W.S. & Jen, T.C. (2017). Effects of modification techniques on mechanical properties of Al-Si cast alloys. In Subbarayan Sivasankaran (Eds.), Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. London, UK: IntechOpen. DOI: 10.5772/intechopen.70391
[23] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. DOI: 10.3390/ma12010010
[24] Yıldırım, M. & Özyürek, D. (2013). The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Materials and Design. 51, 767-774. DOI: 10.1016/j.matdes.2013.04.089.
[25] Kumar V., Mehdi, H., Kumar A. (2015). Effect of silicon content on the mechanical properties of aluminum alloy. International Research Journal of Engineering and Technology. 2(4), 1326-1330.
[26] Li, W., Cui, S., Han, J. & Xu, C. (2006). Effect of silicon on the casting properties of Al-5.0% Cu alloy. Rare Metals. 25, 133-135. DOI: 10.1016/s1001-0521(08)60067-4
[27] Yang, Y.S. & Tsao, C.Y.A. (1997). Viscosity and structure variations of Al-Si alloy in the semi-solid state. Journal of Materials Science, 32(8), 2087-2092. DOI: 10.1023/A:1018522805543.
[28] Campbell, J. (2003). Castings: the new metallurgy of cast metals. 2nd Edition, Elsevier Butterworth-Heinemann, Oxford.
[29] Atasoy, Ö.A. (1990). Ötektik Alaşımlar: Katılaşma Mekanizmaları ve Uygulamaları. İstanbul Technical University, İstanbul.
[30] Sahoo, M. & Sahu, S. (2014). Principles of metal casting. 3rd Edition, McGraw-Hill Education.
[31] Clemex, Dendrite Arm Spacing in Aluminum Alloy Report. Retrieved August 24, 2021, from https://clemex.com/analysis/dentritic-arm-spacing/
[32] Peres, M.D., Siqueira, C.A. & Garcia, A. (2004). Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 381(1-2), 168-181. DOI: 10.1016/j.jallcom.2004.03.107.
[33] Spear, R.E. & Gardner, G.R. (1963). Dendrite cell size. AFS Transactions. 71, 209-215. [34] Rhadhakrishna, K, Seshan, S. & Seshadri, M.R. (1980). Dendrite arm spacing in aluminium alloy castings, AFS Transactions. 88, 695-702.
[35] Flemings, M. Kattamis, T.Z. & Bardes, B.P. (1991). Dendrite arm spacing in aluminium alloys. AFS Transactions. 99, 501-506.
Go to article

Authors and Affiliations

T. Yağcı
1
Ü. Cöcen
1
O. Çulha
2

  1. Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey
  2. Manisa Celal Bayar University, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Cast iron destined for spheroidization is usually characterized by a near-eutectic chemical composition, which is a result of the necessity of maintaining its high graphitizing ability. This graphitizing ability depends mainly on the chemical composition but also on the so-called physical-chemical state. This, in turn, depends on the melting process history and the charge structure. It happens quite often, that at very similar chemical compositions cast irons are characterized by different graphitizing abilities. The hereby work concerns searching for the best method of assessing the graphitizing abilities of near-eutectic cast iron. The assessment of the graphitizing ability was performed for cast iron obtained from the metal charge consisting of 100% of special pig iron and for synthetic cast iron obtained from the charge containing 50% of pig iron + 50% of steel. This assessment was carried out by a few methods: wedge tests, thermal analysis, microstructure tests as well as by the new ultrasonic method. The last method is the most sensitive and accurate. On the basis of the distribution of the wave velocity, determined in the rod which one end was cast on the metal plate, it is possible to determine the graphitizing ability of cast iron. The more uniform structure in the rod, in which directional solidification was forced and which had graphite precipitates on the whole length, the higher graphitizing ability of cast iron. The homogeneity of the structure is determined by the indirect ultrasonic method, by measurements of the wave velocity. This new ultrasonic method of assessing the graphitizing ability of cast iron of a high Sc (degree of eutectiveness) and CE (carbon equivalent) content, can be counted among fast technological methods, allowing to assess the cast iron quality during the melting process.
Go to article

Bibliography

[1] Janerka, K. (2010). Carburizing of iron alloys. Gliwice: Wydawnictwa Politechniki Śląskiej. (in Polish).
[2] Janerka, K. (2019). The rate effectiveness of carbonization to the sort of carburizer. Archives of Foundry Engineering. 7(4), 95-100.
[3] Karsay, S.J. (1992). Ductile Iron I, Production. Canada: QIT –Fer & Titane.
[4] Fraś, E., Podrzucki, Cz. (1981). Modified cast iron. Kraków: Skrypt AGH. (in Polish).
[5] Riposan, I., Chisamera, M., Stan, S., Adam, N. (2004). Influencing Factors on the High Purity - Steel Scrap Optimum Ratio in Ductile Iron Production. Ductile Iron News. 2, 10-19.
[6] Riposan, I., Chisamera, M., Stan, S., Constantin, V., Adam, N. & Barstow, M. (2006). Beneficial remnant effect of high purity pig iron in industrial production of ductile iron. AFS Transactions. 114, 657-666.
[7] Fraś, E. (1978). Przegląd Odlewnictwa. 6,133. (in Polish).
[8] Podrzucki, Cz. (1991). Cast iron - structure - properties – application. Kraków: Wyd. ZG STOP. (in Polish).
[9] Podrzucki, Cz., Falęcki, Z., Wiśniewski, B. (1966). Przegląd Odlewnictwa. 7-8, 248. (in Polish).
[10] ASTM Standards of iron casting, (1957). Tentative methods of testing of cast iron. 76, A 367-55T.
[11] Podrzucki Cz., Kalata Cz. (1976). Metallurgy and iron founding. Katowice: Wyd. Śląsk. (in Polish).
[12] Zych ,J. (2000). The study of the sensitivity of cast iron to the cooling rate using the ultrasonic method. Solidification of Metals and Alloys. 43, 543-552. (in Polish).
[13] Zych, J. (2001). Multi-stage, ultrasonic control of the ductile iron castings production process. Archives of Foundry. 1(1/2), 227-235. (in Polish).
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the physicochemical and mechanical properties, microstructure, and the tendency to form shrinkage of nodular cast iron depending on the type of inoculant used for secondary inoculation. Six different inoculants containing different active elements in their chemical composition were used for the research. Step castings and Y2 wedges were made on the vertical forming line using an automatic pouring machine. The inoculation in the amount of 0.2% was made using a pneumatic dispenser equipped with a vision system controlling the effectiveness of the inoculation. The results of the thermal analysis were determined and compared, and the potential of each of the inoculants was assessed.
Go to article

Bibliography

[1] Fraś, E., Podrzucki, C. (1978). Modified cast iron. Kraków: Skrypt AGH, nr. 675. (in Polish).
[2] ITACAX™ – Final iron control. Retrieved November 10, 2021, from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[3] Karsey S.I. (2000). Ductile iron I. Manufacturing. Warszawa: QIT, Fer et Titane Inc. (in Polish).
[4] Janerka, K., Kondracki, M., Jezierski, J., Szajnar, J. & Stawarz, M. (2014). Carburizer effect on cast iron solidification. Journal of Materials Engineering and Performance. 23, 2174-2181.
[5] Seidu, S.O. Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818
[6] Lampic, M. (2013). Inoculation of cast irons: practice and developments. International Foundry, Research. 65(2).
Go to article

Authors and Affiliations

R. Dwulat
1 2
ORCID: ORCID
K. Janerka
2
ORCID: ORCID
K. Grzesiak
1

  1. Foundry Lisie Kąty, Lisie Kąty 7, 86-302 Grudziądz, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract


Austenitic chromium-nickel cast steel is used for the production of machine parts and components operating under corrosive conditions combined with abrasive wear. One of the most popular grades is the GX2CrNi18-9 grade, which is used in many industries, and mainly in the chemical, food and mining industries for tanks, feeders, screws and pumps.
To improve the abrasion resistance of chromium-nickel cast steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content and adding titanium, which after alloy solidification yielded the test castings with the microstructure consisting of an austenitic matrix and primary carbides evenly distributed in this matrix.
The measured hardness of the samples in both as-cast conditions and after solution heat treatment was from 300 to 330HV0.02 and was higher by about 40-70 units compared to the reference GX2CrNi18-9 cast steel, which had the hardness of 258HV0.02.
The abrasive wear resistance of the tested chromium-nickel cast steel, measured in the Miller test, increased by at least 20% (with the content of 1.3 wt% Ti). Increasing the Ti content in the samples to 5.3 and 6.9 wt% reduced the wear 2.5 times compared to the common GX2CrNi18-9 cast steel.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings –applications. Kraków: Fotobit. (in Polish).
[2] Calliari, L., Brunelli, K., Dabala, M., & Ramous, E. (2009). Measuring secondary phases in duplex stainless steel. The Journal of The Minerals, Metals & Materials Society. JOM. 61, 80-83.
[3] Chen, T.H., & Yang, J.R. (2001). Effects of solution treatment and continuous cooling on σ phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A. 313(1-2), 28-41.
[4] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[5] Jimenez, J.A., Carsi, M., Ruano, A. & Penabla, F. (2000). Characterization of a δ/γ duplex stainless steel. Journal of Materials Science. 35, 907-915.
[6] Voronenko, B.I. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39, 428-437.
[7] Pohl, M., Storz, O. & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 58(1), 65-71.
[8] Gunn, R. N. (1999). Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing.
[9] Patil, A., Tambrallimath, V. & Hegde, A. (2014). Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites. International Journal of Engineering Research & Technology. 3(12), 14-17.
[10] PN-EN 10088-1/2005(U).
[11] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[12] Głownia, J., Kalandyk, B. & Camargo, M. (2002). Wear resistance of high Cr-Ni alloys in iron ore slurry conditions. Inżynieria Materiałowa (Material Engineering). 5, 694-697.
[13] Tęcza, G. (2019). Selected wear resistant cast steels with Ti, Nb, V, W and Mo carbides. Katowice-Gliwice: Wydawnictwo Komisja Odlewnictwa PAN. (in Polish).
[14] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[15] Charchalis, A., Dyl, T., Rydz, D., Stradomski, G. (2018). The effect of burnishing process on the change of the duplex cast steel surface properties. Inżynieria Materiałowa. 6(226), 223-227.
[16] Dyja, D., Stradomski, Z., Kolan, C. & Stradomski, G. (2012). Eutectoid Decomposition of δ-Ferrite in Ferritic-Austenitic Duplex Cast Steel - Structural and Morphological Study. Materials Science Forum. 706-709, 2314-2319.
Go to article

Authors and Affiliations

Grzegorz Tęcza
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

The possibilities of producing ductile cast iron with the addition of 1 ÷ 3% of tungsten are presented. Tungsten from waste chips from mechanical processing was introduced into the liquid cast iron in the form of specially prepared cartridges. Correct dissolution of tungsten in the metal bath was found, and there were no casting defects in the alloy. The form of carbide precipitates in the microstructure of cast iron was determined and the influence of increasing tungsten content on the reduction of the number of graphite precipitates in the structure was determined. Impact tests show that this property degrades with increasing tungsten content as opposed to hardness which increases. It was found that the addition of tungsten from machining waste is a potential source of enrichment of cast iron with this element.
Go to article

Bibliography

[1] Volkov, A.N. (1975). Abrasive wear resistance of manganese cast iron with tungsten. Metal Science and Heat Treatment. 17, 412-414.
[2] Duarte, L.I., Lourenço, N., Santos, H., Santos, J. & Sá, C. Tungsten carbide powder inserts in ductile iron. Materials Science Forum. 455-456, 267-270.
[3] Kopyciński, D. (2009). Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear. Archives of Foundry Engineering. 9(4), 109-112.
[4] Podrzucki, Cz. (1991). Cast Iron. The Structure, Property, Application. T.1 and T.2, Kraków: Ed. ZG STOP. (in Polish).
[5] Fraś, E. (2003). Crystallization of metals. Warsaw: WNT. (in Polish).
[6] Dean, N.F., Mortensen, A. & Flemings, M.C. (1994). Microsegregation in cellular solidification. Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science. A 25A, 2295-2301. DOI: 10.1007/BF 02652329.
[7] Wołczyński, W., Guzik, E., Kania, B. & Wajda, W. (2010). Structures field in the solidifying cast iron roll. Archives of Foundry Engineering. 10(spec.1), 41-46.
[8] Studnicki, A. (2008). Effect of boron carbide on primary crystallization of chromium cast iron. Archives of Foundry Engineering. 8(1), 173-176.
[9] Myszka, D. (2021). Cast Iron–Based Alloys. In: Rana, R. (eds) High-Performance Ferrous Alloys. Springer, Cham., 153-210.
Go to article

Authors and Affiliations

D. Myszka
1
Justyna Kasińska
ORCID: ORCID
A. Penkul
1

  1. Department of Metal Forming and Foundry, Warsaw University of Technology, Narbutta 85, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the possibility of using a two-track X-S control card on a Mesas device to control the production process parameters of piston castings for combustion engines. The research was carried out at the Federal-Mogul Gorzyce company. The basis for estimating the variability of the process results from the mean value (X) is the standard deviation (S). Thanks to specially designed measuring stations that use algorithms to calculate process indicators (Cp and/or Cpk) and their visualization, the cost of manufacturing products and the number of non-compliant products (scraps) are reduced. The process stability was investigated by measuring the key dimensions of the piston casting in a specific population and a given measurement cycle. Taking into account the precision of details, their technical condition, and surface quality, the production machines and cutting tools were optimally selected. It has been found that an important element of the effective use of Statistical Process Control (SPC) are trained/experienced operators who can correctly interpret the resulting control chart forms.
Go to article

Bibliography

[1] Czarski, A., Satora, K. (1998). Statistical process control. Teaching materials. Cracow: Stat-Q-Mat s.c.
[2] Dahlgaard, J.J., Kristensen, K., Kanji, G.K. (2002). Podstawy zarządzania jakością. Warsaw: PWN.
[3] Grant, E.L., Leavenworth, R.S. (1996). Statistical quality control. McGraw-Hill.
[4] Hamrol, A. (2005). Quality management with examples. Warsaw: PWN.
[5] Kończak, G. (2000). Application of control cards in quality control in the course of production. Katowice: Publishing House of the University of Economics in Katowice.
[6] Kończak, G. (2007). Statistical methods in controlling the quality of production. Katowice: Publishing House of the University of Economics in Katowice.
[7] Maliński, M. (2004). Computer aided verification of statistical hypotheses. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[8] Chrapoński, J. (2010). Fundamentals of statistical processes control. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[9] Statistical Process Control SPC Second edition. AIAG, Berlin-London, July 2005, p. 57.
[10] Polska Norma PN-ISO 8258+AC1: Karty kontrolne Shewharta. PKN, 1996.
[11] Quality Assurance for Suppliers. Quality Management in the Automotive Industry. Production process and product approval (PPA). 5th edition, Berlin 2012.
Go to article

Authors and Affiliations

A. Krępa
1
J. Piątkowski
2
ORCID: ORCID

  1. Federal-Mogul Gorzyce Sp. z o.o., Odlewników 52, 39-432 Gorzyce, Poland
  2. Silesian University of Technology, Krasińskiego 8 Gliwice, Poland

This page uses 'cookies'. Learn more