Details

Title

Micromorphology of cryoconite on Garabashi and Skhelda glaciers and soils of Baksan Gorge, Mt. Elbrus, Central Caucasus

Journal title

Polish Polar Research

Yearbook

2022

Volume

vol. 43

Issue

No 1

Authors

Affiliation

Abakumov, Evgeny : Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia ; Tembotov, Rustam : Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, 37a, I. Armand Street, Nalchik, 360051, Russia ; Kushnov, Ivan : Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia ; Polyakov, Vyacheslav : Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia

Keywords

Russia ; Caucasus ; sediments ; weathering ; deglaciation

Divisions of PAS

Nauki o Ziemi

Coverage

1-20

Publisher

Polish Academy of Sciences ; Committee on Polar Research

Bibliography


Aleynikova A.M. 2008. Periglacial landscapes of the Mt. Elbrus region as a zone of catastrophic debris flow formation. Selevye potoki: katastrofy, risk, prognoz, zashchita: 33–36 (in Russian).
Aleinikova A.M., Gaivoron T.D., Marsheva N.V. and Mainasheva G.M. 2020. Risk analysis of mudflows in the Central Caucasus. IOP Conference Series: Earth and Environmental Science 579: 012098.
Amato P., Joly M., Besaury L., Oudart A., Taib N., Mone A.I., Deguillaume L., Delort A.-M. and Debroas D. 2017. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS ONE 12: e0182869.
Anesio A.M., Hodson A.J., Fritz A., Psenner R. and Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15: 955–960.
Antony R., Mahalinganathan K., Thamban M. and Nair S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environmental Science and Technology 45: 9944–9950. Bagshaw E.A., Tranter M., Fountain A.G., Welch K.A., Basagic H. and Lyons W.B. 2007. The biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research-Biogeosciences 112: G04S35.
Bagshaw E.A., Tranter M., Fountain A.G., Welch K., Hassan J. Basagic H.J. and Berry W.L. 2013. Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic, and Alpine Research 45: 440–454.
Ball B.A., Barrett J.E., Gooseff M.N., Virginia R.A. and Wall D.H. 2011. Implications of meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Research 30: 14555.
Bowman G.M. and Hutka J. 2002. Particle size analysis. In: McKenzie N., Coughlan K., Cresswell H. (eds.) Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing, Victoria: 224–239.
Castaldini M., Mirabella A., Sartori G., Fabiani A., Santomassimo F. and Miclaus N. 2002. Soil development and microbial community along an altitudinal transect in Trentino mountains. Developments in Soil Science 28: 217–228.
Cook J., Edwards A., Takeuchi N. and Irvine-Fynn T. 2016. Cryoconite: the dark biological secret of the cryosphere. Progress in Physical Geography 40: 66–111.
Egli M., Mirabella A. and Sartori G. 2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102: 307–324.
FAO 2006. Guidelines for Soil Description. 4th edition. FAO, Rome.
Fountain A.G., Lyons, W.B., Burkins M.B., Dana G.L., Doran P.T., Lewis K.J., McKnight D.M., Moorhead D.L., Parsons A.N., Priscu J.C. and Wall, D.H. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49: 961–971.
Foreman C.M., Sattler B., Mikucki J.A., Porazinska D.L. and Priscu J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences 112: G04S32.
Fortner S.K. and Lyons W.B. 2018. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica. Frontiers in Earth Science 6: 31.
Franzluebbers A.J. 2005. Organic residues, decomposition. In: Hillel D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, Amsterdam: 112–188.
Gagarina E.I. 2004. Micromorphological method of soil investigation, St. Petersburg University Publishing, Saint Petersburg (in Russian).
Gerasimova M.I., Kovda I.V., Lebedeva M.P. and Tursina T.V. 2011. Micromorphological terms: the state of the art in soil microfabric research. Eurasian Soil Science 44: 804–817.
Glazovskaya M.A. 2005a. Subareal cover loams and soils of the inner Tyan-Shan ridges Mnogolikaya geografiya. Razvite idej Innokentiya Petrovicha Gerasimova (k 100-letiyu so dnya rozhdeniya): 132–162 (in Russian).
Glazovskaya M.A. 2005b. On the problem of the relative age of subaerial mountain meadow and mountain forest soils of Tien Shan. Eurasian Soil Science 38: 1265–1276.
Gooseff M.N., McKnight D.M., Runkel R.L. and Duff J.H. 2004. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnological Oceanography 49: 1884–1895.
Gurbanov A.G., Gazeev V.M., Bogatikov O.A., Dokuchaev A.Y., Naumov V.B. and Shevchenko A. V. 2004. Elbrus active Volcano and its geological history. Russian Journal of Earth Sciences 6: 257–277.
Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., Layborn-Parry J. and Sattler B. 2008. Glacial ecosystems. Ecological monographs 78: 41–67.
Jenkinson D.S. and Powlson D.S. 1976. The effects of biocidal treatments on metabolism in soil—V. A method for measuring soil biomass. Soil biology and Biochemistry 8: 209–213.
Kaczorek D. and Sommer M. 2003. Micromorphology, chemistry, and mineralogy of bogiron ores from Poland. Catena 54: 393–402.
Kalińska-Nartisa E., Lamsters K., Karuss J., Krievans M., Recs A. and Meija R. 2017. Fine-grained quartz from cryoconite holes of the Russell Glacier, southwest Greenland – A scanning electron microscopy study. Baltica 30: 63–73.
Kalińska E., Lamsters K., Karuss J., Krievans M., Recs A. and Jeskins J. 2022. Does glacial environment produce glacial mineral grains? Pro-and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617: 101–111.
Konistsev V. and Rogov V. 1977. Micromorphology of cryogenic soils. Eurasian Soil Science 2: 119–125.
Kotlyakov V.M., Chernova L.P., Muraviev A.Y., Khromova T.E. and Zverkova N.M. 2017. Changes of mountain glaciers in the Southern and Northern Hemispheres over the past 160 years. Ice and Snow 57: 453–467.
Kubiëna W.L. 1938. Micropedology. Ames, Iowa: Collegiate Press.
Kubiëna W.L. 1970. Micromorphological features of Soil geography. New Jersey: Rutgers University Press.
Langford H., Hodson A., Banwart S. and Boggild C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51: 87–94.
Lokas E., Zaborska A., Kolicka M., Rozycki M. and Zawierucha K. 2016. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162–172.
Maksimova E. and Abakumov E. 2017. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia. Solid Earth 8: 553–560.
Marchenko P., Gedueva M. and Dzhappuev D. 2017. Actual and potential exposure to mudflow processes of the upper reaches of the Baksan river. Izvestiya Kabardino-Balkarskogo Nauchnogo Centra RAN 3: 33–43 (in Russian).
Mazurek R., Kowalska J., Gasiorek M. and Setlak M. 2016. Micromorphological and physico- chemical analyses of cultural layers in the urban soil of a medieval city – A case study from Krakow, Poland. Catena 141: 73–84.
Nordenskjold A.E. 1875. Cryoconite found 1870, July 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geological Magazine 2: 157–162.
Nosenko G.A., Khromova T.E., Rototaeva O.V. and Shakhgedanova M.V. 2013. Glacier reaction to temperature and precipitation change in Central Caucasus, 2001–2010. Ice and Snow 53: 26–33 (in Russian).
Orlov D.S. 1985. Soil Chemistry: A Textbook. Moscow State University, Moscow (in Russian).
Pengerud A., Dignac M.-F., Certini G., Strand L.T., Forte C. and Rasse D.P. 2017. Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135: 277–292.
Polyakov V., Zazovskaya E. and Abakumov V. 2019. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area. Spitsbergen. Polish Polar Research 40: 105–120.
Riebe C.S., Kirchner J.W. and Finkel R.C. 2004. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters 218: 421–434.
Rogov V. and Konistsev V. 2008. The influence of cryogenesis on clay materials. Cryosphere of Earth 12: 51–59.
Sanyal A., Antony R., Samui G. and Thamban M. 2018. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiological Research 208: 32–42.
Stibal M., Tranter M., Benning L.G. and Rehak J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental microbiology 10: 2172–2178.
Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin section. Soil Science Society of America. Inc. Madison, Wisconsin, USA.
Stoops G. 2009. Evaluation of Kubiena’s contribution to micropedology. Eurasian Soil Science 42: 693–698.
Stoops G. and Eswaran H. 1986. Soil micromorphology. New York: Van Nostrands Reinhold Company.
Solomina O.N., Savoskyl O.S. and Cherkinsky A.E. 1994. Glacier variation, mudflow activity and landscape development in the Aksay Valley (Tien Shan) during the late Holocene. Holocene 4: 25–31.
Świstowiak M., Mroczek P. and Bednarek R. 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Regions (North Poland.) Catena 137: 583–595.
Takeuchi N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34: 409–414.
Takeuchi N., Koshima S. and Seko K. 2001. Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115–122.
Takeuchi N., Nishiyama H. and Li Z. 2010. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology 51: 9–14.
Walkely A. 1947. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of organic soil constituents. Soil Science 63: 251–264.
Weisleitner K., Perras A.K., Unterberger S.H., Moissl-Eichinger C., Andersen D.T. and Sattler B. 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11: 1165.
Wientjes I.G.M., Van De Wal R.S.W., Reichart G.J., Sluijs A. and Oerlemans J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere 5: 589– 601.
WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Zawierucha K., Baccolo G., Di Mauro B., Nawrot A., Szczuciński W. and Kalińska E. 2019. Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers. Polar Science 22: 100482.

Date

2021.09.30

Type

Article

Identifier

DOI: 10.24425/ppr.2021.138590

Editorial Board


Editorial Advisory Board


Robert BIALIK (Warszawa, Poland)

Magda BŁAŻEWICZ (Łódź, Poland)

Alistair CRAME (Cambridge, UK)

Josef ELSTER (České Budějovice, Czechia)

Jacek JANIA (Sosnowiec, Poland)

Cezary KABAŁA (Wrocław, Poland)

Jerónimo LÓPEZ-MARTINEZ (Madrid, Spain)

Krzysztof MIGAŁA (Wrocław, Poland)

Jerzy NAWROCKI (Warszawa, Poland)

Maria OLECH (Kraków, Poland)

Sergej OLENIN (Klaipeda, Litva)

Sandra PASSCHIER (Montclair, USA)

Jan PAWŁOWSKI (Sopot, Poland)

Żaneta POLKOWSKA (Gdańsk, Poland)

Gerhard SCHMIEDL (Hamburg, Germany)

Peter SCHWEITZER (Vienna, Austria)

Janne SOREIDE (UNIS, Svalbard)

Lech STEMPNIEWICZ (Gdańsk, Poland)

Mateusz STRZELECKI (Wrocław, Poland)

Witold SZCZUCIŃSKI (Poznań, Poland)

Slawek TULACZYK (Santa Cruz, USA)

Jan Marcin WĘSŁAWSKI (Sopot, Poland) - President

Abstracting & Indexing

Abstracting & Indexing


Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • CNPIEC
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)
×