Details

Title

Artificial Intelligence-Based Modeling for the Estimation of Q-Factor and Elastic Young’s Modulus of Sandstones Deteriorated by a Wetting-Drying Cyclic Process

Journal title

Archives of Mining Sciences

Yearbook

2021

Volume

vol. 66

Issue

No 4

Affiliation

Awais Rashid, Hafiz Muhammad : University of Engineering and Technology, Department of Geological Engineering, Lahore, Pakistan ; Ghazzali, Muhammad : University of Engineering and Technology, Department of Geological Engineering, Lahore, Pakistan ; Waqas, Umer : University of Engineering and Technology, Department of Geological Engineering, Lahore, Pakistan ; Malik, Adnan Anwar : Saitama University, Department of Civil and Environmental Engineering, Japan ; Abubakar, Muhammad Zubair : University of Engineering and Technology, Dean Faculty of Earth Sciences and Engineering, Lahore, Pakistan

Authors

Keywords

Wetting and Drying Cycles ; Rock Permeability ; Dynamic Elastic Young’s Modulus ; Q-factor ; UCS

Divisions of PAS

Nauki Techniczne

Coverage

635-658

Publisher

Committee of Mining PAS

Bibliography

[1] Wu. Faquan, Qi. Shengwen, Lan. Hengxing, Mechanism of uplift deformation of the dam foundation of Jiangya Water Power Station, Hunan Province, PR China. Hydrogeol. J. 13 (3), 451-466 (2005).
[2] O. Aydan, The inference of physico-mechanical properties of soft rocks and the evaluation of the effect of water content and weathering on their mechanical properties from needle penetration tests. In: 46th US rock mechanics/ geomechanics symposium, American Rock Mechanics Association (2012).
[3] M. Duda, J. Renner, The weakening effect of water on the brittle failure strength of sandstone. Geophys. J. Int. 192 (3), 1091-1108 (2013).
[4] P.L.P. Wasantha, P.G. Ranjith, Water-weakening behavior of Hawkesbury sandstone in brittle regime. Eng. Geol. 178, 91-101 (2014).
[5] F. Cherblan, J. Berthonneau, P. Bromblet, V. Huon, Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mech. Rock Eng. 49 (6), 2033-2042 (2016).
[6] M.R. Vergara, T. Triantafyllidis, Influence of water content on the mechanical properties of an argillaceous swelling rock. Rock Mech. Rock Eng. 49 (7), 2555-2568 (2016).
[7] C. Gökceoğlu, R. Ulusay, H. Sönmez, Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng. Geol. 57 (3-4), 215-237 (2000).
[8] N. Reviron, T. Reuschlé, J.D. Bernard, The brittle deformation regime of water-saturated siliceous sandstones. Geophys. J. Int. 178 (3), 1766-1778 (2009).
[9] W. He, K. Chen, A. Hayatdavoudi, K. Sawant, M. Lomas, Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors. J. Pet. Sci. Eng. 176, 962-969 (2019).
[10] P.D. Sumner, M.J. Loubser, Experimental sandstone weathering using different wetting and drying moisture amplitudes. Earth. Surf. Process. Landf. 33 (6), 985-990 (2008).
[11] A. Özbek, Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull. Eng. Geol. Environ. 73 (2), 595-609 (2014).
[12] G. Khanlari, Y. Abdilor, Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran. Bull. Eng. Geol. Environ. 74 (4), 1287-1300 (2015).
[13] H. Deng, J. Li, M. Zhu, K.W. Wang, L.H. Wang, C.J. Deng, Experimental research on strength deterioration rules of sandstone under “saturation-air dry” circulation function. Rock Soil Mech. 33 (11), 3306-3312 (2012).
[14] P.A. Hale, A. Shakoor, A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ. Eng. Geosci. 9 (2), 117-130 (2003).
[15] B.Y. Zhang, J.H. Zhang, G.L. Sun, Deformation and shear strength of rockfill materials composed of soft siltstones subjected to stress, cyclical drying/wetting and temperature variations. Eng. Geol. 190, 87-97 (2015).
[16] W. Hua, S. Dong, Y. Li, J. Xu, Q. Wang, The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int. J. Rock Mech. Min. Sci. 100 (78), 331-335 (2015).
[17] X. Liu, Z. Wang, Y. Fu, W. Yuan, L. Miao, Macro/microtesting and damage and degradation of sandstones under dry-wet cycles. Adv. Mater. Sci. Eng. (2016).
[18] A.V. Turkington, T.R. Paradise, Sandstone weathering: a century of research and innovation. Geomorphology 67 (1-2), 229-253 (2005).
[19] G. Andriani, N. Walsh, Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull. Eng. Geol. Environ. 62 (1), 77-84 (2003).
[20] B. Fitzner, R. Kownatzki, Porositätseigenschaften und Verwitterungsverhalten von sedimentären Naturwerksteinen. Ernst & Sohn, (1991).
[21] M.M. Demarco, E. Jahns, J. Rudrich, P. Oyhantcabal, S. Siegesmund, The impact of partial water saturation on rock strength: an experimental study on sandstone. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 158 (4), 869 (2007).
[22] E.A. Eissa, A. Kazi, Relation between static and dynamic Young’s moduli of rocks. Int. J. Rock Mech. Min. Sci. 25 (6), (1988).
[23] S.R. Agha, M.J. Alnahhal, Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design. Appl. Ergon. 43 (6), 979-984 (2012).
[24] M. Karakus, M. Kumral, O. Kilic, Predicting elastic properties of intact rocks from index tests using multiple regression modelling. Int. J. Rock Mech. Min. Sci. 42 (2), 323-330 (2005).
[25] M.H. Kutner, C.J. Nachtsheim, J. Neter, Simultaneous inferences and other topics in regression analysis. Applied linear regression models. 4th ed. McGraw-Hill Irwin, New York, NY, 168-170 (2007).
[26] R.S. Akan, K. Nilay, U. Soner, Multiple regression model for the prediction of unconfined compressive strength of jet grout columns. Proc. Earth Planet Sci. 15, 299-303 (2015).
[27] M.F. Ahmed, U. Waqas, M. Arshad, J.D. Rogers, Effect of heat treatment on dynamic properties of selected rock types taken from the Salt Range in Pakistan. Arab. J. Geosci. 11 (22), 1-13 (2018).
[28] U. Waqas, M.F. Ahmed, M. Arshad, Classification of the intact carbonate and silicate rocks based on their degree of thermal cracking using discriminant analysis. Bull. Eng. Geol. Environ. 1-13 (2020).
[29] K.A. Aali, M. Parsinejad, B. Rahmani, Estimation of Saturation Percentage of Soil Using Multiple Regression, ANN, and ANFIS Techniques. Comput. Info. Sci. 2 (3), 127-136 (2009).
[30] A.A.K. Ghauri, A preliminary account of the texture, structure and mineralogy composition of the Khewra formation, CIS Indus salt range, west Pakistan. J. Himal. Earth Sci. 5, (1970).
[31] M. Jehangiri, M. Hanif, M. Arif, I.U. Jan, S. Ahmad, The Early Cambrian Khewra Sandstone, Salt Range, Pakistan: endorsing southern Indian provenance. Arab. J. Geosci. 8 (8), 6169-6187 (2015).
[32] S. Khan, M.M. Shah, Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): Evidences from field observations, microscopic studies and isotopic analysis. Geologica Acta 17, 1-18 (2019).
[33] S.M.I. Shah, Stratigraphy of Pakistan; Government of Pakistan. Ministry of Petroleum and Natural Resources. Geological Survey of Pakistan (2009).
[34] ISRM, Suggested methods for rock characterization, testing, and monitoring: 2007-2014. Springer (2007).
[35] US Army Corps of Engineers, (2012) http://gsl.erdc.usace.army.mil/SL/MTC/hand book/RT/RTH/116-95.pdf
[36] P.B. Kurt-Karakus, T.F. Bidleman, K.C. Jones, Chiral organochlorine pesticide signatures in global background soils. Environ. Sci. Technol. 39 (22), 8671-8677 (2005).
[37] J.A. Franklin, Suggest methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 16, 141-156 (1979).
[38] S.L. Kramer, Geotechnical earthquake engineering. Pearson Education India (1996).
[39] ASTM C-215-91, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2003).
[40] ASTM D-2938-9, Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens (1992).
[41] J. Schimazek, H. Knatz, Der Einfluß des Gesteinsaufbaus auf die Schnittgeschwindigkeit und den Meißelverschleiß von Streckenvortriebsmaschinen. Glückauf. 106 (6), 274-278 (1970).
[42] Y. Abdi, A.T. Garavand, R.Z. Sahamieh, Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab. J. Geosci. 11 (19), 1-11 (2018).
[43] E.T. Mohamad, D.J. Armaghani, E. Momeni, A.H. Yazdavar, M. Ebrahimi, Rock strength estimation: a PSO-based BP approach. Neural. Comput. Appl. 30 (5), 1635-1646 (2018).
[44] M. Khandelwal, T.N. Singh, Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arab. J. Geosci. 4 (3-4), 435-442 (2011).
[45] B.R. Kumar, H. Vardhan, M. Govindaraj, S.P. Saraswathi, Artificial neural network model for prediction of rock properties from sound level produced during drilling. Geomech. Geoeng. 8 (1), 53-61 (2013).
[46] Z. Zhou, X. Cai, L. Chen, W. Cao, Y. Zhao, C. Xiong, Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Eng. Geol. 220, 1-12 (2017).
[47] S. Chaki, M. Takarli, W.P. Agbodjan, Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr. Build. Mater. 22 (7), 1456-1461 (2008).
[48] B. Vàsàrhelyi, P. Vàn, Influence of water content on the strength of rock. Eng. Geol. 84, 70-74 (2006).
[49] P. Malkowski, L. Ostrowski, P. Bozecki, The impact of the mineral composition of Carboniferous claystones on the water-induced changes of their geomechanical properties. Geol. Geophys. Environ. 43 (1), 43-55 (2017).
[50] U. Waqas, M.F. Ahmed, Prediction Modeling for the Estimation of Dynamic Elastic Young’s Modulus of Thermally Treated Sedimentary Rocks Using Linear-Nonlinear Regression Analysis, Regularization, and ANFIS. Rock Mech. Rock Eng. 53 (12), 5411-5428 (2020).
[51] M.A. Bakar, Y. Majeed, J. Rostami, Effects of rock water content on CERCHAR Abrasivity Index. Wear 368, 132-145 (2016).

Date

2021.12.23

Type

Article

Identifier

DOI: 10.24425/ams.2021.138944
×