Details

Title

Formula for temperature distribution in multi-layer optical fibres for high-power fibre lasers

Journal title

Opto-Electronics Review

Yearbook

2021

Volume

29

Issue

4

Affiliation

Grábner, Martin : Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences, 1014/57 Chaberská St., 18251 Praha 8, Czech Republic ; Peterka, Pavel : Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences, 1014/57 Chaberská St., 18251 Praha 8, Czech Republic ; Honzátko, Pavel : Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences, 1014/57 Chaberská St., 18251 Praha 8, Czech Republic

Authors

Keywords

high-power fibre lasers ; active optical fibres ; temperature distribution ; heat transfer

Divisions of PAS

Nauki Techniczne

Coverage

126-132

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Zervas, M. N. & Codemard, C. . High power fiber lasers: A review. IEEE J. Sel. Topics Quantum Electron. 20, 219–241 (2014). https://doi.org/10.1109/JSTQE.2014.2321279
  2. Davis, M. K., Digonnet, M. J. F. & Pantell, R. H. Thermal effects in doped fibers. J. Light. Technol. 16, 1013 (1998). https://doi.org/10.1109/50.681458
  3. Brown, D. C. & Hoffman, H. J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electron. 37, 207–217 (2001). https://doi.org/10.1109/3903070
  4. Limpert, J. et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. Opt. Express 11, 2982–2990 (2003). https://doi.org/10.1364/OE.11.002982
  5. Wang, Y., Xu, Ch.-Q. & Po, H. Thermal effects in kilowatt fiber lasers. IEEE Photonics Technol. Lett. 16, 63–65 (2004). https://doi.org/10.1109/LPT.2003.818913
  6. Zintzen, B., Langer, T., Geiger, J., Hoffmann, D. & Loosen, P. Heat transport in solid and air-clad fibers for high-power fiber lasers. Opt. Express 15, 16787–16793 (2007). https://doi.org/10.1364/OE.15.016787
  7. Lapointe, M.-A., Chatigny, S., Piché, M., Cain-Skaff, M. & Maran, J.-N. Thermal effects in high-power CW fiber lasers. in Fiber Lasers VI: Technology, Systems, and Applications, Proc. SPIE 7195, 430–440 (2009). https://doi.org/10.1117/12.809021
  8. Liu, T., Yang, Z. M. & Xu, S. H. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser. Opt. Express 17, 12875–12890 (2009). https://doi.org/10.1364/OE.17.012875
  9. Sabaeian, M., Nadgaran, H., Sario, M. D., Mescia, L. & Prudenzano, F. Thermal effects on double clad octagonal Yb:glass fiber laser. Opt. Mater. 31, 1300–1305 (2009). https://doi.org/10.1016/j.optmat.2008.10.034
  10. Ashoori, V. & Malakzadeh, A. Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers. J. Phys. D. 44, 355103 (2011). https://doi.org/10.1088/0022-3727/44/35/355103
  11. Fan, Y. et al. Thermal effects in kilowatt all-fiber MOPA. Opt. Express 19, 15162–15172 (2011). https://doi.org/10.1364/OE.19.015162
  12. Fan, Y. et al. Efficient heat transfer in high-power fiber lasers. Chin. Opt. Lett. 10, 111401–111401 (2012). http://col.osa.org/abstract.cfm?URI=col-10-11-111401
  13. Huang, C. et al. A versatile model for temperature-dependent effects in Tm-doped silica fiber lasers. J. Light. Technol. 32, 421–428 (2014). https://doi.org/10.1109/JLT.2013.2283294
  14. Mohammed, Z., Saghafifar, H. & Soltanolkotabi, M. An approximate analytical model for temperature and power distribution in high-power Yb-doped double-clad fiber lasers. Laser Phys. 24, 115107 (2014). https://doi.org/10.1088/1054-660X/24/11/115107
  15. Yang, J., Wang, Y., Tang, Y. & Xu, J. Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers. arXiv preprint arXiv:1503.07256 (2015). https://arxiv.org/abs/1503.07256
  16. Daniel, J. M. O., Simakov, N., Hemming, A., Clarkson, W. A. & Haub, J. Metal clad active fibres for power scaling and thermal management at kW power levels. Opt. Express 24, 18592–18606 (2016). https://doi.org/10.1364/OE.24.018592
  17. Karimi, M. Theoretical study of the thermal distribution in Yb-doped double-clad fiber laser by considering different heat sources. Prog. Electromagn. Res. C 88, 59–76 (2018). https://doi.org/10.2528/PIERC18081505
  18. Lv, Y., Zheng, H. & Liu, S. Analytical thermal resistance model for high power double-clad fiber on rectangular plate with convective cooling at upper and lower surfaces. Opt. Commun. 419, 141–149 (2018). https://doi.org/10.1016/j.optcom.2018.03.001
  19. Mafi, A. Temperature distribution inside a double-cladding optical fiber laser or amplifier. J. Opt. Soc. Am. B 37, 1821–1828 (2020). https://doi.org/10.1364/JOSAB.390935
  20. Peterka, P. et al. Thulium-doped silica-based optical fibers for cladding-pumped fiber amplifiers, Opt. Mater. 30, 174–176 (2007). https://doi.org/10.1016/j.optmat.2006.11.039
  21. Peterka, P., Faure, B., Blanc, W., Karásek, M. & Dussardier, B. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron. 36, 201–212 (2004). https://doi.org/10.1023/B:OQEL.0000015640.82309.7d
  22. Koška, P., Peterka, P. & Doya, V. Numerical modelling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Topics Quantum Electron. 22, 55–62 (2016). https://doi.org/10.1109/JSTQE.2015.2490100
  23. Darwich, D. et al., 140 μm single-polarization passive fully aperiodic large-pitch fibers operating near 2 μm. Appl. Opt. 56, 9221–9224 (2017). https://doi.org/10.1364/AO.56.009221
  24. Franczyk, M., Stępień, R., Filipkowski, A., Pysz, D. & Buczyński, R. Nanostructured core active fiber based on ytterbium doped phosphate glass. IEEE J. Light. Technol. 37, 5885–5891 (2019). https://doi.org/10.1109/jlt.2019.2941664
  25. Michalska, M., Brojek, W., Rybak, Z., Sznelewski, P., Mamajek, M. & Świderski, J. Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery. Laser Phys. Lett. 13, 115101 (2016). https://doi.org/10.1088/1612-2011/13/11/115101
  26. Todorov, F. et al. Active optical fibers and components for fiber lasers emitting in the 2-µm spectral range. Materials 13, 5177 (2020). https://doi.org/10.3390/ma13225177
  27. Engineering ToolBox. Air – thermal conductivity. (2009). https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html
  28. Schreiber, T., Eberhardt, R., Limpert, J. & Tunnermann, A. High-power fiber lasers and amplifiers: fundamentals and enabling technologies to enter the upper limits. in Fiber lasers 7–61 (ed. Okhotnikov, O. G.) (Wiley-VCH, 2012). https://doi.org/10.1002/9783527648641.ch2
  29. Limpert, J. et al. High-power rod-type photonic crystal fiber laser, Opt. Express 13, 1055–1058 (2005). https://doi.org/10.1364/OPEX.13.001055
  30. Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light Sci. Appl. 1, e8 (2012). https://doi.org/10.1038/lsa.2012.8

Date

29.03.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2021.139482
×