Details
Title
Study of Zn(II) ion removal from galvanic sludge by geopolymersJournal title
Archives of Environmental ProtectionYearbook
2023Volume
vol. 49Issue
No 4Affiliation
Sitarz-Palczak, Elżbieta : Rzeszow University of Technology, PolandAuthors
Keywords
waste ; fly ash ; geopolymerDivisions of PAS
Nauki TechniczneCoverage
11-20Publisher
Polish Academy of SciencesBibliography
[1]. Adewuyi, YG. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 24, pp. 15532-15542. DOI:10.1021/acsomega.1c00662[2]. Akono, A.T., Koric, S. & Kriven, W.M. (2019). Influence of pore structure on the strength behavior of particle- and fiber reinforced metakaolin-based geopolymer composites, Cement and Concrete Composites, 104, pp. 103361. DOI:10.1016/j.cemconcomp.2019.103361
[3]. Alehyen, S., Zerzouri, M., el Alouani, M., el Achouri, M. & Taibi M. (2017). Porosity and fire resistance of fly ash based geopolymer. Journal of Materials and Environmental Sciences, 8, pp. 3676-3689
[4]. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. & Odeyemi, O. (2020). Waste management through composition: Challenges and Potentials, Sustainability, 12, pp. 4456-4479. DOI:10.3390/su12114456
[5]. Barakat, M.A. (2003). The pyrometallurgical processing of galvanizing zinc ash and flue dust, Journal of Minerals, Metals & Materials Society, 55, pp. 26–29. DOI:10.1007/s11837-003-0100-4
[6]. Bednarik, M., Vondruska, M.& Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions, Journal of Hazardous Materials, 122, pp. 139-145. DOI:10.1016/j.jhazmat.2005.03.021
[7]. Brylewska, K., Rożek, P., Król, M. & Mozgawa, W. (2018). The influence of dealumination/desilication on structural properties of metakaolin-based geopolymers, Ceramics International, 44, pp. 12853-12861. DOI:10.1016/J.CERAMINT.2018.04.095
[8]. Butenegro, J.A., Bahrami, M., Abenojar, J. & Martínez, M.A. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers, Materials, 14, pp. 6401. DOI:10.3390/ma14216401
[9]. Donohue, M.D. & Aranovich, G.L. (1998). Adsorption hysteresis in porous solids, Journal of Colloid and Interface Science, 205, pp. 121-130. DOI:10.1006/jcis.1998.5639
[10]. Dvořák, P. & Jandova, J. (2005). Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, pp. 29-33. DOI:10.1016/j.hydromet.2004.10.007
[11]. Galas, D., Kalembkiewicz, J. & Sitarz-Palczak, E. (2016). Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland, Contemporary Trends in Geoscience, 5, pp. 83-91. DOI:10.1515/ctg-2016-0006
[12]. Jha, M.K., Kumar, V.& Singh R.J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33, pp. 1-22. DOI:10.1016/S0921-3449(00)00095-1
[13]. Imtiaz, L., Rehman, S.K.U., Memon, S.A., Khan, M.K. & Javed, M.F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete, Applied Sciences, 10, pp. 7838-7894. DOI:10.3390/app10217838
[14]. Irisawa, T., Iwamura, R., Kozawa, Y., Kobayashi, S. & Tanabe, Y. (2021). Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers, Carbon, 175, pp. 605. DOI:10.1016/j.carbon.2021.01.042
[15]. Jeyasundar, P.G.S.A., Ali, A. & Zhang, Z. (2020). Waste treatment approaches for environmental sustainability, Microorganisms for Sustainable Environmental and Health, 6, pp. 119-135. DOI:10.1016/B978-0-12-819001-2.00006-1
[16]. Khan, M.N.N., Kuri, J.C. & Sarker, P.K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building. Engineering, 34, pp. 101934-101945. DOI:10.1016/j.conbuildmat.2020.120177
[17]. Kriven W.M., Bell J.L. & Gordon M. (2006). Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. In: Bansal, N.P., Singh, J.P., Kriven, W.M., Schneider, H., Advances in Ceramic Matrix Composites IX (pp. 227-250). The American Ceramic Society, Wiley, New York 2006.
[18]. Krishnan, S., Zulkapli, N.S., Kamyab, H., Taib, S.M., Bin Md Din, M.F., Majid, Z.A., Chaiprapat, S., Kenzo, I., Ichikawa, Y., Nasrullah, M., Chelliapan, S. & Othman, N. (2021). Current technologies for recovery of metals from industrial wastes: An overview, Environmental Technology & Innovation, 22, pp.101525. DOI:10.1016/j.eti.2021.101525
[19]. Król, M., Rożek, P., Chlebda ,D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:https://doi.org/10.1016/j.saa.2018.02.067
[20]. Krstić, I., Zec, S., Lazarević, V., Stanisavljević, M. & Golubović, T (2018). Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure, Science of Sintering, 50, pp. 139-147. DOI:10.2298/SOS1802139K
[21]. Kwon, O-S. & Sohn, I.L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resources, Conservation and Recycling, 158, pp. 104809. DOI:10.1016/j.resconrec.2020.104809.
[22]. Letcher, R.M.b& Vallero, D.A. (2019). Waste. A Handbook for Management, 2, pp. 585-630. DOI:10.1016/B978-0-12-381475-3.10034-8
[23]. Li, M., Xu, J. & Li, B. (2018). Analysis of development of hazardous waste disposal technology in China, IOP Conf. Series: Earth and Environmental Science, 178, pp. 1-7. DOI:10.1088/1755-1315/178/1/012027
[24]. Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H. & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China, Journal of Soil and Sediments, 17, pp. 780-789. DOI:10.1007/s11368-016-1361-1
[25]. Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K.,Rämö, J. & Lassi, U. (2016). Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers, Journal of.Environmental Management, 166, pp. 579-588. DOI:10.1016/j.jenvman.2015.11.007
[26]. Luz, C.A., Rocha, J.C., Cheriaf, M. & Pera, ,J. (2009). Valorization of galvanic sludge in sulfoaluminate cement, Construction and Building Materials, 23, pp. 595-601. DOI:10.1016/j.conbuildmat.2008.04.004
[27]. Makisha, N. & Yunchina, M. (2017). Methods and solutions for galvanic waste water treatment, MATEC Web of Conferences, 106, pp. 1-6. DOI:10.1051/matecconf/201710607016
[28]. Nanda, S. & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review, Environmental Chemical Letter, 19, pp. 1433-1456. DOI:10.1007/s10311-020-01100-y
[29]. Pu, S., Duan, P., Yan, C. & Ren, D. (2016). Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste. Advanced Powder Technology,27, pp. 2470-2477. DOI:10.1016/j.apt.2016.09.002
[30]. Riaz, M., Bing Chen, A., Aminul Haque, M. & Shah, S.F.A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal biocomposites, Journal of Cleaner Production, 250, pp. 119469. DOI:10.1016/j.jclepro.2019.119469
[31]. Rossini, G. & Bernardes, A.M. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment, Journal of Hazardous Materials, 131, pp. 210-216. DOI:10.1016/j.jhazmat.2005.09.035.
[32]. Rudnik, E. (2019). Investigation of industrial waste materials for hydrometallurgical recovery of zinc, Minerals Engineering,139, pp. 105871. DOI:10.1016/j.mineng.2019.105871
[33]. Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.C., Khairutdinov, A., Tyulyaeva, Y. & Makarov, P.S. (2021). Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company, Metallurgist, 64, pp. 851-861. DOI:10.1007/s11015-021-01065-5
[34]. Sanito, R.C., Bernuy-Zumaeta, M., You, S-J. & Wang Y-F. (2022). A review on vitrification technologies of hazardous waste, Journal of Environmental Management, 316, pp. 115243. DOI:10.1016/j.jenvnman.2022.115243
[35]. Sinha, S., R. Choudhari, R., Mishra, D., Shekhar, S., Agrawal, A. & Sahu, K.K. (2020). Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy, Journal of Environmental Management, 256, pp. 109985. DOI:10.1016/j.jenvman.2019.109985
[36]. Sitarz–Palczak, E.; Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection 45, pp. 126-135. DOI:10.24425/aep.2019.126427
[37]. Stepanov, S., Morozov, N., Morozova, N., Ayupov, D., Makarov, D. & Baishev, D. (2016). Efficiency of Use of Galvanic Sludge in Cement Systems, Procedia Engineering, 165, pp.1112-1117. DOI:10.1016/j.proeng.2016.11.827
[38]. Świerk, K., Bielicka, A., Bojanowska, I. & Maćkiewicz, Z. (2007). Investigation of Heavy Metals Leaching from industrial wastewater sludge, Polish Journal of Environmental Studies, 16, pp. 447-451.
[39]. Šćiban, M., Radetić, B., Kevrešan, Z. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, pp. 402-409. DOI:10.1016/j.biortech.2005.12.014
[40]. Toledo, M., Siles, J.A., Gutierrez, M.C. & Martin, M.A. (2018). Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact, Waste Management, 76, pp. 266-274. DOI:10.1016/j.wasman.2018.03.042
[41]. Ugwu, E.I. & Agunwamba, J.C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater, Environmental Monitoring and Assessment, 192, pp. 240-252. DOI:10.1007/s10661-020-8162-0
[42]. Yang, J., Firsbach, F. & Sohn, I.L. (2022). Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resources, Conservation and Recycling, 178, pp. 106021. DOI:10.1016/j.resconrec.2021.106021
[43]. Zehua, J., Liya, S. & Yuansheng, P. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers, Materials Chemistry and Physics, 242, pp. 1-9. DOI:10.1016/j.matchemphys.2019.122535
Date
2023.12.20Type
ArticleIdentifier
DOI: 10.24425/aep.2023.148681Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science