Life Sciences and Agriculture

Journal of Water and Land Development

Content

Journal of Water and Land Development | 2021 | No 48 |

Download PDF Download RIS Download Bibtex

Abstract

A computer model EUSS (Emission Uniformity on Sloping Surfaces) has been developed to design and evaluate the system capacity under operating conditions for drip irrigation system. And achieve the desired value of emission uniformity that is not significantly different according to the recommended values by applying it in field experiment located at Al- -Slahia city, Egypt. The model has the ability to design the system by all of the common design techniques and have ability to customize any of them.

EUSS model includes two main parts: crop water requirements, and hydraulic calculations of the system using metric unit system. It developed in graphical user interface of the programming language C-sharp (C#) by using Microsoft Visual Studio. The model database is containing the equations, tables and reference values to get more rapid and accurate results, and gives the opportunity for selecting some parameters such as: soil properties, characteristics of the corresponding crop, and climatic data. EUSS model allows the user to assume or set definite values, for example plot layout, land slopes and topography, the emitter characteristics and operating conditions.

Go to article

Bibliography

ALI M. 2016. Design approach to optimize pressurized irrigation systems in Egypt. M.Sc. Thesis. Helwan University. Mataria Faculty of Engineering, Mechanical Power Department pp. 113.
ALLEN R. 1999. SPRINKMOD – pressure and discharge simulation model for pressurized irrigation systems. 1. Model development and description. Irrigation Science. Vol. 18 p. 141–148.
ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Chapter 1. Introduction to evapotranspiration. In: Crop evapotranspiration – Guidelines for computing crop water requirements [online]. Food and Agriculture Organization of the United Nations (FAO). Irrigation and Drainage Paper 56. Rome. FAO. [Access 15.12.2019]. Available at: http://www.fao.org/3/X0490E/x0490e04.htm#evapotranspiration
ASAE 1999a. Design and installation of micro-irrigation systems. EP405.1 DEC98. In: ASAE Standards 1999: Standards Engineering Practices Data. St. Joseph. American Society of Agricultural Engineers p. 879–881.
ASAE 1999b. Field evaluation of micro-irrigation systems, EP458 DEC98. In: ASAE Standards 1999: Standards Engineering Practices Data. St. Joseph. American Society of Agricultural Engineers p. 922–923.
BREMERE I., KENNEDY M., STIKKER A., SCHIPPERS J. 2001. How water scarcity will affect the growth in the desalination market in the coming 25 years. Desalination. Vol. 138. Iss. 1–3 p. 7–15. DOI 10.1016/S0011-9164(01)00239-9.
EL-FELLALY S., SALEH E. 2004. Egypt’s experience with regard to water demand management in agriculture. [Eighth International Water Technology Conference, IWTC8]. [2004 Alexandria, Egypt].
FAO 2011. The state of the world’s land and water resources for food and agriculture. Managing systems at risk. Rome–London. Food and Agriculture Organization of the United Nations, Earthscan. ISBN 978-1-84971-327-6 pp. 285.
GU Z., QI Z., MA L., GUI D., XU J., FANG Q., YUAN S., FENG G. 2017. Development of an irrigation scheduling software based on model predicted crop water stress. Computers and Electronics in Agriculture. Vol. 143 p. 208–221.
HOFWEGEN P., SVENDSEN M. 2000. A vision of water for food and ruaral development: Final. [International Conference “World Water Forum”]. [17 March 2000 The Hague] pp. 82.
IRMAK S., ODHIAMBO L., KRANZ W., EISENHAUER D. 2011. Irrigation efficiency and uniformity, and crop water use efficiency [online]. Department of Biological Systems Engineering: Papers and Publications. University of Nebraska – Lincoln. [2011]. Available at: https://extensionpublications.unl.edu/assets/pdf/ec732.pdf
ISMAIL S., ELNESR M., ELASHRY R. 2000. Computer aided design of drip irrigation systems. Misr Journal of Agricultural Engineering. Vol. 18(2) p. 243–260. JAIN S. 2001. Development of design methodology and software for micro-irrigation sub-units. M.Sc. Thesis. Pantnagar. G. B. Pant University of Agriculture and Technology. Department of Irrigation and Drainage Engineering pp. 155.
JAMREY P.K., NIGAM G.K. 2018. Performance evaluation of drip irrigation systems. The Pharma Innovation Journal. Vol 7(1) p. 346–348.
KELLER J., BLIESNER R. 1990. Sprinkle and trickle irrigation. New York. Springer Science and Business Media. ISBN 9780442246457 pp. 652.
LAMM F., AYARS J., NAKAYAMA F. 2007. Microirrigation for crop production. Design, operation, and management. United Kingdom. Elsevier. ISBN 0-444-50607-1 pp. 642.
MAHROUS A., HANAFY M., BAKEER G., BAZARAA A. 2008. Computer program for predicting emission uniformity of odd-shaped sub-units in drip irrigation system. Misr Journal of Agricultural. Engineering. Irrigation and drainage. Vol. 25(4) p. 1240–1255.
MIRZAEI F., HATAMI M., MOUSAZADEH F. 2009. A simple model to estimate wetted soil volume from the trickle by use of the dimensional analysis technique. Advances in Water Resources and Hydraulic Engineering p. 345–352.
MOSTAFA E. 2004. Correction factor for friction head loss through lateral and Manifold. Eighth International Water Technology Conference IWTC8. Alexandria, Egypt p. 735–749.
PHILIPOVA N., NICHEVA O., KAZANDJIEV V., CHILIKOVA-LUBO¬MIROVA M. 2012. A computer program for drip irrigation system design for small plots. Journal of Theoretical and Applied Mechanics. Vol. 42. Iss. 4 p. 3–18. DOI 10.2478/v10254-012-0016-x.
PHOCAIDES A. 2001. Technical handbook on pressurized irrigation techniques. Rome. Food and Agriculture Organization of the United Nations (FAO). ISBN 9251045321 pp. 208.
PHOCAIDES A. 2007. Handbook on pressurized irrigation techniques. 2nd ed. Rome. Food and Agriculture Organization of the United Nations (FAO). ISBN 978-92-5-105817-6 pp. 269.
SWAMEE P., RATHIE P. 2005. Discussion of “Direct equations for hydraulic jump elements in rectangular horizontal channel”. Journal of Irrigation and Drainage Engineering. Vol. 131(3) p. 300–302. DOI 10.1061/(ASCE)0733-9437(2005)131:3 (298).
USDA 1984. Trickle irrigation. Sect. 15. Chapt. 7. In: National engineering handbook. Part 623. Irrigation [online]. United States Department of Agriculture. [Access 10.03.2020]. Available at: http://irrigationtoolbox.com/NEH/Part623_Irrigation/neh15-07.pdf
USDA 2013. Micro-irrigation. Chapt. 7. National engineering handbook. Part 623. Irrigation [online]. United States Department of Agriculture. [Access 10.03.2020]. Available at: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=34517.wba

Go to article

Authors and Affiliations

Wafaa Abo Zied
1
ORCID: ORCID
Mohammed Hanafy
1
Ehab Mostafa
1
ORCID: ORCID
Ahmed Abo Habssa
2

  1. Cairo University, Faculty of Agriculture, Agricultural Engineering Department, Gamaa Street 1, Giza, 12613, Egypt
  2. Helwan University, Mataria Faculty of Engineering, Mechanical Power Department, Helwan, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modi-fied with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three dif-ferent bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.

Go to article

Bibliography

AGRAFIOTI E., KALDERIS D., DIAMADOPOULOS E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management. Vol. 133 p. 309–314. DOI 10.1016/j.jenvman.2013.12.007.
AMIN M.N., KANECO S., KITAGAWA T., BEGUM A., KATSUMATA H., SUZUKI T., OHTA K. 2006. Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial & Engineering Chemistry Research. Vol. 45(24) p. 8105–8110.
ARAIN G.M., ASLAM M., MAJIDANO S.A., KHUHAWAR M.Y. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal – Chemical Society of Pakistan. Vol. 29(5) p. 463–467.
ARUNAKUMARA K., WALPOLA B.C., YOON M.-H. 2013. Banana peel: A green solution for metal removal from contaminated waters. Korean Journal of Environmental Agriculture. Vol. 32(2) p. 108–116. DOI 10.5338/KJEA.2013.32.2.108.
ASGHAR U., PERVEEN F., ALVI S., KHAN F., SIDDQUI I., USMANI T. 2006. Contamination of arsenic in public water supply schemes of Larkana and Mirpurkhas Districts of Sind. Journal – Chemical Society of Pakistan. Vol. 28(2) p. 130–135.
BAKSHI S., BANIK C., RATHKE S.J., LAIRD D.A. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research. Vol. 137 p. 153–163. DOI 10.1016/j.watres.2018. 03.021.
HUANG Y., GAO M., DENG Y., KHAN Z.H., LIU X., SONG Z., QIU W. 2020. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. Science of the Total Environment. Vol. 715, 136957. DOI 10.1016/j.scitotenv.2020.136957.
ISLAM-UL-HAQ M., DEEDAR N., WAJID H. 2007. Groundwater arsenic contamination – A multi directional emerging threat to water scarce areas of Pakistan [online]. 6th International IAHS Groundwater Quality Conference, held in Fremantle, Western Australia, 2–7 December 2007. [Access 15.12.2019]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.2478&rep=rep1&type=pdf
LATA S., SAMADDER S. 2014. Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development. Vol. 4(2) p. 165–170.
LAWRINENKO M., LAIRD D.A. 2015. Anion exchange capacity of biochar. Green Chemistry. Vol. 17(9) p. 4628–4636. DOI 10.1039/C5GC00828J.
LEE C.-K., LOW K., LIEW S., CHOO C. 1999. Removal of arsenic(V) from aqueous solution by quaternized rice husk. Environmental Technology. Vol. 20(9) p. 971–978.
LIEN H.-L., WILKIN R.T. 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. Vol. 59(3) p. 377–386. DOI. 10.1016/j.chemosphere.2004.10.055.
MOHAN D., PITTMAN Jr C.U. 2007. Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials. Vol. 142(1–2) p. 1–53. DOI 10.1016/j.jhazmat.2007.01.006. MURTAZA G. M., ALI A. S., YAR M. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal of Chemical Society of Pakistan. Vol. 29 p. 463–467.
NGAI T.K., SHRESTHA R.R., DANGOL B., MAHARJAN M., MURCOTT S.E. 2007. Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health. Part A 42(12) p. 1879–1888.
PEHLIVAN E., TRAN T., OUÉDRAOGO W., SCHMIDT C., ZACHMANN D., BAHADIR M. 2013. Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology. Vol. 106 p. 511–517. DOI 10.1016/j.fuproc.2012.09.021.
TABASSUM R.A., SHAHID M., NIAZI N.K., DUMAT C., ZHANG Y., IMRAN M., BAKHAT H.F., HUSSAIN I., KHALID S. 2019. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. International Journal of Phytoremediation. Vol. 21(6) p. 509–518.
WHO 2006. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. [Access 15.12.2019]. Available at: https://apps.who.int/iris/bitstream/handle/10665/43428/9241546964_eng.pdf
ZHANG W., TAN X., GU Y., LIU S., LIU Y., HU X., LI J., ZHOU Y., LIU S., HE Y. 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere. Vol. 250, 126268. DOI 10.1016/j.chemosphere.2020.126268.
ZHOU L., HUANG Y., QIU W., SUN Z., LIU Z., SONG Z. 2017. Adsorption properties of nano-MnO2 – biochar composites for copper in aqueous solution. Molecules. Vol. 22(1), 173. DOI 10.3390/molecules22010173.

Go to article

Authors and Affiliations

Ghulam S. Keerio
1
Hareef A. Keerio
2
ORCID: ORCID
Khalil A. Ibuphoto
3
Mahmood Laghari
1
Sallahuddin Panhwar
4
Mashooque A. Talpur
5

  1. Sindh Agriculture University, Department of Energy and Environment, Tandojam, Pakistan
  2. Hanyang University, Department of Civil and Environmental Engineering, Seoul, South Korea
  3. Sindh Agriculture University, Department of Farm Structures, Tandojam, Pakistan
  4. Mehran University of Engineering and Technology, US-Pakistan Centers for Advanced Studies in Water, Jamshoro, Pakistan
  5. Sindh Agriculture University, Department of Irrigation and Drainage, Tandojam, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Mining is an important economic activity in Kosovo. Artana and Kishnica mines are a part of the Trepça industrial complex and the increased exploitation of deposits has resulted in undesirable impact on the environment around the min-ing sites. More specifically, the mining activity caused water pollution. The aim of the study was to assess the physico- -chemical parameters and presence of heavy metals (Ni, Zn, As, Cd, Pb, Cr, Mn, Fe) in water samples of the Graçanka Riv-er and household wells in the area. The Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) was used to determine metal concentrations. Samples were collected from five sites along the Graçanka River and from four private water wells during a period from September to November 2019. Concentrations of heavy metals in the Graçanka River were as follows Mn (24–1203 μg∙dm–3), Fe (11–785 μg∙dm–3), Ni (4–299 μg∙dm–3), Pb (2–22 μg∙dm–3), As (1–5 μg∙dm–3), Zn (344–1646 μg∙dm–3), Cr (1–2 μg∙dm–3) and Cd (<1 μg∙dm–3). The well waters were polluted by multiple metals (Mn > Fe > Ni > Pb) with concentrations of Mn 1834–36089 μg∙dm–3, Fe 158–3535 μg∙dm–3, Ni 82–1882 μg∙dm–3, Pb 5–45 μg∙dm–3, As 2–19 μg∙dm–3, Cd 1–12 μg∙dm–3, Zn 979–23474 μg∙dm–3 and Cr 1–2 μg∙dm–3. The pollution has been caused by industrial (min-ing-related) and urban discharges. The contamination originates from the release of flotation process waste and from the leaching of the tailings dam. Most probably, rainwater has washed contaminants into the aquifers and the Graçanka River. River water is not suitable for irrigation and well water is not suitable for consumption or irrigation. Wastewater should be treated before discharge and the tailings area should be remediated in order to stop the pollution.
Go to article

Bibliography

Administrative Instruction No. 16/2012 on the Water quality for Human Consumption, was approved on 108 meeting of the Government of the Republic of Kosovo with the decision No. 05/2012, date 14.12.2012.
Administrative Instruction MESP-NO. 16/2017 on Classification of Surface Water Bodies, was approve in the Government of the Republic of Kosovo with the decision No. 6526/17, date 08.12.2017.
BERISHA F., GOESSLER W. 2013. Investigation of drinking water quality in Kosovo. Journal of Environmental and Public Health. Vol. 2013, 374954. DOI 10.1155/2013/374954.
BUD I., DUMA S., DENUŢ I., TAŞCU I. 2007. Water pollution due to mining activity. Causes and consequences. BHM Berg-und Hüttenmännische Monatshefte. Vol. 152(10) p. 326–328.
CHEHREGANI A., MALAYERI B. 2007. Removal of heavy metals by native accumulator plants. International Journal of Agriculture and Biology. Vol. 9(3) p. 462–465.
EATON A.D., CLESCERI L.S., RICE E.W., GREENBERG A.E., FRANSON M.A.H. (eds.). 2005. Standard methods for the examination of water and wastewater. 21st ed. New York. American Public Health Association. ISBN 0875530478 pp. 1368.
EMMANUEL A.Y., JERRY C.S., DZIGBODI D.A. 2018. Review of environmental and health impacts of mining in Ghana. Journal of Health and Pollution. Vol. 8(17) p. 43–52.
FERATI F., KEROLLI M.M., KRAJA Y.A. 2015. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring and Assessment. Vol. 187(6): 338. DOI 10.1007/s10661-015-4524-4.
GASHI F., FRANČIŠKOVIĆ B.S., BILINSKI H., TRONI N., ÇARDAKU H. 2017. Chemical assessment of heavy metals in the river water of Mirusha (Kosovo) – A statistical approach. 17th International Multidisciplinary Scientific Geoconference SGEM 2017. Vol. 17. Iss. 31 p. 97–104. DOI 10.5593/sgem2017/31/ S12.013.
GATSEVA P.D., ARGIROVA M.D. 2008. High-nitrate levels in drinking water maybe a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas. International Journal of Hygiene and Environmental Health. Vol. 211 (5–6) p. 555–559.
GUPTA S.K., GUPTA R.C., SETH A.K., GUPTA A.B., BASSIN J.K., GUPTA A. 2000. Methaemoglobinaemia in areas with high nitrate concentration in drinking water. National Medical Journal of India. Vol. 13 (2) p. 58–61.
HILSON G. 2000. Pollution prevention and cleaner production in the mining industry: An analysis of current issues. Journal of Cleaner Production. Vol. 8(2) s. 119–126. ISO 5667-6:2014. Water quality – Sampling – Part 6: Guidance on sampling of rivers and streams. ISO 5667-11:2009. Water quality – Sampling – Part 11: Guidance on sampling of groundwaters. ISO/IEC 17025. General Requirements for the Competence of Testing and Calibration Laboratories.
LEPPÄNEN J.J., WECKSTRÖM J., KORHOLA A. Multiple mining impacts induce widespread changes in ecosystem dynamics in a boreal lake. Scientific Reports. Vol. 7, 10581. DOI 10.1038/ s41598-017-11421-8
MACFARLANE G.B., BURCHETTT M.D. 2000. Cellular distribution of Cu, Pb, and Zn in the grey mangrove Avicemnia marina (Forsk.). Vierh Aquatic Botanic. Vol. 68 p. 45–59.
MALIK N., BISWAS A., QURESHI T., BORANA K., VIRHA R. 2010. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environmental Monitoring and Assessment. Vol. 160 (1–4) p. 267–276. MALOKU F., AHMETI A., KOPALI A., DOKO A., Malltezi J., BRAHUSHI F., SULÇE S. 2015. Water and sediment heavy metal pollution in Ereniku River of Kosovo. Albanian Journal of Agricultural Sciences. Vol. 14(2) p. 137–148.
OBETA M.CH., OKAFOR U.P., NWANKWO C.F. 2019. Influence of discharged industrial effluents on the parameters of surface water in Onitsha urban area, southeastern Nigeria. Journal of Water and Land Development. No. 42 (VII–IX) p. 136–142. DOI 10.2478/jwld-2019-0054.
TAJTAKOVA M., SEMANOVA Z., TOMKOVA Z., SZOKEOVA E., MAJOROS J., RADIKOVA Z., SEBOKOVA E., KLIMES I., LANGER P. 2006. Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area. Chemosphere. Vol. 62(4) p. 559–564.
U.S. EPA 2007.EPA method 3015A (SW-846): Microwave assisted acid digestion of aqueous samples and extracts. Revision 1. Washington, DC. Unites States Environmental Protection Agency pp. 25.
VITAKU A., BARUTI B., MALOLLARI I. 2012. Erosion impact of heavy toxic compounds on a complex pollution caused by mining and metallurgical wastes in Trepca, Kosovo. Journal of Environmental Protection and Ecology. Vol. 13. No 1 p. 96–103.
WEI W., MA R., SUN Z., ZHOU A., BU J., LONG X., LIE Y. 2018. Effects of mining activities on the release of heavy metals (HMs) in a typical mountain headwater region, the Qinghai-Tibet Plateau in China. International Journal of Environmental Research and Public Health. Vol. 15(9), 1987. DOI 10.3390/ ijerph15091987.
WHO 2011. Manganese in drinking-water. Background document for development of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/104/Rev/1 [online]. Geneva. World Health Organization pp. 21. [Access 20.06.2019]. Available at: https://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf?ua=1
ZHUSHI E. F., ÇARDAKU H., BYTYÇI A., KUÇI T., DESKU A., YMERI P., BYTYÇI P. 2020. Correlation between physical and chemical parameters of water and biotic indices: The case study the White Drin River basin, Kosovo. Journal of Water and Land Development. No. 46 (VII–IX) p. 229–241. DOI 10.24425/ jwld.2020.134585.

Go to article

Authors and Affiliations

Sadija Kadriu
1
ORCID: ORCID
Milaim Sadiku
1
ORCID: ORCID
Mensur Kelmendi
1
ORCID: ORCID
Mehush Aliu
1
ORCID: ORCID
Ismet Mulliqi
1
ORCID: ORCID
Arbër Hyseni
1
ORCID: ORCID

  1. University of Mitrovica “Isa Boletini”, Faculty of Food Technology, Mitrovica, Kosovo
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of river system is to renovate its old processes. This article represents the results of two numerical models and a field site screening results for the river renovation in Idaho, U.S.A and some restoration methodologies that have been used to better understand possible renovating strategy. Ecological recovery methods using a degraded stream ecosystem have been found after estimating a channel design's capability. Despite these representing methods it is hard to present the most effective method to get efficient renovative outcomes. Two hydrodynamics modelling (MIKE 11-GIS and HEC-RAS5) and field site screening are used to evaluate pre- and post-renovation modifies in 35 laboratory experiments and biological performance indicators. Movement formed between 1994 and 2014 have been considered in this research. Ecosystem improvements have been evaluated to compare the pre-post renovation situations by considering the parameters such as water surface elevation, lower slope, shear stress, depth, wet perimeter, and velocities. The numerical model results for all mentioned parameters show that after the completion of phase I, II, III and IV, the sinuosity of the channel will be very close to the 1986 condition. The sediment carrying capacity and potential use of MIKE 11-GIS, hydrodynamic model for scour has been reduced throughout the lower reaches of the project site, where the channel slope is at its steepest posi-tion, and a close match with the field site screening and have been shown and presented as graphs.
Go to article

Bibliography

BARINAGA M. 1996. A recipe for river recovery? Science. Vol. 273 p. 1648–1650.
BERNHARDT E.S., PALMER M.A., ALLAN J.D., ALEXANDER G., BARNAS K., BROOKS S. 2005. Synthesizing U.S. river restoration efforts. Science. Vol. 308. Iss. 5722 p. 636–637. DOI 10.1126/science.1109769.
CLAYTON S., BEARRIE G., FUHRMAN D., MINNS A., GOODWIN P. 1999. Lower Red River meadow restoration project, phases III and IV conceptual design. Moscow. Ecohydraulics Research Group, University of Idaho, USA pp. 48.
DHI 2000. MIKE 11: A modeling system for rivers and channels. User Guide. DHI Software. Horsholm, Denmark. DHI Water and Environment pp. 81.
EMMETT W.W. 1975. Hydrologic evaluation of the upper Salmon River area, Idaho. USGS Professional Paper 282-B. Washington, D.C. GPO pp. 115.
FARNSWORTH J.M., BAASCH D.M., FARRELL P.D., SMITH Ch.B., WERBYLO K.L. 2018. Investigating whooping crane habitat in relation to hydrology, channel morphology and a watercentric management strategy on the central Platte River, Nebraska. Heliyon. Vol. 4 e00851. DOI 10.1016/j.heliyon.2018.e00851.
FISRWG 1998. Stream corridor restoration: Principles, processes, and practices. GPO No. 0120-A, SuDocs No. A57.6/2: EN 3/PT.653. Washington, D.C. Federal Interagency Stream Restoration Working Group. U.S. Department of Agriculture pp. 653.
FRAAIJE R.G.A., BRAAK C.J.F., VERDUYN B., VERHOEVEN J.T.A., SOONS M.B. 2015. Dispersal versus environmental filtering in a dynamic system: drivers of vegetation patterns and diversity along stream riparian gradients. Journal of Ecology. Vol. 103. Iss. 6 p. 1634–1646.
GARSSEN A.G., BAATTRUP‐PEDERSEN A., RIIS T., RAVEN B.M., HOFFMAN C.Ch., VERHOEVEN J.T.A., SOONS M.B. 2017. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Global Change Biology. Vol. 23. Iss. 8 p. 3052–3063.
GILLILAN S., BOYD K., HOITSMA T., KAUFFMAN M. 2005. Challenges in developing and implementing ecological standards for geomorphic river restoration projects: A practitioner’s response to Palmer et al. (2005). Journal of Applied Ecology. Vol. 42 p. 223–227.
GREGORY S.V., SWANSON F.J., MCKEE W.A., CUMMINS K.W. 1991. An ecosystem perspective of riparian zones. BioScience. Vol. 41 p. 540–551. DOI 10.2307/1311607.
GURNELL A.M., CORENBLIT D., JALÓN D.G., TÁNAGO M.G., GRABOWSKI R.C., O'HARE M.T., SZEWCZYK M. 2015. A conceptual model of vegetation–hydrogeomorphology interactions within river corridors. River Research and Applications. Spec. Iss. Hydrogeomorphology‐Ecology Interactions in River Systems. Vol. 32. Iss. 2 p. 142–163.
HENRY C.P., AMOROS C., ROSET N. 2002. Restoration ecology of riverine wetlands: A 5-year post-operation survey on the Rhône River, France. Ecological Engineering. Vol. 18 p. 543–554. DOI 10.1016/S0925-8574(02)00019-8
HORTON A.J., CONSTANTINE J.A., HALES T.C., GOOSSENS B., BRUFORD M.W., LAZARUS E. D. 2017. Modification of river meandering by tropical deforestation. Geology. Vol. 45 (6) p. 511–514.
KLEIN L.R., CLAYTON S.R., ALLDREDGE J.R., GOODWIN P. 2007. Long-term monitoring and evaluation of the Lower Red River meadow restoration project, Idaho, U.S.A. Restoration Ecology. Vol. 15 p. 223–239. DOI 10.1111/j.1526-100X.2007. 00206.x.
LAKE P.S. 2005. Perturbation, restoration and seeking ecological sustainability in Australian flowing waters. Hydrobiologia. Vol. 552 p. 109–120.
LEOPOLD L.B., WOLMAN M.G. 1957. River channel patterns: Braided, meandering, and straight. USGS Professional Paper 282-B. Washington, D.C. GPO p. 39–85.
LONG J.W., DAVIS J. 2016. Erosion and restoration of two headwater wetlands following a severe wildfire. Ecological Restoration. Vol. 34. No. 4 p. 317–332. DOI 10.3368/er.34.4.317.
LONG J.W., POPE K.L. 2014. Wet meadows, science synthesis to support socioecological resilience in the Sierra Nevada and Southern Cascade Range. General Technical Report PSW-GTR-247. Albany, CA. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station pp. 723.
PALMER M.A., BERNHARDT E.S., ALLAN J.D., LAKE P.S., ALEXANDER G., BROOKS S. 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology. Vol. 42 p. 208–217.
RAMSTEAD K.M., ALLEN J.A., SPRINGER A.E. 2012. Have wet meadow restoration projects in the Southwestern U.S. been effective in restoring geomorphology, hydrology, soils, and plant species composition? Environmental Evidence. Vol. 1. Art. No. 11.
TAL M., PAOLA CH. 2010. Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments. Earth Surface Processes and Landforms. Vol. 35. Iss. 9 p. 993–1121.
THOMAS R.E., POLLEN-BANKHEAD N. 2010. Modeling root-reinforcement with a fiber-bundle model and Monte Carlo simulation. Ecological Engineering. Vol. 36(1) p. 47–61.
USACE 2015. HEC-RAS River Analysis System. User's Manual. Ver. 5.0. Davis, CA. US Army Corps of Engineers. Hydrologic Engineering Center pp. 538.
USFS 1992. Integrated riparian evaluation guide. Ogden, Utah. USDA Forest Service, Intermountain Region pp. 91.
WARD J.V., TOCKNER K., UEHLINGER U., MALARD F. 2001. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regulated Rivers: Research and Management. Vol. 17 p. 311–323.
WHITING P.J. 1998. Expert witness report concerning Organic Act Claims. Snake River Basin Adjudication Case No. 39576. District Court of the Fifth Judicial District of the State of Idaho pp. 109. WILLIAMS G.P. 1986. River meanders and channel size. Journal of Hydrology. Vol. 88. Iss. 1–2 p. 147–164.
WOHL E., ANGERMEIER P.L., BLEDSOE B., KONDOLF G.M., MACDONNELL L., MERRITT D.M., PALMER M.A., POFF N.L., TARBOTON D. 2005. River restoration. Water Resources Research. Vol. 41, W10301. DOI 10.1029/2005WR003985.

Go to article

Authors and Affiliations

Abolfazl Nazari Giglou
1 2
ORCID: ORCID

  1. Islamic Azad University, Department of Civil Engineering, Parsabad Moghan Branch, Parsabad Moghan, Iran
  2. University of Idaho, Center for Ecohydraulics Research, Department of Civil Engineering, 322 E. Front St., Suite 340 Boise, ID 83702, 83712, Boise, USA
Download PDF Download RIS Download Bibtex

Abstract

The study shows the biodiversity of Utricularia australis from western to northern regions of Ukraine. The environ-mental conditions of Ukraine are favourable for the spread and formation of phytocenosis involving U. australis, especially on thermoclimatic, cryothermal and continental scale. A broader range of the species’ relation to humidity has been record-ed. The research outcome shows the existence of the species in conditions from shallow, parched reservoirs to deep water habitats which allows the species to withstand temporary drying of reservoirs in summer periods. The resilience of U. australis to some water quality parameters, including nitrogen, phosphorus, iron content, colour, pH and organic contamination was higher than in previous studies and Tsyganov’s ecological scales. Thus, due to its wide range of tolerance to the majority of environmental factors, U. australis tends to spread in contemporary climatic conditions in Ukraine. Considering that the species has category “vulnerable” in the country and is listed in the red data book of Ukraine, its conservation status is likely to be revised further.
Go to article

Bibliography

ADAMEC L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist. Vol. 155(1) р. 89–100. DOI 10.1046/j.1469-8137.2002. 00441.x.
ADAMEC L. 2008. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Fundamental and Applied Limnology. Archiv für Hydrobiologie. Vol. 171(3) р. 175–183. DOI 10.1127/1863-9135/2008/0171-0175.
ADAMEC L. 2011. Shoot branching of the aquatic carnivorous plant Utricularia australis as the key process of plant growth. Phyton. Vol. 51/1 р. 133–148.
ADAMEC L., KOVÁŘOVÁ M. 2006. Field growth characteristics of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis. Folia Geobotanica. Vol. 41(4) р. 395–406.
ADAMEC L., POPPINGA S. 2016. Measurement of the critical negative pressure inside traps of aquatic carnivorous Utricularia species. Aquatic Botany. Vol. 133 p. 10–16. DOI 10.1016/ j.aquabot.2016.04.007.
ASTUTI G., PERUZZI L. 2018. Are shoots of diagnostic value in Central European bladderworts (Utricularia L., Lentibulariaceae). Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology. Vol. 152 p. 1214–1226. DOI 10.1080/11263504.2018.1435573.
BEGON M., HARPER J.L., TOWNSEND C.R. 1986. Ecology. Individuals, populations and communities. Oxford. Blackwell Scientific. ISBN 0632013370 pp. 876.
BILZ M., KELL S.P., MAXTED N., LANSDOWN R.V. 2011. European red list of vascular plants [online]. Luxembourg. Publications Office of the European Union pp. 130. [Access 10.06.2020]. Available at: http://bot.biologia.unipi.it/listerosse/European_vascular_plants.pdf
CESCHIN S., BELLINI A., TRAVERSETTI L. ZUCCARELLO V., ELL¬WOOD NTW. 2020. Ecological study of the aquatic carnivorous plant Utricularia australis R. Br. (Lentibulariaceae). Aquatic Ecology. Vol. 54 p. 295–307. DOI 10.1007/s10452-019-09743-y.
CIRUJANO S., CASADO C., BERNUÉS M., CAMARGO J.A. 1996. Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, Central Spain): Differences in water physico-chemistry and vegetation between 1974 and 1989. Biological Conservation. Vol. 75(3) p. 211–215.
CHAMPION P. 2014. Utricularia australis. The IUCN Red List of Threatened Species 2014: e.T163979A21842538 [online]. [Access 02.04.2020]. Available at: https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T163979A21842538.en
DANYLYK I.M., SOLOMAKHA V.A., SOLOMAKHA Т.D., TSYMBA¬LIUK Z.М. 2007. Utricularia australis R. Br. (Lentibula-riaceae) – novyi vyd dlya flory Prykarpattia [Utricularia australis R. Br. (Lentibulariaceae) – new species for the flora of Forecarpathian area]. Ukrainian Botanical Journal. Vol. 64(2) p. 242–246.
DÍTĚ D., NAVRÁTILOVÁ J., HÁJEK M., VALACHOVIČ M., PUKAJOVÁ D. 2006. Habitat variability and classification of Utricularia communities: comparison of peat depressions in Slovakia and the Třeboň basin. Preslia. Vol. 78 p. 331–343.
DIDUKH Y.P. (ed.) 2009. Chervona knyga Ukrainy Roslinnyy svit [Red data book of Ukraine]. Vegetable Kingdom pp. 602. ISBN 978-966-97059-1-4.
DUBOVIK D., ORLOV А.А., IAKUSHENKO D.M., SKURATOVICH А.N. 2016. Utricularia h australis r. br. vo flore Belarusi i Ukrainy [Utricularia australis R. Br. in the flora of Belorussia and Ukraine]. Botany (investigations). Collection of scientific papers. Institute of Experimental Botany of NAS of Belorussia. Minsk. Vol. 45 p. 55–63.
ELLISON A. M., ADAMEC L. (EDS.) 2018. Carnivorous Plants: physiology, ecology, and evolution. Oxford. Oxford University Press. ISBN 978-0-19-877984-1 pp. 509. DOI 10.1093/ oso/9780198779841.001.0001.
ELLWOOD N.T.W., CONGESTRI R., CESCHIN S. 2019. The role of phytoplankton in traps of carnivorous bladderworts (Utricularia, Lentibulariaceae). Freshwater Biology. Vol. 64 p. 233–243. DOI 10.1111/fwb.13212.
EVANS D., ROEKAERTS M. 2015. Interpretation manual of the habitats listed in Resolution No. 4 (1996) listing endangered natural habitats requiring specific conservation measures [online]. Third draft version. Strasbourg. CE pp. 110. [Access 15.06.2020]. Available at: https://rm.coe.int/16807469f9
FEDONIUK T.P., FEDONIUK R.H., ROMANCHUK L.D., PETRUK A.A., PAZYCH V.M. 2019. The influence of landscape structure on the quality index of surface waters. Journal of Water and Land Development. No. 43 (X–XII) p. 56–63. DOI 10.2478/jwld-2019-0063.
FEDONYUK T. P., FEDONIUK R. H., ZYMAROIEVA A. A., PAZYCH V. M., ARISTARKHOVA E. O. 2020. Phytocenological approach in biomonitoring of the state of aquatic ecosystems in Ukrainian Polesie. Journal of Water and Land Development. No. 44 (I–III) p. 65–74. DOI 10.24425/jwld.2019.127047.
HENNEKENS S.M. SCHAMINÉE J.H.J. 2001. TURBOVEG, a com¬prehensive database management system for vegetation data. Journal of Vegetation Science. Vol. 12 p. 589–591. DOI 10.2307/3237010.
HOFFMANN K. 2001. Standortökologie und Vergesellschaftung der Utricularia-Arten Nordwestdeutschlands [Site ecology and socialization of the Utricularia species in Northwest Germany]. Abhandlungen aus dem Westfälischen Museum für Naturkunde. Vol. 63. ISSN 0175-3495 pp. 106.
HUGHES B.D. 1978. The influence of factors other than pollution on the value of Shannon's diversity index for benthic macro-invertebrates in streams. Water Research. Vol. 12. No. 5 p. 359–364. DOI 10.1016/0043-1354(78)90124-0.
HUSÁK Š. 2000. Utricularia L. – bublinatka. – In: Květena České republiky [Utricularia L. – bladderwort. In: Flowering plants of Chech Republic] [online]. Vol. 6. Eds. B. Slavík, J. Chrtek jun., J. Štěpánková p. 517–528. [Access 02.04.2020]. Available at: https://pladias.cz/en/taxon/flora/Utricularia%20australis
IAKUSHENKO D., BORYSOVA O. 2012. Plant communities of the class Charetea Fukarek ex Krausch 1964 in Ukraine: An overview. Biodiversity: Research and Conservation. Vol. 25 p. 75–82. DOI 10.2478/v10119-012-0014-5.
IAKUSHENKO D.M., ORLOV O.O. 2015. New records of Utricula¬ria australis R.Br. (Lentibulariaceae) in Ukraine. Ukrainian Botanical Journal. Vol. 72(5) p. 445–450. DOI 10.15407/ ukrbotj72.05.468.
JOBSON R.W., PLAYFORD J., CAMERON K.M., ALBERT V.A. 2003. Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 Intron and trnL-F DNA sequences: implications for character evolution and biogeography. Systematic Botany. Vol. 28 p. 157–171. DOI 10.1007/s00606-004-0224-1.
KAMEYAMA Y., TOYAMA M., OHARA M. 2005. Hybrid origins and F1 dominance in the free-floating, sterile bladderwort, Utricularia australis f. australis (Lentibulariaceae). American Journal of Botany. Vol. 92(3) p. 469–476. DOI 10.3732/ ajb.92.3.469.
KÁRPÁTI V. 1963. Die zönologischen und ökologischen Verhältnisse der Wasservegetation des Donau – Überschwemmungsraumes in Ungarn [The cenological and ecological conditions of the aquatic vegetation of the Danube flood plain in Hungary]. Acta Botanica Hungarica. Vol. 89 p. 323–385. DOI 10.1007/BF02504000.
KIBRIYA S., JONES JI. 2007. Nutrient availability and the carnivorous habit in Utricularia vulgaris. Freshwater Biology. Vol. 52 p. 500–509. DOI 10.1111/J.1365-2427.2006.01719.X.
KLYMENKO M.O., BIEDUNKOVA O.O., KLYMENKO O.M., STATNYK I.I. 2018. Influence of river water quality on homeostasis characteristics of cypriniform and perciform fish. Biosystems Diversity. No. 26(1) p. 16–23. DOI 10.15421/011803.
KOLLER-PEROUTKA M., LENDL T., WATZKA M. , ADLASSNIG W. 2015. Capture of algae promotes growth and propagation in aquatic Utricularia. Annals of Botany. Vol. 115 p. 227–236. KOSIBA P. 2004. Chemical properties and similarity of habitats of Utricularia species in Lower Silesia, Poland. Acta Societatis Botanicorum Poloniae. Vol. 73 No. 4 p. 335–341. DOI 10.5586/asbp.2004.044.
KOSIBA P., SAROSIEK J. 1993. A modelowe dla produkcji z biomasy Utricularia sp. populacje [A model for production of biomass of Utricularia sp. populations]. Acta Universitatis Wratislaviensis. No. 1443. Prace Botaniczne. Vol. 52 p. 9–23. MARGALEF R. 1969. Perspectives of ecological theory. Chicago, London. Univ. Chicago Press pp. 111. DOI 10.4319/lo.1969.14.2.0313.
METTE N., WILBERT N., BARTHLOTT W. 2000. Food composition of aquatic bladderworts (Utricularia, Lentibulariaceae) in various habitats. Beiträge zur Biologie der Pflanzen Vol. 72 p. 1–13.
MÜLLER TH. 1977. Klasse: Lemnetea R.Tx. 55 (Lemnetea minoris). In: Suddeusche Pflanzengesellschaften [Class: Lemnetea R.Tx. 55 (Lemnetea minoris). In: South German Plant Communities]. Ed. E. Oberdorfer. Teil. I. Stuttgart-New York. G. Fisher Verlag p. 67–77.
MÜLLER TH., GÖRS S. 1960. Pflanzengesellschaften stehender Gewässer in Baden-Würtemberg [Plant communities of standing water in Baden-Württemberg]. Beiträge zur naturkundlichen, Forschung in Südwestdeuschland. Vol. 19(1) p. 60–100.
NAGENDRA H. 2002. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography. Vol. 22. No. 2 р. 175–186. DOI 10.1016/S0143-6228(02)00002-4
OCHYRA R. 1985. Vegetation of the karst sink-holes in the vicinity of Staszow on the Malopolska Upland. Monographiae Botanicae. 66 pp. 136. DOI 10.5586/mb.1985.002.
ORLOV О.О. 2019. New data about distribution of Utricularia australis R.Br. (Lentibulariaceae) in Zhytomyr Polissya [Novi dani pro poshyrennia Utricularia australis R. Br. (Lentibulariaceae) v Zhytomyrskomu Polissi]. Contemporary phytosozological investigations in Ukraine. Vol. 3. Kyiv. Тalkom p. 56–61.
OSYPENKO V. P., YEVTUKH T. V. 2018. Peculiarities of the distribution of dissolved organic matter in water bodies of urban territories. Hydrobiological Journal. Vol. 54(5) р. 81–94. DOI 10.1615/HydrobJ.v54.i5.80.
OŤAHEĽOVÁ H. 1980. Makrofytné společenstvá otvorených vôd podunajskej roviny (Trieda Lemnetea, Potamogetonetea) [Macrophyte’s communities of open waters of Danube plain (Class Lemnetea, Potamogetonetea)]. Bioligické Práce. Vol. 26/3 pp. 178.
PASSARGE H. 1996. Pflanzengesellschaften Nordostdeutschlands. I. Hydro- und Therophytosa [Plant communities in Northeast Germany. I. Hydro- and Therophytosa]. Berlin–Stuttgart. G. Fisher Verlag. ISBN 3-443-50020‐X pp. 298. DOI 10.1002/fedr.19971080707.
PIELOU E.C. 1975. Ecological diversity. New York. John Wiley. ISBN 0471689254 pp. 165.
PEARCE S.C. 1983. The agricultural field experiment. A statistical examination of theory and practice. John Wiley & Sons. ISBN 0471105112 pp. 335.
PROTS B.G. 2009. Utricularia australis R. Br. (U. neglecta Lehm.). In: Red data book of Ukraine [Chervona knyga Ukrainy]. Ed. Y.P. Didukh. Kyiv. Globalconsulting рp. 513.
RODRIGO M.A., CALERO S. 2019. Phenology of macrophytes in coastal environments: Utricularia australis R.Br. and Stuckenia pectinata (L.) Börner in an interdunal pond within the Albufera de València National Park. Limnetica. Vol. 38(1) p. 317–334. DOI 10.23818/limn.38.05.
ROMANCHUK L., FEDONYUK T., PAZYCH V., FEDONYUK R., KHANT G., PETRUK А. 2018. Assessment of the stability of aquatic ecosystems development on the basis of indicators of the macrophytes fluctuating asymmetry. Eastern-European Journal of Enterprise Technologies. Vol. 4. No. 11 (94) p. 54–61. DOI 10.15587/1729-4061.2018.141055.
ROMANENKO V., ZHUKINSKIY V. 1998. Metodyka ekolohichnoyi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy [Methodology of ecological assessment of surface water quality according to the relevant categories]. Kyiv. Symbol pp. 28.
SCHRATT L. 1993. Lemnetea. In: Die Pflanzengesellschaften Österreich. Teil II. Natürliche waldfreie Vegetation [The plant communities of Austria. Part II. Natural forest-free vegetation]. Eds. G. Grabherr, L. Mucina. Jena–Stuttgart–New York. G. Fisher Verlag p. 31–44.
SIMPSON E.H. 1949. Measurement of diversity. Nature. Vol. 163 p. 688. DOI 10.1038/163688a0.
SIROVA D., ŠANTRUCEK J., ADAMEC L., BARTA J., BOROVEC J., PECH J., VRBA J. 2014. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: Is it ecologically important. Annals of Botany. Vol. 114(1) p. 125–133. DOI 10.1093/aob/mcu067.
SHANNON C.E. 1948. The mathematical theory of communication. The Bell System Technical Journal. 27(3) p. 623–656. DOI 10.1002/j.1538-7305.1948.tb00917.x.
SPAŁEK K. 2006. Utricularietum australis Th. Müller et Görs 1960 in Poland. Acta Societatis Botanicorum Poloniae. Vol. 75(3) p. 253–256.
ŠUMBEROVÁ K., HÁJKOVÁ P., CHYTRÝ M. 2011. Vegetace rákosin a vysokých ostřic (Phragmito-Magno-Caricetea). In: Vegetace České republiky. Vodní a mokřadní vegetace [Vegetation of the Czech Republic. Aquatic and wetland vegetation]. Ed. M. Chytrý. Praha. Academia p. 385–579.
TAYLOR P. 1989. The genus Utricularia – a taxonomic monograph. 2 nd ed. Kew Bulletin Additional Series XIV. London. Royal Botanic Gardens, Kew. ISBN 0 947643 72 9 pp. 736.
The Royal Society 2010. Climate change: A summary of the science [online]. London pp. 16. [Access 10.06.2020]. Available at: http://royalsociety.org/policy/publications/2010/climate-change-summary-science
TOMASZEWICZ H. 1969. Roślinność wodna i szuwarowa starorzeczy Bugu na obszarze województwa warszawskiego [Vegetation of waters and shuwars of Bug’s oxbow on the territory of Warsaw Voivodeship]. Acta Societatis Botanicorum Poloniae. Vol. 38. No. 2 p. 217–245. DOI 10.5586/asbp.1969.023.
TSYGANOV D.N. 1983. Fitoindikatsiya ekologicheskih rezhimov v podzone hvoyno-shirokolistvennyih lesov [Phytoindication of ecological regimes in the subzone of coniferous-deciduous forests]. Moskva. Izd. Nauka pp. 196.
UOTILA P. 2013: Lentibulariaceae. In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity [online]. [Access 05.02.2019]. Available at: http://ww2.bgbm.org/EuroPlusMed/PTaxonDetail.asp?NameCache=Utricularia%20australis&PTRefFk=7500000
VAHLE H.C., PREISING E. 1990. Potametea-Laichkraut- und Seerosengesellschaften. In: Die Pflanzengesellschaften Niedersachsens – Bestandsentwicklung, Gefährdunk und Schutzprobleme, Wasser- und Sumpfpflanzengesellschaften des Süßwassers [Potametea pondweed and water lily societies. In: The plant communities of Lower Saxony – population development, hazards and protection problems, aquatic and marsh plant communities of fresh water]. Naturschutz und Landschaftspflege in Niedersachsen. Ed. E. Preising. Vol. 20(8) p. 101–128.
VISIULINA О.D. 1961. Rid Utricularia L. U: Flora URSR [Genus Utricularia L. In: Flora of URSR]. Vol. Х. Kyiv. Publishers of AN of URSR p. 61–67.
WESTHOFF V., VAN DER MAAREL E. 1973. The Braun–Blanquet approach. In: Classification of plant communities. Ed. R. Whittaker. The Hague. Junk p. 287–399. DOI 10.1007/ BF02389711.
ŻUKOWSKI W. 1974. Rozmieszczenie gatunków z rodzaju Utricularia L. w Polsce [Distribution of the species of the genus Utricularia L. in Poland]. Badania Fizjograficzne nad Polską Zachodnią. Ser. B, 27 p. 189–217.

Go to article

Authors and Affiliations

Oleksandr O. Orlov
1
ORCID: ORCID
Tetiana P. Fedoniuk
2
ORCID: ORCID
Dmytro M. Iakushenko
3
ORCID: ORCID
Ivan M. Danylyk
4
ORCID: ORCID
Roman Ya. Kish
5
ORCID: ORCID
Anastasiia A. Zimaroieva
2
ORCID: ORCID
Galyna А. Khant
2
ORCID: ORCID

  1. Polyskiy Branch of Ukrainian Research Institute of Forestry and Forest Melioration named after G.M. Vysotsky of National Academy of Sciences of Ukraine and State Agency of Forestry of Ukraine, Dovzhik, 10004 Ukraine
  2. Polissia National University, Staryi Blvd, 7, Zhytomyr, Zhytomyrs'ka oblast, 10008 Ukraine
  3. University of Zielona Góra, Department of Biological Sciences, Zielona Góra, Poland
  4. Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, Lviv, Ukraine
  5. Uzhhorod National University, Laboratory of Environmental Protection, Uzhhorod, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the actual scientific and practical problem of accounting for the influence of meteorological and climatic factors in the technical and economic calculations in the field of environmental management. It has been proven that the introduction of scientifically sound and effective methods of using meteorological and cli-matic information in economic calculations significantly reduces the loss caused by weather conditions and improves the implementation of an optimal strategy for agricultural production on reclaimed lands. Such calculations are based on economic and statistical modelling of different variants that accounting for standard hy-drometeorological information in the implementation of design, management and economic decisions. This increases the validity and reliability of calculations, as well as their compliance with the actual operating conditions of environmental and economic facilities. Consequently, this attracts increased interest of both public and private investors. Not only under such conditions is a sustainable development of environmental management sectors possible but also the adaptation to global climate change and additional benefits from the efficient economic activity in the new environmen-tal conditions.
Go to article

Bibliography

ARMEANU D., LACHE L. 2009. The NPV criterion for valuing investments under uncertainty. Economic computation and economic cybernetics studies and research. Academy of Economic Studies. No. 4 p. 133–143.
BIERMAN H. JR., SMIDT S. 2006. The capital budgeting decision: Economic analysis of investment projects. 9th ed. Abingdon-on-Thames. Routledge. ISBN 9780415400046 pp. 424.
BLANC E., SCHLENKER W. 2017. The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy. Vol. 11. Iss. 2. Summer p. 258–279. DOI 10.1093/reep/rex016.
DONG Z., PAN Z., WANG S., AN P., ZHANG J., ZHANG J., PAN Y., HUANG L., ZHAO H., HAN G., WU D., WANG J., FAN D., GAO L., PAN X. 2016. Effective crop structure adjustment under climate change. Ecological Indicators. Vol. 69. October p. 571–577. DOI 10.1016/j.ecolind.2016.04.010.
FROLENKOVA N., KOZHUSHKO L., ROKOCHINSKIY A. 2007. Ekoloho-ekonomichne otsinyuvannya v upravlinni melioratyvnymy proektamy: Monografіya [Ecological and economic assessment in the management of reclamation projects: Monograph]. Rivne. NUVGP. ISBN 966-327-049-7 pp. 258.
FROLENKOVA N., ROKOCHINSKIY A., VOLK P., SHATKOVSKYІ A., PRYKHODKO N., TYKHENKO R., OPENKO I. 2020. Cost-effec-tiveness of investments in drip irrigation projects in Ukraine. International Journal of Green Economics (IJGE). Vol. 14. No. 4 p. 315–326. DOI 10.1504/IJGE.2020.112570.
GOHAR A., CASHMAN A. 2016. A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems. Vol. 147. September p. 51–64. DOI 10.1016/j.agsy.2016.05.008.
HAKA S. F. 2006. A review of the literature on capital budgeting and investment appraisal: Past, present, and future musings. Handbooks of Management Accounting Research. Vol. 2 p. 697–728. DOI 10.1016/S1751-3243(06)02010-4.
KOVALENKO P., ROKOCHINSKIY A., JEZNACH J., KOPTYUK R., VOLK P., PRYKHODKO N., TYKHENKO R. 2019. Evaluation of climate change in Ukrainian part of Polissia region and ways of adaptation to it. Journal of Water and Land Development. No. 41 (IV–VI) p. 77–82. DOI 10.2478/jwld-2019-0030.
MARTYN A., OPENKO I., IEVSIUKOV T., SHEVCHENKO O., RIPENKO A. 2019. Accuracy of geodetic surveys in cadastral registration of real estate: Value of land as determining factor. 18th International Scientific Conference. Engineering for Rural Development. 22–24.05.2019 Jelgava, Latvia p. 1818–1825. DOI 10.22616/ERDev2019.18.N236.
MARTYN A., SHEVCHENKO O., TYKHENKO R., OPENKO I., ZHUK O., KRASNOLUTSKY O. 2020. Indirect corporate agricultural land use in Ukraine: Distribution, causes, consequences. International Journal of Business and Globalisation. Vol. 25. No. 3 p. 378–395. DOI 10.1504/IJBG.2020.109029.
MASSEY E.E. 2012. Experience of the European Union in adaptation to climate change and its application to Ukraine [online]. Office of the Co-ordinator of OSCE Economic and Environmental Activities pp. 36. [Access 20.03.2020]. Available at: https://www.osce.org/ukraine/104019?download=true
MOHAMED S., MCCOWAN A.K. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management. Vol. 19. Iss. 4 p. 231–241. DOI 10.1016/S0263-7863(99)00077-0.
NOWAK M. 2005. Investment projects evaluation by simulation and multiple criteria decision aiding procedure. Journal of Civil Engineering and Management. Vol. 11. Iss. 3 p. 193–202. DOI 10.1080/13923730.2005.9636350.
OPENKO I., KOSTYUCHENKO Y. V., TYKHENKO R., SHEVCHENKO O., TSVYAKH O., IEVSIUKOV T., DEINEHA M. 2020. Mathematical modelling of postindustrial land use value in the big cities in Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol. 5. No. 2. p. 260–271. DOI 10.33889/IJMEMS.2020.5.2.021.
OPENKO I., SHEVCHENKO O., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. International Journal of Green Economics (IJGE). Vol. 11. No. 2 p. 139–153. DOI 10.1504/IJGE.2017.089015.
REZAEI ZAMAN M., MORID S., DELAVAR M. 2016. Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems. Vol. 147. September p. 98–110. DOI 10.1016/j.agsy. 2016.06.001.
ROKOCHINSKIY A. 2010. Naukovі ta praktichnі aspekti optimіzacіi vodoregulyuvannya osushuvanikh zemel' na ekologoekonomіchnikh zasadakh: Monografіya [The scientific and practical aspects optimization of water regulation drained lands on environmental and economic grounds. Monograph]. Rivne. NUVGP. ISBN 978-966327-141-5 pp. 352.
ROKOCHINSKIY A. 2016. Systemna optymizatsiya vodorehulyuvannya yak neobkhidna umova stvorennya ta funktsionuvannya vodohospodarsʹko-melioratyvnykh obʺyektiv na ekoloho-ekonomichnykh zasadakh [System optimization of water regulation as a prerequisite for the creation and operation of water management and reclamation facilities on ecological and economic grounds]. Vodne hospodarstvo Ukrayiny. No 104 p. 67–71.
ROKOCHINSKIY A., BILOKON V., FROLENKOVA N., PRYKHODKO N., VOLK P., TYKHENKO R., OPENKO I. 2020. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. Journal of Water and Land Development. No. 45 (IV–VI) p. 119–125. DOI 10.24425/jwld.2020.133053.
ROKOCHINSKIY A., FROLENKOVA N., KOPTIUK R. 2012. Іnvestitsіyna otsіnka proektіv optimіzatsії vodoregulyuvannya osushuvanih land of urahuvannyam mainly chinnikіv vplivu [Investment assessment project for optimizing water management of drained lands from the main bureaucrats]. Tavriysʹkyy naukovyy visnyk. Vol. 83 p. 216–220.
ROKOCHINSKIY A., JEZNACH J., VOLK, P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2019. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 3(85) p. 193–202. DOI 10.22630/PNIKS.2019.28.3.40.
ROKOCHINSKIY A., STACHUK V., FROLENKOVA N., SHALAY S., KOPTYUK R., VOLK P.. 2010. Tymchasovi rekomendatsiyi z optymizatsiyi vodorehulyuvannya osushuvanykh zemelʹ u proektakh budivnytstva y rekonstruktsiyi vodohospodarsʹko-melioratyvnykh obʺyektiv [Temporary recommendations for optimization of water management of drained lands in projects of construction and reconstruction of water management and reclamation facilities]. Rivne. NUVGP pp. 52.
ROKOCHYNSKIY A., TURCHENIUK V., PRYKHODKO N., VOLK P., GERASIMOV I., KOÇ C. 2020. Evaluation of climate change in the rice-growing zone of Ukraine and ways of adaptation to the predicted changes. Agricultural Research. DOI 10.1007/ s40003-020-00473-4.
ROKOCHINSKIY A., VOLK P., FROLENKOVA N., SHALAY S., KOPTYUK R., ZAYETS V. PRYKHODKO N. 2013. Naukovo-metodychni rekomendatsiyi do obgruntuvannya optymalʹnykh parametriv silʹsʹkohospodarsʹkoho drenazhu na osushuvanykh zemlyakh za ekonomichnymy ta ekolohichnymy vymohamy [Scientific and methodological recommendations for substantiation of optimal parameters of agricultural drainage on drained lands according to economic and environmental requirements]. Rivne. NUVGP pp. 34.
SHALAY S., ROKOCHINSKIY A., STASHUK V., BEZHUK V. 2004. Tymchasovi rekomendatsiyi z obhruntuvannya efektyvnoyi proektnoyi vrozhaynosti na osushuvanykh zemlyakh pry budivnytstvi y rekonstruktsiyi melioratyvnykh system [Temporary recommendations for substantiation of effective project yield on drained lands during construction and reconstruction of reclamation systems]. Rivne. NUVGP pp. 44.
SHEVCHENKO О., OPENKO I., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Economic assessment of land degradation and its impact on the value of land resources in Ukraine [online]. International Journal of Economic Research (IJER). Vol. 14. No. 15. P. 4. p. 93–100. [Access 18.06.2020] Available at: https://serialsjournals.com/abstract/34405_ch_11_f_-_ivan_openko.pdf
ZHUKOVSKY E. 1981. Meteorologicheskaya informatsiya i ekonomicheskiye resheniya [Meteorological information and economic decisions]. Leningrad. Gidrometeoizdat pp. 304.

Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
1
ORCID: ORCID
Nadia Frolenkova
1
ORCID: ORCID
Vasyl Turcheniuk
1
ORCID: ORCID
Pavlo Volk
1
ORCID: ORCID
Nataliіa Prykhodko
1
ORCID: ORCID
Ruslan Tykhenko
2
ORCID: ORCID
Ivan Openko
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Str. Soborna, 11, 33000, Rivne, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Str. Vasylkivska, 17, 03040, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Under conditions of gravity flow, the performance of a distribution pipe network for drinking water supply can be measured by investment cost and the difference in real and target pressures at each node to ensure fairness of the service. Therefore, the objective function for the optimization in the design of a complex gravity flow pipe network is a multi-purpose equation system set up to minimize the above-mentioned two parameters. This article presents a new model as an alternative solution to solving the optimization equation system by combining the Newton–Raphson and genetic algorithm (GA) methods into a single unit so that the resulting model can work effectively. The Newton–Raphson method is used to solve the hydraulic equation system in pipelines and the GA is used to find the optimal pipe diameter combination in a net-work. Among application models in a complex pipe network consisting of 12 elements and 10 nodes, this model is able to show satisfactory performance. Considering variations in the value of the weighting factor in the objective function, opti-mal conditions can be achieved at the investment cost factor (ω1) = 0.75 and the relative energy equalization factor at the service node (ω2) = 0.25. With relevant GA input parameters, optimal conditions are achieved at the best fitness value of 1.016 which is equivalent to the investment cost of USD 56.67 thous. with an average relative energy deviation of 1.925 m.
Go to article

Bibliography

ABEBE A.J., SOLOMATINE D.P. 1998. Application of global optimization to the design of pipe networks. Proc. 3rd International Conference on Hydroinformatics. Copenhagen, August 1998. Balkema. Rotterdam p. 1–8.
AFSHAR M.H. 2006. Application of ant algorithm to pipe network optimization. Iranian Journal of Science & Technology. Transaction B, Engineering. Vol. 31. No. B5 p. 487–500.
AKLOG D., HOSOI Y. 2017. All-in-one model for designing optimal water distribution pipe networks. Journal of Engineering Drinking Water Engineering and Science. DOI 10.5194/dwes-10-33-2017.
ALI M.M., STOREY C. 1994. Modified controlled random search algorithms. International Journal of Computer Mathematics. Vol. 53. Iss. 3–4 p. 229–235.
BELLO A.D., WAHEED A., ALAYANDE, JOHNSON A.O., ISMAIL A, LAWAN U.F. 2015. Optimization of the designed water distribution system using MATLAB. International Journal of Hydraulic Engineering. Vol. 4(2) p. 37–44. DOI 10.5923/j.ijhe. 20150402.03.
GOLDBERG D.E. 1989. Genetic algorithms in search, optimization & machine learning. Addison-Wesley Publishing Co., Reading. ISBN 0201157675 pp. 432.
KADU M.S., GUPTA R., BHAVE P.R. 2008. Optimal design of water networks using a Modified Genetic Algorithm with reduction in search space. Journal of Water Resources Planning and Management. Vol. 134(2) p. 147–159.
KUMAR D., SUDHEER C.H., MATHUR S., ADAMOWSKI J. 2015. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing. Journal of Water and Land Development. No. 27 p. 29–40. DOI 10.1515/jwld-2015-0022.
MEMON K.K., NARUKLAR S.N. 2016. Review of pipe sizing optimization by Genetic Algorithm. IJIRST – International Journal for Innovative Research in Science & Technology. Vol. 3. Iss. 06 p. 138–141.
MOOSAVIAN N., JAEFARZADEH R. 2014. Hydraulic analysis of water supply networks using a modified Hardy Cross method. International Journal of Engineering, Transactions B: Applications. Vol. 27. No. 9 p. 1331–1338. DOI 10.5829/idosi. ije.2014.27.09c.02.
MTOLERA I., HAIBIN L., YE L., FENG S.B., XUE D., YI M. 2014. Optimization of tree pipe networks layout and size using Particle Swam Optimization. WSEAS Transactions on Computers. Vol. 13 p. 219–230.
PRICE W.L. 1983. Global optimization by controlled random search. Journal of Optimization Theory & Applications. Vol. 40 p. 333–348. DOI 10.1007/BF00933504.
RAJABPOUR R., TALEBBEYDOKHTI N. 2014. Simultaneous layout and pipe size optimization of pressurized irrigation networks. Basic Research Journal of Agricultural Science and Review. Vol. 3(12) p. 131–145.
SALEH C., SULIANTO 2011. Optimization diameter of pipe at fresh water network system. Journal of Academic Research International. Vol. 01. Iss. 02. No. 2 p. 103–109.
SÂRBU I. 2010. Optimization of water distribution networks. Proceeding of the Romanian Academy. Ser. A. Vol. 11. No. 4 p. 330–339.
SÂRBU I. 2011. Nodal analysis models of looped water distribution networks. ARPN Journal of Engineering and Applied Sciences. Vol. 6. No. 8 p. 115–125.
SHIVATAVA M., PRASAD V., KHARE R. 2015. Multi-objective optimization of water distribution system using particle swarm optimization. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Vol. 12. Iss. 6. Ver. I p. 21–28.
SOETOPO W., SUHARDJONO, ANDAWAYANTI U., SAYEKTI R.W., ISMOYO J. 2018. The comparison study for the models of reservoir release rule for irrigation. Case study: Sutami reservoir. Journal of Water and Land Development. No. 36 p. 153–160. DOI 10.2478/jwld-2018-0015.
SOLOMATINE D.P. 1998. Genetic and other global optimization algorithms – compareson and use in calibration problems. Proc. 3rd Intern. Conference on Hydroinformatics Copenhagen, August 1998. Balkema, Rotterdam p. 1021–1028.
SOMAIDA M., ELZAHAR M., SHARAAN M. 2011. A suggestion of optimization process for water pipe networks design. International Conference on Environment and BioScience IPCBEE. Vol. 21 p. 68–73.
SULIANTO 2015a. Programasi linier untuk pencarian diameter pipa optimal pada sistem jaringan pipa distribusi air bersih [Linear programming for search optimum diameter pipe in network pipe open in water supply system]. Journal of Media Teknik Sipil. Vol. 13. No. 1 p. 91–98.
SULIANTO 2015b. Pencarian diameter optimum pada sistim jaringan pipa terbuka dengan algoritma genetik. Di: Prosiding Seminar Nasional Teknik Sipil [The search optimum diameter on open network pipe system using GA. In: Proceeding National Conference Civil Engineering]. Program Studi Pasca Sarjana Teknik Sipil dan Perencanaan XI 2015 p. 191–204.
SULIANTO, BISRI M., LIMANTARA L.M., SISINGGIH D. 2018. Automatic calibration and sensitivity analysis of DISPRIN model parameters: A case study on Lesti watershed in East Java, Indonesia. Journal of Water and Land Development. No. 37 p. 141–152. DOI 10.2478/jwld-2018-0033.

Go to article

Authors and Affiliations

Sulianto
1
ORCID: ORCID
Ernawan Setiono
1
ORCID: ORCID
I Wayan Yasa
2
ORCID: ORCID

  1. University of Muhammadiyah Malang, Faculty of Engineering, Jl. Raya Tlogomas No. 246, 65114, Malang, Indonesia
  2. Mataram University, Faculty of Engineering, Mataram, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In recent times there have been many changes on Earth, which have appeared after anthropogenic impact. Finding solu-tions to problems in the environment requires studying the problems quickly, make proper conclusions and creating safe and useful measures. Humanity has always had an effect on the environment. There can be many changes on the Earth be-cause of direct and indirect effects of humans on nature. Determining these changes at the right time and organizing meas-urements of them requires the creation of quick analysing methods. This development has improved specialists’ interest for remote sensing (RS) imagery. Moreover, in accordance with analysis of literature sources, agriculture, irrigation and ecolo-gy have the most demand for RS imagery. This article is about using geographic information system (GIS) and RS technol-ogies in cadastre and urban construction branches. This article covers a newly created automated method for the calculation of artificial surface area based on satellite images. Accuracy of the analysis is verified according to the field experiments. Accuracy of analysis is 95%. According to the analysis from 1972 to 2019 artificial area enlargement is 13.44%. This method is very simple and easy to use. Using this data, the analysis method can decrease economical costs for field measures. Using this method and these tools in branches also allows for greater efficiency in time and resources.
Go to article

Bibliography

ARIFJANOV A., APAKHODJAEVA T., AKMALOV SH. 2019a. Calculation of losses for transpiration in water reservoirs with using new computer technologies. In: International Conference on Information Science and Communication Technologies (ICISCT). 04–06.11.2019 Tashkent. IEEE p. 1–4. DOI 10.1109/ICISCT47635.2019.9011883.
ARIFJANOV A., SAMIEV L., APAKHODJAEVA T., AKMALOV SH. 2019b Distribution of river sediment in channels. In: XII International Scientific Conference on Agricultural Machinery Industry. 10–13.09.2019 Don State Technical University, Russian Federation. IOP Conference Series: Earth and Environmental Science. Vol. 403, 012153. DOI 10.1088/1755-1315/403/1/012153.
AYRES-SAMPAIO D., TEODORO A.C., FREITAS T.A., SILLERO N. 2012. The use of remotely sensed environmental data in the study of asthma disease. Remote Sensing for Agriculture, Ecosystems, and Hydrology 14. Vol. 8531, 853124. DOI 10.1117/12. 974539.
BALAWEJDER M., NoGa K. 2016. The influence of the highway route on the development of patchwork of plots. Journal of Water and Land Development. No. 30 p. 3–11. DOI 10.1515/jwld-2016-0015.
BEKHIRA A., HABI M., MORSLI B. 2019. Management of hazard of flooding in arid region urban agglomeration using HEC-RAS and GIS software: The case of the Bechar's city. Journal of Water and Land Development. No. 42 (VII–IX) p. 21–32. DOI 10.2478/jwld-2019-0041.
BIEDA A., BYDŁOSZ J., WARCHOŁ A., BALAWEJDER M. 2020. Historical underground structures as 3D cadastral objects. Remote Sensing. Vol. 12. Iss. 10, 1547 p. 1–29. DOI 10.3390/rs12101547.
BRIGANTE R., RADICIONINI F. 2014. Use of multispectral sensors with high spatial resolution for territorial and environmental analysis. Geographia Technica. Vol. 9. No. 2 p. 9–20.
CAPOLUPO A., MONTERISI C., TARANTINO E. 2020. Landsat Images Classification Algorithm (LICA) to automatically extract land cover information in Google Earth engine environment. Remote Sensing. Vol. 12. Iss. 7, 1201. DOI 10.3390/ rs12071201.
CHEN Z., NING X., ZHANG J. 2012. Urban land cover classification based on WorldView-2 image data. In: International Symposium on Geomatics for Integrated Water Resource Management. IEEE p. 1–5.
DINKA M.O., CHAKA D.D. 2019. Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of Water Land Development. No. 41 p. 146–153. DOI 10.2478/jwld-2019-0025.
GINIYATULLINA O.L., POTAPOV V.P., SCHACTLIVTCEV E.L. 2014 Integral methods of environmental assessment at mining regions based on remote sensing data. International Journal of Engineering and Innovative Technology (IJEIT). Vol. 4. Iss. 4 p. 220–224.
Impactmin 2010. WP4-Satelite remote sensing deliverable D4. 1 Report on the limitations and potentials of satelite EO data [online]. Contract No. 244166. Impact Monitoring of Mineral Resources Exploitation pp. 143. [Access 08.05.2020]. Available at: https://impactmin.geonardo.com/downloads/impactmin_d41.pdf
MACHAULT V., VIGNOLLES C., BORCHI F., VOUNATSOU P., BRIOLANT S., LACAUX J.P., ROGIER C. 2011. The use of remotely sensed environmental data in the study of malaria. Geospatial Health. Vol. 5. No. 2 p. 151–168. DOI 10.1117/12.974539.
NAVULUR K. 2006. Multispectral image analysis using the object-oriented paradigm. UK CRC Press. ISBN 987-1-4200-4306-8 pp. 204.
NAVULUR K., PACIFICI F., BAUGH B. 2013. Trends in optical commercial remote sensing industry [Industrial profiles]. IEEE Geoscience and Remote Sensing Magazine. Vol. 1. Iss. 4 p. 57–64. DOI 10.1109/MGRS.2013.2290098.
RAMOELO A., CHO M. 2014. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data. In: 10th International Conference on African Association of Remote Sensing of Environment (AARSE). University of Johannesburg p. 27–31.
RONCZYK M., WOJTASZEK-LEVENTE H. 2012. Object-based classification of urban land cover extraction using high spatial resolution imagery. In: The impact of urbanization, industrial, agricultural and forest technologies on the natural environment. Eds. M. Neményi, B. Heil. Sopron. Nyugat-magya¬rországi Egyetem p. 171–181.
TOGAEV I., NURKHODJAEV A., AKMALOV SH. 2020. Structurally decryptable complexes-a new taxonomic unit in cosmo-geological research. In: E3S Web of Conferences. EDP Sciences. Vol. 164 p. 07027. DOI 10.1051/e3sconf/2020164 07027
TUKHLIEV N., KREMENSOVA А. 2007. O’zbekiston milliy ensiklopediyasi [National encyclopedy of Uzbekistan]. State Scientific Publishing. Tashkent. Uzbekistan p. 560.
Uzkommunkhizmat 2010. Water supply of Syr Darya province. World Bank Project [online]. Uzbekistan, Tashkent Agency «Uzkommunservice» pp. 152. [Access 12.02.2020]. Available at: http://documents1.worldbank.org/curated/pt/198941468127470671/pdf/E23850P11176001C10EIA71Report1Final.pdf
XU D., GUO X., LI Z., YANG X., YIN X. 2014. Measuring the dead component of mixed grassland with Landsat Imagery. Remote Sensing of Environment. Vol. 142 p. 33–43. DOI 10.1016.j.rse.2013.11.017.

Go to article

Authors and Affiliations

Aybek M. Arifjanov
1
ORCID: ORCID
Shamshodbek B. Akmalov
1
ORCID: ORCID
Luqmon N. Samiev
1
ORCID: ORCID

  1. Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39 Kari Niyazov Str. Tashkent 100000, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

As part of the study, world fuel and energy were analysed. A model for the development of state tax audit in the framework of innovative economic development is proposed. As a methodological base, general scientific research methods were used, first of all, systems and integrated analysis methods to substantiate the essence of the state tax audit, to develop approaches to the analysis of its results, and also to determine development trends. The importance of modernizing the system based on the identified relationship between the level of innovative development and the volume of tax revenues is substantiated. The developed model is based on the assumption that the tax gap will be minimized by encouraging tax-payers to voluntarily fulfil their tax obligations. The necessity of creating a supranational body of state audit within the framework of integration processes is substantiated. The prospects for the development of Supreme Audit Institutions (SAIs) in the context of globalization have been outlined, including the creation of territorial standards for a state audit of the Eurasian Economic Union (EAEU) countries.
Go to article

Bibliography

AKHMADEEV R.G., MOROZOVA T.V., VORONKOVA O., SITNOV A.A. 2019. Targets determination model for VAT risks mit-igation at B2B marketplaces. Entrepreneurship and Sustainability Issues. Vol. 7(2) p. 1197–1216. DOI 10.9770/jesi 2019.7.2(28).
AKHMETSHIN E.M., PLASKOVA N.S., IUSUPOVA I.I., PRODANOVA N.A., LEONTYEV A.N., VASILEV V.L. 2019. Dataset for determining rational taxation value with incompatible criteria of economic efficiency and equity. Data in Brief. Vol. 26, 104532. DOI 10.1016/j.dib.2019.104532.
ALLEN D.W., BERG C., LANE A.M., POTTS J. 2018. Cryptodemocracy and its institutional possibilities. The Review of Austrian Economics. Vol. 33 p. 363–374. DOI 10.1007/ s11138-018-0423-6
BEKKERS V., TUMMERS L. 2018. Innovation in the public sector: Towards an open and collaborative approach. International Review of Administrative Sciences. Vol. 84 (2) p. 209–213. DOI 10.1177/0020852318761797.
BROWN A., FISHENDEN J., THOMPSON M., VENTERS W. 2017. Appraising the impact and role of platform models and Government as a Platform (GaaP) in UK Government public service reform: Towards a Platform Assessment Framework (PAF). Government Information Quarterly. Vol. 34 (2) p. 167–182. DOI 10.1016/j.giq.2017.03.003.
CARTON F., BREZILLON P., FELLER J. 2016. Digital selves and decision-making contexts: towards a research agenda. Journal of Decision Systems. Vol. 25. Supl. 1 p. 96–105. DOI 10.1080/12460125.2016.1187416.
Deloitte 2017. Artificial intelligence enterning the world of tax [online]. Partner, Tax & Legal Deloitte. [Access 15.03.2020]. Available at: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Tax/dttl-tax-artificial-intelligence-in-tax.pdf
DUTTA S., LANVIN B., WUNSCH-VINCENT S. (eds.) 2019. Global innovation index 2019. Creating healthy lives – The future of medical innovation [online]. Ithaca, Fontainebleau, and Geneva. Cornell University, INSEAD, World Intellectual Property Organization. [Access 15.03.2020]. Available at: https://www.wipo.int/edocs/pubdocs/en/wipo_pub_gii_2019.pdf
DUTTON W.H., REISDORF B., DUBOIS E., BLANK G. 2017. Social shaping of the politics of internet search and networking: moving beyond filter bubbles, echo chambers, and fake news. Quello Center Working Paper. No. 2944191 p. 1–26. DOI 10.2139/ssrn.2944191.
HALE S.A., JOHN P., MARGETTS H., YASSERI T. 2018. How digital design shapes political participation: A natural experiment with social information. PloS One. Vol. 13(4), e0196068. DOI 10.1371/journal.pone.0196068.
KORABLEVA O.N., MITYAKOVA V.N., KALIMULLINA O.V. (2020). Designing a decision support system for predicting innovation activity. ICEIS 2020 – Proceedings of the 22nd International Conference on Enterprise Information Systems. Vol. 1 p. 619–625. DOI 10.5220/0009565706190625.
KORSAKOVA T.V., TIKHONOVSKOVA S.A., BAT N.M., SAENKO N.R., IGNATYEVA O.V., RIZVANOVA M.A. 2017. Career management of personnel in commercial enterprise. International Journal of Applied Business and Economic Research. Vol. 15 (11) p. 155–164.
KOSOV M.E., AKHMADEEV R.G., OSIPOV V.S., KHARAKOZ Y.K., SMOTRITSKAYA I. 2016. Socio-economic planning of the economy. Indian Journal of Science and Technology. Vol. 9(36), 102008. DOI 10.17485/ijst/2016/v9i36/102008.
LEHOUX L., DUCK H., AKHMADEEV R., MOROZOVA T., BYKANOVA O. 2019. Sustainable development facets: Taxation solutions for the energy industry. Journal of Security & Sustainability Issues. Vol. 9(2) p. 457–472. DOI 10.9770/jssi. 2019.9.2(8).
MAGELSSEN C., SANCHEZ F., DAMANPOUR F. 2015. Learning from outsourcing: the effects of outsourcing strategy on organizational efficiency. Academy of Management Proceedings. Vol. 1 p. 17468. DOI 10.5465/ambpp.2015.262.
MARMILOVA E., KASHIRSKAYA L., KUBENKA M., TURGAEVA A., ZURNADZHYANTS YU., PRODANOVA N. 2020. Methods for conducting an audit of the effectiveness of internal control. Journal of Security and Sustainability Issues. Vol. 9(M) p. 433–450. DOI 10.9770/jssi.2020.9.M(33).
MOROZOVA T., AKHMADEEV R.G., LEHOUX L., YUMASHEV A.V., MESHKOVA G.V., LUKYANOVA M.N. 2020. Crypto asset assessment models in financial reporting content typologies. Entrepreneurship and Sustainability Issues. Vol. 7(3) p. 2196–2212. DOI 10.9770/jesi.2020.7.3(49).
PANFILOVA E., DZENZELIUK N., DOMNINA O., MORGUNOVA N., ZATSARINNAYA E. 2020. The impact of cost allocation on key decisions of supply chain participants. International Journal of Supply Chain Management. Vol. 9 (1) p. 552–558.
PETRENKO Y., VECHKINZOVA E., ANTONOV V. 2019. Transition from the industrial clusters to the smart specialization: A case study. Insights into Regional Development. Vol. 1(2) p. 118–128. DOI 10.9770/ird.2019.1.2(3).
PINGALE S., ADAMOWSKI J., JAT M., KHARE D. 2015. Implications of spatial scale on climate change assessments. Journal of Water and Land Development. No. 26(1) p. 37–55. DOI 10.1515/jwld-2015-0015.
POLLITT C. 2013. 40 years of public management reform in UK central government–promises, promises... Policy and Politics. Vol. 41 (4) p. 465–480. DOI 10.1332/030557312X655710.
PRODANOVA N., SAVINA N., KEVORKOVA Z., KORSHUNOVA L., BOCHKAREVA N. 2019. Organizational and methodological support of corporate self-assessment procedure as a basis for sustainable business development. Entrepreneurship and Sustainability Issues. Vol. 7(2) p. 1136–1148. DOI 10.9770/jesi. 2019.7.2(24).
PURYAEV A. 2020. About the essence of categories “Efficiency” and “Efficiency of the Investment Project” . Proceeding of the International Science and Technology Conference “FarEastСon 2019”. Springer p. 643–651. DOI 10.1007/978-981-15-2244-4_60.
PURYAEV A., PURYAEV A. 2020. Evaluating the effectiveness of projects of global and national economic significance level. Proceeding of the International Science and Technology Conference “FarEastСon 2019”. Springer p. 317–331. DOI 10.1007/978-981-15-2244-4_29.
RUSAW A.C. 2007. Changing public organizations: Four approaches. International Journal of Public Administration. Vol. 30(3) p. 347–361. DOI 10.1080/01900690601117853.
VERTAKOVA Y., MKRTCHYAN V., LEONTYEV E. 2019. Information provision of decision support systems in conditions of structural changes and digitalization of the economy. Journal of Applied Engineering Science. Vol. 17(1) p. 74–80. DOI 10.5937/jaes16-18131.
VLASOV A.I., JURAVLEVA L.V., SHAKHNOV V.A. 2019. Visual environment of cognitive graphics for end-to-end engineering project-based education. Journal of Applied Engineering Science. Vol. 17(1) p. 99–106. DOI 10.5937/jaes17-20262.
ZEIBOTE Z., VOLKOVA T., TODOROV K. 2019. The impact of globalization on regional development and competitiveness: cases of selected regions. Entrepreneurship and Sustainability Center. Vol. 1(1) p. 33–47. DOI 10.9770/ird.2019.1.1(3)

Go to article

Authors and Affiliations

Lyazzat Sembiyeva
1 2
ORCID: ORCID
Madina Serikova
2
ORCID: ORCID
Katira Satymbekova
3
ORCID: ORCID
Zhanat Tulegenova
4
ORCID: ORCID
Begzat Nurmaganbetova
5
Aida Zhagyparova
2

  1. South Ural State University, prosp. Lenina, 76, Chelyabinsk 454080, Russia
  2. L.N. Gumilyov Eurasian National University, Nur-Sultan (Astana), Kazakhstan
  3. M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
  4. Turan-Astana University, Nur-Sultan (Astana), Kazakhstan
  5. Korkyt Ata Kyzylorda State University, Kyzylorda, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the actual scientific and practical problem of improving methodological and methodical ap-proaches to the evaluation of design solutions in the water management and land reclamation industry based on the ecolog-ical and economic principles in conditions of uncertainty. The current stage of the development of the water management sector in Ukraine is characterized by a combination of past negligence and the present energy, food and water crises, as well as global climate change. To solve these problems, it is necessary to reform organizational-economic relations in the industry, including new sources and forms of financing for water management and land reclamation projects, introduction of new environmentally advanced technologies, and the im-provement of the existing ecological and economic evaluation of investments. Based on scientific and methodological recommendations used for evaluating the effectiveness of investment in vari-ous spheres of economic activity, the authors developed and implemented an improved methodology for the evaluation of water management and land reclamation projects. It is based on methodological approaches that cover such elements as the variety of options, changes in the value of money over time, specific project implementation environment, including the impact of weather, climate and environmental factors on project performance, multilevel and gradual evaluation of a pro-ject against specific criteria and according to stages of the project cycle. The method was tested during the reconstruction of a rice irrigation system in the steppe zone of about 3000 ha in Ukraine. Economic results, namely the deterministic payback period and investment return index confirm that the proposed mechanism, unlike the traditional one, increases the economic and environmental feasibility of water management and land reclamation projects. Therefore, it stimulates investment in the land reclamation sector.
Go to article

Bibliography

ARMEANU D., LACHE L. 2009. The NPV criterion for valuing investments under uncertainty. economic computation and economic cybernetics studies and research. Academy of Economic Studies. No. 4. Iss. 4 p. 133–143.
BIERMAN H. Jr., SMIDT S. 2006. The capital budgeting decision, ninth edition: economic analysis of investment projects. 9th ed. New York. Routledge. ISBN 9780415400046 pp. 424.
CHEN J. 2006. An analytical theory of project investment: A comparison with real option theory. International Journal of Managerial Finance. Vol. 2. No. 4 p. 354–363. DOI 10.1108/17439130610705535.
FROLENKOVA N., KOZHUSHKO L., ROKOCHINSKIY A. 2007. Ekoloho-ekonomichne otsinyuvannya v upravlinni melioratyvnymy proektamy: Monografіya [Ecological and economic assessment in the management of reclamation projects: Monograph]. Rivne. NUVGP. ISBN 966-327-049-7 pp. 258.
FROLENKOVA N., ROKOCHINSKIY F. 2015. The evaluation of environmental risks in the sphere of water and land reclamation [online]. Oxford Journal of Scientific Research. No. 1(9). Vol. III p. 155–160. [Access 15.06.2019]. Available at: https://core.ac.uk/download/pdf/33693269.pdf#page=155
FROLENKOVA N., ROKOCHINSKIY A., VOLK P., SHATKOVSKYІ A., PRYKHODKO N., TYKHENKO R., OPENKO I. 2020. Cost-effectiveness of investments in drip irrigation projects in Ukraine. International Journal of Green Economics (IJGE). Vol. 14. No. 4 p. 315–326. DOI 10.1504/IJGE.2020.112570.
HAKA S.F. 2006. A review of the literature on capital budgeting and investment appraisal: past, present, and future musings. Handbooks of Management Accounting Research. Vol. 2 p. 697–728. DOI 10.1016/S1751-3243(06)02010-4.
KOVALENKO P., ROKOCHINSKIY A., JEZNACH J., KOPTYUK R., VOLK P., PRYKHODKO N., TYKHENKO R. 2019. Evaluation of climate change in Ukrainian part of Polissia region and ways of adaptation to it. Journal of Water and Land Development. No. 41 (IV–VI) p. 77–82. DOI 10.2478/jwld-2019-0030.
KWAK Y.H., WILLIAM I.C. 2000. Calculating project management's return on investment. Project Management Journal. Vol. 31. Iss. 2 p. 38–47. DOI 10.1177/87569728000 3100205.
MARTYN A., OPENKO I., IEVSIUKOV T., SHEVCHENKO O., RIPENKO A. 2019. Accuracy of geodetic surveys in cadastral registration of real estate: value of land as determining factor. Proceedings of the 18th International Scientific Conference on Engineering for Rural Development. 22–24.05.2019 Jelgava, Latvia p. 1818–1825. DOI 10.22616/ERDev2019.18.N236.
MARTYN A., SHEVCHENKO O., TYKHENKO R., OPENKO I., ZHUK O., KRASNOLUTSKY О. 2020. Indirect corporate agricultural land use in Ukraine: distribution, causes, consequences. International Journal of Business and Globalisation. Vol. 25. No. 3 p. 378–395. DOI 10.1504/IJBG.2020.109029.
MAZHAYSKIY Y., ROKOCHINSKIY A., VOLCHEK A., MESHYK O., JEZNACH J. (ed.) 2017. Pryrodoobustroistvo Polesia [Environmental management of Polissya]. Kn. 2. Vyp. 1. Ryazan. VNIIGiM of A. Kostiakov. ISBN 978-5-00077654-4 pp. 902.
MOHAMED S., MCCOWAN A.K. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management. Vol. 19. Iss. 4 p. 231–241. DOI 10.1016/S0263-7863(99)00077-0.
NOWAK M. 2005. Investment projects evaluation by simulation and multiple criteria decision aiding procedure. Journal of Civil Engineering and Management. Vol. 11. Iss. 3 p. 193–202. DOI 10.1080/13923730.2005.9636350.
OPENKO I., SHEVCHENKO O., ZHUK О., KRYVOVIAZ Y., TYKHENKO R. 2017. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. International Journal of Green Economics (IJGE). Vol. 11. No. 2 p. 139–153. DOI 10.1504/IJGE.2017.089015.
OPENKO I., KOSTYUCHENKO Y., TYKHENKO R., SHEVCHENKO O., TSVYAKH O., IEVSIUKOV T., DEINEHA M. 2020. Mathematical modelling of postindustrial land use value in the big cities in Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol. 5. No. 2 p. 260–271. DOI 10.33889/IJMEMS.2020.5.2.021.
ROKOCHINSKIY A. 2010. Naukovі ta praktichnі aspekti optimіzacії vodoregulyuvannya osushuvanikh zemel' na ekologoekonomіchnikh zasadakh: Monografіya [The scientific and practical aspects optimization of water regulation drained lands on environmental and economic grounds. Monograph]. Rivne. NUVGP. ISBN 978-966327-141-5 pp. 352.
ROKOCHINSKIY A., BILOKON W., FROLENKOVA N., PRYKHODKO N., VOLK P., TYKHENKO R., OPENKO I. 2020. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. Journal of Water and Land Development. No. 45 (IV–VI) p. 119–125. DOI 10.24425/jwld.2020.133053.
ROKOCHINSKIY A., JEZNACH J., VOLK P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2018. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review – Engineering and Environmental Sciences. Vol. 28. Iss. 3 p. 432–443. DOI 10.22630/PNIKS.2019.28.3.40.
ROKOCHINSKIY A., VOLK P., PINCHUK O., MENDUS S., KOPTYUK R. 2017. Comparative evaluation of various approaches to the foundation of parameters of agricultural drainage. Journal of Water and Land Development. No. 34 p. 215–220. DOI 10.1515/jwld-2017-0056.
ROKOCHINSKIY A., VOLK P., PINCHUK O., TURCHENIUK V., FROLENKOVA N., GERASIMOV IE. 2019. Forecasted estimation of the efficiency of agricultural drainage on drained lands. Journal of Water and Land Development. No. 40 (I–III) p. 149–153. DOI 10.2478/jwld-2019-0016.
TEICHROEW D., ROBICHEK A., MONTALBANO M. 1965. An analysis of criteria for investment and financing decisions under certaint. Management Science. Vol. 12. Iss. 3. DOI 10.1287/ mnsc.12.3.151. SHEVCHENKO О., OPENKO I., ZHUK О., KRYVOVIAZ Y., TYKHENKO R. 2017. Economic assessment of land degradation and its impact on the value of land resources in Ukraine [online]. International Journal of Economic Research (IJER). Vol. 14. No. 15. P. 4 p. 93–100. [Access 15.06.2019]. Available at: https://serialsjournals.com/abstract/34405_ch_11_f_-_ivan_openko.pdf
SUDONG YE., TIONG R.L.K. 2000. NPV-at-Risk method in infrastructure project investment evaluation. Journal of Construction Engineering and Management. Vol. 126. Iss. 3. DOI 10.1061/(ASCE)0733-9364(2000)126:3(227).
WANG L., XU N., XU N., SONG Y., WANG Y., SONG S. 2019. Research on investment decision of substation project based on life cycle cost. IOP Conference Series: Earth and Environmental Science. Vol. 242. Iss. 2. DOI 10.1088/1755-1315/ 242/2/022016.

Go to article

Authors and Affiliations

Pyotr Kovalenko
1
ORCID: ORCID
Anatoliy Rokochinskiy
2
ORCID: ORCID
Pavlo Volk
2
ORCID: ORCID
Vasyl Turcheniuk
2
ORCID: ORCID
Nadia Frolenkova
2
ORCID: ORCID
Ruslan Tykhenko
3
ORCID: ORCID

  1. Institute of Water Problems and Land Reclamation of NAAS of Ukraine, Chapaeva Str., 14, fl. 6, 01030, Kyiv, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The Bay of Cartagena (Colombia) is a site of commercial interest owing to its privileged location for maritime opera-tions; however, the discharge of wastewaters from industrial activities and domestic sewage are affecting the water quality, and consequently, the biodiversity of coastal ecosystems. The polycyclic aromatic hydrocarbons (PAHs) are found in sedi-ments and water of main ports, causing severe damage to the ecosystem. Thus, alternatives for the treatment of the Bay of Cartagena’s water and sediments are needed. In this paper, we performed the exergetic analysis of removing PAHs from water and sediments in the Bay of Cartagena using an adsorption-based treatment process with chitosan microbeads and magnetic nanoparticles (CM-TiO2/Fe3O4). The outcomes of exergy of utilities, irreversibilities and exergy losses were calculated us-ing process data and exergy of substances. The Aspen plus V10 software provided the physical exergies, while chemical exergies were gathered from the literature. Overall exergy efficiency of 0.3% was determined for the seawater and sediment treatment facility. A sensitivity analysis was performed to identify the impact and viability of different design alternatives.
Go to article

Bibliography

BOBBO S., FEDELE L., CURCIO M., BET A., DE CARLI M., EMMI G., POLETTO F., TARABOTTI A., MENDRINOS D., MEZZASALMA G., BERNARDI A. 2019. Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies. Vol. 12(18), 3538. DOI 10.3390/en12183538.
Caracol Radio 2019. Ordenan medidas para frenar contaminación en La Bahía de Cartagena [Measures are needed to stop pollution in the Bay of Cartagena] [online]. [Access 03/04/2020]. Available at: https://caracol.com.co/emisora/2019/09/02/cartagena/1567458652_644521.html.
El Tiempo 2018. La Bahía de Cartagena, un coctel tóxico [Cartagena Bay, a toxic cocktail] [online]. [Access 03.05.2020]. Available at: https://www.eltiempo.com/vida/medio-ambiente/la-bahia-de-cartagena-un-coctel-toxico-segun-estudio-298222
FLORES-CHAPARRO C.E., RODRIGUEZ-HERNANDEZ M.C., CHAZA¬RO-RUIZ L.F., ALFARO-DE LA TORRE M., HUERTA-DIAZ M.A, RANGEL-MENDEZ J.R. 2018. Chitosan-macroalgae biocompo¬sites as potential adsorbents of water- soluble hydrocarbons: Organic matter and ionic strength effects. Journal of Cleaner Production. Vol. 197 p. 633–642. DOI 10.1016/j.jclepro. 2018.06.200.
GARCÍA-PADILLA Á., MORENO-SADER K., REALPE A., ACEVEDO-MORANTES M., SOARES J.B.P. 2020. Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy. Vol. 17, 100292. DOI 10.1016/j.scp.2020.100292.
GU F., GENG J., LI M., CHANG J., CUI Y. 2019. Synthesis of chitosan-ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega. Vol. 4 No. 25 p. 21421–21430. DOI 10.1021/acsomega.9b03128.
HUANG Y., FULTON A.N., KELLER A.A. 2016. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment. Vol. 571 p. 1029–1036. DOI 10.1016/j.scitotenv.2016.07.093.
HUMEL S., SCHRITTER J, SUMETZBERGER-HASINGER M., OTTNER F., MAYER P., LOIBNER A.P. 2020. Atmospheric carbonation reduces bioaccessibility of PAHs in industrially contaminated soil. Journal of Hazardous Materials. Vol. 383, 121092. DOI 10.1016/j.jhazmat.2019.121092.
JOHNSON-RESTREPO B., OLIVERO-VERBEL J., LU S., GUETTE-FERNÁNDEZ J., BALDIRIS-AVILA R., O’BYRNE-HOYOS I., ALDOUS K.M., ADDINK R., KANNAN K. 2008. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environment International. Vol. 151 p. 452–459. DOI 10.1016/j.envpol.2007.04.011.
MARTINEZ D., PUERTA A., MESTRE R., PERALTA-RUIZ Y., GONZALEZ-DELGADO A. 2020. Exergy-based evaluation of crude palm oil production in North-Colombia. Australian Journal of Basic and Applied Sciences. Vol. 10(18) p. 82–88.
MERAMO-HURTADO S., ALARCÓN-SUESCA C., GONZÁLEZ-DEL¬GADO A.D. 2019a. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. Journal of Cleaner Production. Vol. I248, 119285. DOI 10.1016/j.jclepro.2019.119285.
MERAMO-HURTADO S., MORENO-SADER K., GONZÁLEZ-DELGADO Á.D. 2019b. Computer-aided simulation and exergy analysis of TiO2 nanoparticles production via green chemistry. PeerJ. Vol. 7, e8113 p. 1–19. DOI 10.7717/peerj.8113
MERAMO-HURTADO S.I., MORENO-SADER K.A., GONZALEZ-DELGADO A.D. 2020. Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. ACS Omega. Vol. 5. No. 21 p. 12126–12135. DOI 10.1021/acsomega.0c00394.
MERAMO-HURTADO S., PATINO-RUIZ D., COGOLLO-HERRERA K., HERRERA A., GONZALEZ-DELGADO A. 2018. Physico-chemical characterization of superficial water and sediments from Cartagena Bay. Contemporary Engineering Sciences. Vol. 11. No.32 p. 1571–1578. DOI 10.12988/ces.2018.8273.
MORENO-SADER K., MERAMO-HURTADO S.I., GONZÁLEZ-DELGADO A.D. 2019. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renewable and Sustainable Energy Reviews. Vol. 112 p. 42–57. DOI 10.1016/j.rser.2019.05.044.
OLIVA A.L., QUINTAS P.Y., RONDA A.C., MARCOVECCHIO J.E., ARIAS A.H. 2020. First evidence of polycyclic aromatic hydrocarbons in sediments from a marine protected area within Argentinean continental shelf. Marine Pollution Bulletin. Vol. 158, 111385. DOI 10.1016/j.marpolbul.2020.111385.
PITAKPOOLSIL W., HUNSOM M. 2014. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: Parameter optimization and process kinetics. Journal of Environmental Management. Vol. 133 p. 284–292. DOI 10.1016/j.jenvman.2013.12.019.
QIAO Y., LYU G., SONG CH., LIANG X., ZHANG H., DONG D. 2019. Optimization of programmed temperature vaporization injection for determination of polycyclic aromatic hydro¬carbons from diesel combustion process. Energies. 12(24), 4791. DOI 10.3390/en12244791.
RESTREPO J.D. 2018. Arrastrando La Montaña Hacia El Mar: Hacia dónde van nuestros océanos [Dragging the mountain to the sea: Where our oceans go]. Cartagena. Agenda del Mar Comunicaciones. ISBN 978-958-57860-8-0 pp. 96.
SAINI J., GARG V.K., GUPTA R.K. 2020. Green synthesized SiO2 @ OPW nanocomposites for enhanced lead (II) removal from water. Arabian Journal of Chemistry. Vol. 13. No. 1 p. 2496–2507. DOI 10.1016/j.arabjc.2018.06.003.
TOUS HERAZO G., MAYO MANCEBO G., RIVERO HERNÁNDEZ J., LLAMAS CONTERAS H. 2015. Evaluación temporal de los niveles de los hidrocarburos aromáticos policíclicos en los sedimentos de La Bahía de Cartagena [Temporal evaluation of the levels of polycyclic aromatic hydrocarbons in the sediments of Cartagena Bay]. Derrotero. Revista de la Ciencia y la Investigación. Vol. 9. No. 9 p. 7–12.

Go to article

Authors and Affiliations

Maileth Cantillo-Figueroa
1
ORCID: ORCID
Kariana A. Moreno-Sader
1
ORCID: ORCID
Angel D. Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Ave. del Consulado #Calle 30 No. 48 152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Water quality is an environmental priority for irrigation in rainfed agriculture. Recently, water quality has been affect-ed by the uncontrolled disposal of wastewater, the use of chemical fertilizers in agriculture and, most significantly, by the excessive exploitation of water resources during the low season. The basin of the Maffragh in the Algerian north-east real is fed by two main rivers: Wadi El Kebir East and Bounnamoussa. From its source, the stream is continually contaminated with domestic and agricultural discharges through the tributaries causing a significant deterioration in water quality. In or-der to know the current state of water quality in the Maffragh basin and to determine its suitability for irrigation without any prior treatment, research has been conducted in the two streams at representative sampling points in catchment areas used for irrigating crops. To assess the quality of water and detectable compounds monitoring, laboratory methods are used. The various volumetric and colorimetric assays were carried out according to Jean Rodier. Organic parameters such as ni-trites, ammonium and phosphates, were measured using a UV/VIS 6705 JENWAY spectrophotometer, at wavelengths of 543 nm, 630 nm and 880 nm respectively for nitrites, ammonium and phosphates. The BOD5 and COD parameter was measured using a DIN EN 1899-1-H51 spectrophotometer and DIN ISO15705: 2002 spectrophotometer. The performed analyses on conductivity shows oscillating values ranging between 425 and 495 μS∙cm–1 for January 2018, while for the low water level of July 2018 the conductivity varies between 433 and 796 μS∙cm–1; this parameter is determinant for water quality assessment and its use for irrigation. Beside the conductivity test, the Riverside–Wilcox diagram was applied, to combine conductivity and sodium absorption rate (SAR). The obtained results of the two seasons show satisfactory results in the applicability of the water to irrigate in the basin.
Go to article

Bibliography

AL-OTHMAN A.A. 2019. Evaluation of the suitability of surface water from Riyadh Mainstream Saudi Arabia for a variety of uses. Arabian Journal of Chemistry. Vol. 12(8) p. 2104–2110. DOI 10.1016/j.arabjc.2015.01.001.
ASHRAF M.A., MAAH J., YUSOFF I. 2010. Water quality characterization of Varsity Lake. E-Journal of Chemistry. Vol. 7. Art. ID 396215. DOI 10.1155/2010/396215.
BARNETT M.J., JACKSON-SMITH D., HAEFFNER M. 2018. Influence of recreational activity on water quality perceptions and concerns in Utah: A replicated analysis. Journal of Outdoor Recreation and Tourism. Vol. 22 p. 26–36. DOI 10.1016/ j.jort.2017.12.003.
DERRADJI F., BOUSNOUBRA H., KHERICI N., ROMEO M., CARUBA R. 2007. Impact de la pollution organique sur la qualité des eaux superficielles dans le Nord-Est algerien [Impact of organic pollution on surface water quality in Algerian north-east]. Secheresse. No. 18 p. 7–23. DOI 10.1684/sec.2007.0065.
DERRADJI F., KHERICI N., ROMEO M., CARUBA R. 2004. Aptitude des eaux de la vallée de la Seybouse à l’irrigation (Nord-est algérien) [Aptitude of the Seybouse River valley waters to irrigation (North-East Algeria)]. Sécheresse. No. 15 p. 353–360.
KHERICI N., KHERICI H., ZOUINI D. 1996. La vulnérabilité à la pollution des eaux de la plaine d’Annaba La Mafragh (Nord-Est algerien) [Vulnerability of Annaba plain – Mafragh (northeast Algeria) to water pollution]. Hydrogeologia. Vol. 12(3) p. 5–48.
LEKOUI S., DJORFI S., FOUFOU A., BOUZNAD I.E. 2019. The impact of irrigation water returns on the water quality of Annaba El Tarf aquifers (Northeastern Algeria). Journal of Biodiversity and Environmental Sciences. Vol. 14(6) p. 290–298.
MCKINNEY M.L. 2002. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Biosciences. Vol. 52. Iss. 10 p. 883–890. DOI 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2.
MULLISS R.M., REVITT D.M., SHUTES R.B.E. 1997. The impacts of discharges from two-combined sewer over flows on the water quality of an urban watercourse. Water Science and Technology. Vol. 36. Iss. 8–9 p. 195–199. DOI 10.1016/ S0273-1223(97)00599-4.
NAJAH A.A., EL-SHAFIE A., KARIM,O.A., JAAFAR O. 2009. Prediction of Johor River water quality parameters using artificial neural networks. European Journal of Scientific Research. Vol. 28. No. 3 p. 422–435.
PEÑA-HARO S., LLOPIS-ALBERT C., PULIDO-VELAZQUEZ M., PULIDO-VELAZQUEZ D. 2010. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study Spain. Journal of Hydrology. Vol. 392(3–4) p. 174–187. DOI 10.1016/j.jhydrol.2010.08.006.
RICHARDS L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. 1st ed. Washington D.C. USDA pp. 160.
RODIER J. 2005. L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer [Water analysis: Natural resources, wastewater, seawater]. 8th ed. Paris, France. Dunod. ISBN 2100496360 pp. 1578.
TAGMA T., HSISSOU Y., BOUCHAOU L., BOURAGBA L., BOUTALEB S. 2009. Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco). African Journal Environmental Science and Technology. Vol. 3(10) p. 301–309. DOI 10.5897/ AJEST09.076
THIOULOUSE J., CHESSEL D., DOLE´DEC S., OLIVIER J.M. 1997. ADE-4: A multivariate analysis and graphical display software. Statistics and Computing Journal. Vol. 7 p. 75–83. DOI 10.1023/A:1018513530268.
WILCOX L.V. 1948. The quality of water for agricultural use. 1st ed. Washington D.C., USA. US Dept. Agriculture Technical Bulletin. Vol. 962 pp. 40.
ZOUINI D. 1997. Ressources en eau de surface pour l’aménagement hydraulique dans le bassin de l’Oued El Kebir (Nord-Est algérien) [Surface water resources for hydraulic development in the Oued El Kebir basin (north-eastern Algeria)]. Sécheresse. No. 8 p. 9–13.


Go to article

Authors and Affiliations

Selwa Boubguira
1
ORCID: ORCID
Derradji Zouini
1
Sayad Lamine
1
Nawel Dali
2

  1. University of Badji Mokhtar, Faculty of Earth Sciences, Geological Research Laboratory (LRG), BP 12 / 23000 Annaba, Algeria
  2. University Abess Laghrour Khenchela, Department of Ecology, Khenchela, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The process of sorption of chromium(III) ions with a stationary sorbent layer of bentonite clays was investigated. The main advantages of using bentonites in water purification technologies are described: powerful geological reserves, cheap process of rock extraction, easy preparation for transportation and use, possibility of using waste sorbents in other technol-ogies that is why there is no need in costly regeneration. The influence of various factors (process duration, an adsorbent layer) on the degree of wastewater purification from chromium ions, the effect of pumping speed on the dynamic capacity of the sorbent was studied and the effective volume was determined. The adsorption efficacy increases with the increase of the adsorbent layer, what can be explained by the development of the active sorption surface. As the initial concentration of chromium ions increases, the time of appearance of the first traces of the contaminant at the exit of the column increases, as well as the total time to channeling. The results of the studies indicate a higher adsorption capacity of modified bentonite with respect to Cr3+ ions compared to its natural formula. The cleaning efficacy of the solution with a concentration of chromium ions of 0.5 g∙dm–3 is increased by 5% when using 15 g of modified bentonite and 6,5% in the case one uses 20 g compared to the natural form.
Go to article

Bibliography

ANNAN E., AGYEI-TUFFOUR B., BENSAH Y.D., KONADU D.S., YAYA A., ONWONA-AGYEMAN B., NYANKSON E. 2018. Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Engineering. Vol. 5 (1) p. 1–35. DOI 10.1080/23311916.2018.1476017.
ILANGO A.K., NATRAYASAMY V. 2018. Hydrothermal fabrication of zirconium oxyhydroxide capped chitosan/kaolin framework for highly selective nitrate and phosphate retention. Industrial & Engineering Chemistry Research. Vol. 57 (43) p. 14470–14481. DOI 10.1021/acs.iecr.8b01859.
KASHIF UDDIN M. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. Vol. 308 p. 438–462. DOI 10.1016/j.cej.2016.09.029.
KOŁODYŃSKA D., GĘCA M., HUBICKI Z. 2017. Zastosowanie sorbentów naturalnych w procesie usuwania jonów metali ciężkich [Use of natural sorbents for removal of heavy metal ions]. Przemysł Chemiczny. T. 96. Nr 5 p. 1139–1145. DOI 10.15199/62.2017.5.33.
KONEFAŁ M., PETRUS R., WARCHOŁ J.K. 2015. Equilibrium study of heavy metals adsorption on kaolin. Industrial and Engineering Chemistry Research. Vol 54, 27 p. 6975–6984. DOI 10.1021/acs.iecr.5b00880.
MALOVANYY M., SAKALOVA H., MALOVANYY M., VASYLINYCH T., PALAMARCHUK O., SEMCHUK J. 2019. Treatment of effluents from ions of heavy metals as display of environmentally responsible activity of modern businessman. Journal of Ecological Engineering. Vol. 4 (20) p. 167–176. DOI 10.12911/ 22998993/102841.
MENG F. YUAN G., WEI J., BI D., WANG H. 2017. Leonardite-derived humic substances are great adsorbents for cadmium. Environmental Science and Pollution Research. Vol. 24 (29) p. 23006–23014. DOI 10.1007/s11356-017-9947-8.
PALAMAR V., MARUKHLENKO M., MOKROUSOVA. O. 2015. Zastosuvannya khrommodyfikovanykh dyspersiy montmorylonitu dlya stabilizatsiyi kolahenovoyi struktury dermy [Chromium-modified montmorillonite dispersions in stabiblizing derma collagen structure]. Eastern-European Journal of Enterprise Technologies. Vol. 6(75) р. 36–41. DOI 10.15587/1729-4061.2015.44238.
PALAMARCHUK O. 2011. Ekolohichna vidpovidal’nist’ yak osnova funktsionuvannya suchasnoho suspil’stva [Environmental responsibility as the basis for the functioning of modern society]. Aktualni problemy psykholohii : zb. nauk. pr. In-tu psykholohii im. H. S. Kostiuka NAPN Ukrainy. Zhytomyr: Vyd-vo ZhDU im. I. Franka. T. 7. Ekolohichna psykholohiia. Vyp. 26 р. 401–411.
PETRUS R., WARCHOŁ J.K. 2005. Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Research. Vol. 39 (5) p. 819–830. DOI 10.1016/ j.watres.2004.12.003.
PETRUSHKA I. YATCHYSHYN YU., PETRUSHKA K. 2014. Intensyfikatsiya sorbtsiyi tseziyu kompleksnymy pryrodnymy sorbentamy z ridkykh radioaktyvnykh seredovyshch [Cesium sorption intensification by complex natural sorbents from liquid radioactive media]. Eastern-European Journal of Enterprise Technologies. Vol. 5. 10(71) p. 47–50. DOI 10.15587/1729-4061.2014.28066.
QIN L. YAN L., CHEN J., LIU T., YU H., DU B. 2016. Enhanced removal of Pb2+, Cu2+, and Cd2+ by amino-functionalized magnetite/kaolin clay. Industrial & Engineering Chemistry Research. Vol. 55 (27) p. 7344–7354. DOI 10.1021/acs.iecr.6b00657.
REPO E. WARCHOL J., BHATNAGAR A., MUDHOO A., SILLANPАА M. 2013. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Research. Vol. 47. Iss. 14 p. 4812–4832 DOI 10.1016/j.watres.2013.06.020
REPO E. PETRUS R., SILLANPАА M., WARCHOL J. 2011. Equili¬brium studies on the adsorption of Co(II) and Ni(II) by modified silica gels: One-component and binary systems. Chemical Engineering Journal. Vol. 172. Iss. 1 p. 376–385. DOI 10.1016/j.cej.2011.06.019
REPO E. WARCHOL J., SILLANPАА M. 2017. Metal recovery and preconcentration by aminopolycarboxylic acid modified silica surfaces. Journal of Sustainable Development of Energy, Water and Environment Systems. Vol. 5. Iss. 1 p. 89–100. DOI 10.13044/j.sdewes.d5.0135.
SABADASH V. GUMNITSKYY JA., MYLIANYK O., ROMANIUK L. 2017. Concurrent sorption of copper and chromium cations by natural zeolite. Environmental Problems. Vol. 2. Iss. 1 p. 159–162.
SAKALOVA Н., VASYLINYCZ T., KOVAL N., KASHCHEI V. 2017. Investigation of the method of chemical desorption for extraction of nikel ions(II) from bentonite clays. Environmental Problems. Vol. 2. Iss. 4 p. 187–190.
SAKALOVA Н., PALAMARCHUK O., VASYLINYCZ T., PETRUSHKA K., ZAHARKO JA., STOKALYUK O. 2019. Socio-psychological essence of attractiveness for the subjects of entrepreneurial activities of adsorption extraction of nickel ions(II) by bentonite clays. Environmental Problems. Vol. 4. Iss. 2 p. 68–74. DOI 10.23939/ep2019.02.068.
SATHVIKA T., MANASI, RAJESH V., RAJESH N. 2015. Prospective application of Aspergillus species immobilized in sodium montmorillonite to remove toxic hexavalent chromium from wastewater. RSC Advances. Vol. 5 (129) p. 107031–107044. DOI 10.1039/C5RA22778J.
VASYLECHKO V., GRYSHCHOUK G., KUZMA YU., ZAKORDONSKIY V., VASYLECHKO L., LEBEDYNETS L., KALYTOVSKA M. 2003. Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite. Microporous and Mesoporous Materials. Vol. 60(1–3) p. 183–196. DOI: 10.1016/s1387-1811(03)00376-7.
WARCHOŁ J., PETRUS R. 2015. Modeling of heavy metal removal dynamics in clinoptilolite packed beds. Microporous and Mesoporous Materials. Vol. 93. Iss. 1–3 p. 29–39. DOI 10.1016/j.micromeso.2006.01.021.
WOŁOWIEC M., BAJDA T. 2017. Current stage of knowledge relating to the use ferruginous sludge from water treatment plants – a preliminary review of the literature. Mineralogia. Vol. 48. Iss. 1–4 p. 39–45. DOI 10.1515/mipo-2017-0010.
YILDIZ S., SEVINС S. 2018. Heavy metal adsorption by dewatered iron-containing waste sludge. Ecological Chemistry and Engineering. Vol. 25. Iss. 3 p. 431–455. DOI 10.1515/eces-2018-0030.

Go to article

Authors and Affiliations

Christina Soloviy
1
ORCID: ORCID
Myroslav Malovanyy
1
ORCID: ORCID
Olga Palamarchuk
2
ORCID: ORCID
Iryna Trach
3
ORCID: ORCID
Halyna Petruk
4
ORCID: ORCID
Halyna Sakalova
4
ORCID: ORCID
Tamara Vasylinych
4
ORCID: ORCID
Nataliya Vronska
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, Lviv, Ukraine
  2. Vinnytsia Mykhajlo Kotsiubynskyi State Pedagogical University, Educational and Scientific Institute of Pedagogy, Psychology, Department of Psychology and Social Work, Vinnitsa, Ukraine
  3. Vinnytsia National Technical University, Institute for Environmental Safety and Environmental Monitoring, Department of Ecology and Environmental Safety, Vinnitsa, Ukraine
  4. Vinnytsia Mykhajlo Kotsiubynskyi State Pedagogical University, Faculty of Natural and Geography, Department of Chemistry, Vinnitsa, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Nigeria has abundant surface and ground water resources many of which are polluted and can be detrimental to human health when consumed. This study investigated the effects of effluents discharged by industries into streams on the health of people who depend on stream water for domestic purposes in the Onitsha urban area of eastern Nigeria. Water samples collected from eleven discharge locations underwent physico-chemical and microbiological analyses. Data on the effects of industrial effluents on health were obtained from records in the public hospitals located in Onitsha as well as through ques-tionnaire surveys and field observations. The results of the analyses revealed that the effluents grossly degrade surface wa-ter bodies; several parameters (temperature, iron, dissolved oxygen, turbidity, biological oxygen demand, chemical oxygen demand, lead, magnesium, total heterotrophic counts, total coliform group, pH) had values which were higher than the WHO (2011) safety limits for drinking water. The contamination of investigated streams by effluents had negative impact on the health of stream users. The discussion included health effects of polluted water and the prevalence of water borne or related diseases in the area. Implications of these findings were also discussed. Management measures capable of minimiz-ing contamination of surface water in the study area were suggested.
Go to article

Bibliography

ABAJE I.B., ATI O.F., ISHAYA S. 2009. Nature of potable water supply and demand in Jema’a local government area of Kaduna State, Nigeria. Research Journal of Environmental and Earth Sciences Vol. 1. Iss. 1 p. 16–21.
APHA 1998. Standard methods for the examination of water and waste water. 20th ed. Washington, D.C. American Public Health Association. ISBN 0875532357 pp. 1325.
ATTOUI B., TOUMI N., MESSOUDI S., BENRABAH S. 2016. Degradation of water quality: The case of plain west of Annaba (northeast Algeria). Journal of Water and Land Development. No. 31 p. 3–10. DOI 10.1515/jwld-2016-0031.
BAGUMA D., HASHIM J. H., ALJUNID S.M., LOISKAND L.W. 2013. Safe-water shortages, gender perspectives, and related challenges in developing countries: The case of Uganda. Science of Total Environment. Vol. 442 p. 96–102. DOI 10.1016/ j.scitotenv.2012.10.004.
BOTKIN D.B., KELLY E.A. 1998. Environmental science. Earth as a living planet. 2nd ed. John Wiley and Sons USA. ISBN 978-0-470-04990-7 pp. 763.
BOUSSAHA S., LAIFA A. 2017. Wadi Bounamoussa’s waters quality in the north-east of Algeria: Statistical treatment of some physical and chemical parameters. Journal of Water and Land Development. Vol. 34 p. 77–83. DOI 10.1515/jwld-2017-0040.
BROOKS G.F., BUTEL J.S., MORSE S.A. 1998. Jawetz, Melnick, and Adelberg’s medical microbiology. Stanford, Connecticut. Appleton and Lange Medical Book. ISBN 0838563163 pp. 752.
BROWN M.J., MARGOLIS S. 2012. Lead in drinking water and human blood lead levels in the United States. Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report (MMWR). Suppl. No. 61(04) pp. 1–9.
CARABALLO H., KING K. 2014. Emergency Department Management of Mosquito-borne Illnesses: Malaria, dengue and West Nile virus. Emergency Medicine Practice. Vol. 16(5) p. 1–23.
EKIYE E., ZEJIAO L. 2010. Water quality monitoring in Nigeria: Case study of Nigeria’s industrial cities. Journal of American Science. Vol. 6. No. 9 p. 22–28.
ILOEJE N.P. 1972. A new geography of West Africa. Harlow, Essex. Longman Group Ltd., Longman House, Burnt Mill. ISBN 0582602823 pp. 172.
INYANG P.E.B. 1975. Climate regions. In: Nigeria in maps. Ed. G.E.K. Ofomata. Benin City. Ethiope Publishing House p. 27–29.
KANU I., ACHI O.K 2011. Industrial effluents and their impact on water quality of receiving rivers. Journal of Applied Technology in Environmental Sanitation. Vol. 1 (1) p. 75–86. KIBRIA G. 2004. Environmental update – dissolved oxygen: The facts. Outlet. Iss. 162 p. 2–4. DOI 10.13140/RG.2.2.24591.28320.
KLAASEN C. (ed.) 2008. Casarett and Doull’s toxicology 2008: The basic science of poison. 7th ed. New York City, NY. McGraw Hill. ISBN 0071470514 pp. 1280.
LONGE E.O., BALOGUN M.R. 2010. Groundwater quality assessment near a municipal landfill, Lagos, Nigeria. Research Journal of Applied Sciences, Engineering and Technology. Vol. 2 p. 39–44.
MOZIE A.T., AYADIUNO R.U. 2008. The role of government in the degradation of the landscape in Onitsha and its environs: Present state and future expectations. Nigerian Journal of Geography and the Environment. Vol. 1 p. 119–127.
NPC 2006. Population census of the Federal Republic of Nigeria [online]. Abuja, Nigeria. National Population Commission 2007. [Access 10.01.2020]. Available at: https://nigeria.opendataforafrica.org/xspplpb/nigeria-census
OBETA M.C. 2019. Private-for-profit rural water supply in Nigeria: Policy constraints and options for improved performance. Journal of Water and Land Development. No. 41 (IV–VI) p. 101–110. DOI 10.2478/JWLD-2019-0033.
OBETA M.C., AJAERO C.K. 2010. The chemical composition of stream waters in Nsukka Region of Eastern Nigeria. In: Rural water supply in Nigeria. Eds. U.M. Igbozuruike, M.A Ijioma, E.C. Onyenechere. Owerri. Cape Pub. Inp. Ltd. p. 136–144.
OBETA M.C., OKAFOR U.P., NWANKWOR C.F. 2019. Influence of discharged industrial effluents on the parameters of surface water in the Onitsha urban area. Journal of Water and Land Development. No. 42 p. 136–142. DOI 10.2478/jwld-2019-0054.
OFOMATA G.E.K. 2002. Missing links in the management of soil erosion problems in Nigeria. In: Geographical perspective on environmental problems and management in Nigeria. Eds. G.E.K. Ofomata, P.O. Phil-Eze. Enugu. Jamoe Enterprises p. 258–283.
PHIRI O., MUMBA P., MOYO B.H.Z., KADEWA W. 2005. Assessment of the impact of the industrial water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science and Technology. Vol. 2. No. 3 p. 237–244.
RIS M.D., DIETRICH K.N., SUCCOP P.A., BERGER O.G, BORNSCHEIN R.L. 2004. Early exposure to lead and neuropsychological outcome in adolescence. Journal of the International Neuropsychological Society. Vol. 10. Iss. 2 p. 261–270. DOI 10.1017/S1355617704102154.
SON 2007. Nigerian standard for drinking water quality. NIS 554 [online]. Abuja, Nigeria. Standard Organization of Nigeria. p. 30. [Access 10.01.2020]. Available at: https://www.health.gov.ng/doc/StandardWaterQuality.pdf
THORNTHWAITE C.W. 1948. An approach toward a rational classification of climate. Vol. 66. No. 1 p. 55–94. DOI 10.2307/210739.
TIWARI S., TRIPATHI I.P., TIWARI H.L. 2013. Effects of lead on environment. International Journal of Emerging Research in Management &Technology. Vol. 2. Iss. 6 p. 1–4.
UCHEGBU S.N. 2002. Environmental management and protection. Enugu. Spotlite Publisher. ISBN 978-37916-5-6 pp. 224.
USEPA 2017. Biological oxygen demand (BOD)/ Chemical oxygen demand (COD), as indicators of organic pollution: Stressors resulting in decreased dissolved oxygen (DO) in surface waters [online]. [Access 10.01.2020]. Available at: https://dec.vermont.gov/sites/dec/files/documents/wsmd_swms_Appendix_B_Pollutants.pdf
WHO 2011. Guidelines for drinking water quality [online]. 4th ed. Health criteria and other supporting information. Vol. 2. Geneva. World Health Organization. ISBN 978-92-4-154815-1 pp. 541. [Access 15.10.2018]. Available at: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1

Go to article

Authors and Affiliations

Uchenna P. Okafor
1
ORCID: ORCID
Michael C. Obeta
1
Romanus U. Ayadiuno
1
Anthony C. Onyekwelu
1
Godson C. Asuoha
1
Eberechukwu J. Eze
1
Chetachi E. Orji-Okafor
2
Emeka E. Igboeli
1

  1. University of Nigeria, Faculty of the Social Sciences, Department of Geography, Nsukka Road, 410001, Nsukka, Nigeria
  2. University of Nigeria, Nursing Services Division, Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

In the initial stage of the growing season, the accumulation of autumn and winter precipitation moisture in poorly draining soil in arid conditions in the Northern region of Kazakhstan was a serious production problem. Research methods included measurements of autumn and winter moisture reserves in poorly draining soil and snow on the backgrounds of ordinary stubble, stubble coulisses and tall stubble left after stripper header (continuous combing) with and without autumn chiselling. The study revealed that the use of the continuous combing and stubble coulisses on poor draining soil: (a) sup-ports reserves of moisture in autumn soil; (b) the lack of chiselling leads to increased water runoff and the formation of li-mans in the fields. The use of stubble coulisses during snowy winters allowed moisture reserves in the snow to be increased in comparison with the stubble background. The use of chiselling on the background of stubble coulisses allowed: (a) to reduce runoff moisture loss in poorly draining soil by 35–50% after snowy winters, by 25–35% after little snowy winters, and prevent the formation of limans in the fields; (b) in comparison with the stubble background to increase the total re-serves of autumn-winter moisture in poorly draining soil by 61–105 mm in favourable years, and by 57 mm in years with the low autumn-winter precipitation. The use of chiselling on a stubble background did not significantly affect the total re-serves of autumn-winter moisture in poorly draining soil.
Go to article

Bibliography

ASTAFYEV L.V., IVANCHENKO G.P., KIRKILEVSKIY V.V. 2019. Assessment of snow accumulation and justification of parameters of stubble coulisses in the arid steppe of Northern Kazakhstan. International Journal of Mechanical Engineering and Technology. Vol. 10(3) p. 1392–1405.
ASTAFYEV V., IVANCHENKO P., KIRKILEVSKIY V. 2017. Effectiveness assessment of methods for moisture accumulation during winter precipitation in the arid steppe of Northern Kazakhstan. Journal of Engineering and Applied Sciences. Vol. 12 (S4) p. 6821–6828. DOI 10.36478/jeasci.2017.6821.6828.
BAISHOLANOV S.S., PAVLOVA V.N., ZHAKIEVA A.R., CHERNOV D.A., GABBASOVA M.S. 2018. Agroklimaticheskiye resursy Severnogo Kazakhstana [Agroclimatic resources of the Northern Kazakhstan]. Gidrometeorologicheskiye issledovaniya i prognozy. Vol. 1(367) p. 168–184.
BAKIROV F.G., PETROVA G.V. 2014. Effektivnost' tekhnologii no-till na chernozemakh yuzhnykh Orenburgskogo Predural'ya [Efficiency of no-till technology on southern chernozyoms of Orenburg Preduralye]. Izvestia Orenburg State Agrarian University. Vol. 1(45). P. 1 p. 23–26.
BARAYEV A.I. 2008. Novoe zemledelye vostochnykh rayonov strany [New agriculture in the eastern regions of the country]. Selected works in 3 volumes. Almaty. P. 1 p. 58–65.
CHEBOCHAKOV E.Y. 2020. Efficiency of the erosion protection methods involving biologizing agriculture in the steppe and forest-steppe areas of cultivated land in Siberia. International Journal of Nutrition and Food Sciences. Vol. 9 (1) p. 6–9.
DOSPEKHOV V.A. 1965. Metodika polevogo opyta [Methodology of field tests]. Moscow, Russia. Kolos pp. 423.
DVURECHENSKY V.I. 1979. Rekomendatsii po sisteme vedeniya sel'skogo khozyaystva Kustanayskoy oblasti [Recommendations on the system of agriculture of the Kustanay region]. Alma-Ata. Kainar pp. 390.
GUTER R.S., OVCHINSKIY V.V. 1970. Elementy chislennogo analiza i matematicheskoy obrabotki rezul'tatov opyta [Elements of numerical analysis and mathematical processing of the experience results]. Moscow. Science LLC pp. 436.
KASKARBAEV Z.A., SASHKOV V.P., LUZIN A.T., VAS'KO I.A., YURCHENKO V.A., CHIRKOV A.ZH., KENZHEBEKOV A.ZH. 2007. Rekomendatsii po provedeniu snegozaderzhaniya v 2007–2008 sel'skohozyaysvennomu godu v Severnom Kazakhstane [Recommendations for snow retention in 2007–2008 agricultural year in Northern Kazakhstan]. Shortandy. LLP pp. 16.
KIRKLAND K.J., KEYS C.H. 1981. The effect of snow trapping and cropping sequence on moisture conservation and utilization in west-central Saskatchewan. Canadian Journal of Plant Science. Vol. 61(2) p. 241–246.
KUZINA E.V. 2016. Vliyaniye osnovnoy obrabotki pochvy na otlozheniya produktivnoy vlagi i agrofizicheskiye svoystva chernozema vyshchelochennogo [Influence of basic tillage on productive moisture deposits and agrophysics properties of leached chernozem]. Perm Agrarian Journal. Vol. 3(15) p. 35–40.
LOVCHIKOV A.P., LOVCHIKOV V.P., POZDEEV E.A. 2017. Obosnovanie pryamogo kombainirovaniya zernovykh kul'tur s obrazovaniem vysokosternevoy kulisy v kolee kombaina [Substantiation of direct harvesting of grain crops with formation of high stubble coulisse between the wheels]. News of Agricultural Orenburg State University. Vol. 3(65) p. 90–93.
ŁABĘDZKI L.Ł., BĄK B. 2017. Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. Journal of Water and Land Development. No. 34(1) p. 181–190. DOI 10.1515/jwld-2017-0052.
MAKSYUTOV N.A. 2004. Biologicheskoye i resursosberegayushcheye zemledeliye v stepnoy zone Yuzhnogo Urala [Biological and resource-saving agriculture in the steppe zone of the Southern Urals]. Orenburg. Dimur pp. 204.
PATRO M., ZUBALA T. 2020. Use of different forms of retention as the condition of sustainable management of water resources in rural environment. Journal of Water and Land Development. No. 44 (I–III) p. 126–135. DOI 10.24425/jwld.2019.127053.
POMEROY J.W., GRAY D.M. 1995. Snowcover accumulation, relocation and management. National Hydrology Research Institute Science report. Iss. 7 pp. 144.
REDDY V.R. 1995. Environment and sustainable agricultural development: Conflicts and contradictions. Economic and Political Weekly. Vol. 30. No. 12 p. A21–A27.
ROSSATO L., ALVALÁ R.C., MARENGO J.A., ZERI M., CUNHA A.P., PIRES L., BARBOSA H.A. 2017. Impact of soil moisture on crop yields over Brazilian semiarid. Frontiers in Environmental Science. Vol. 5 p. 1–16. DOI 10.3389/fenvs.2017.00073.
SAMUILOV F.D., MUKHITOV L.A. 2012. Water regime and water consumption of spring soft wheat varieties of different ecological groups under contrasting water availability conditions. Russian Agricultural Sciences. Vol. 38(5) p. 353–357. DOI 10.3103/S1068367412050151.
STEPPUHN H., STUMBORG M., LAFOND G., MCCONKEY B.G. 2009. Managing snowcovers in grain fields harvested for straw fiber. Proceedings of the 77th Annual Western Snow Conference, Canmore. AB p. 103–114.
SULEYMENOV M.K. 2008. Resursosberegayushchiye tekhnologii vozdelyvaniya yarovoy pshenitsy v zasushlivykh rayonakh Severnogo Kazakhstana [Resource-saving technology for cultivation of wheat in dry regions of Northern Kazakhstan]. Shortandy. LLP. ISBN 99655407-34-7 pp. 40.
YORGEY G., BORRELLI K., PAINTER K.M., DAVIS H. 2017. Stripper header and direct seeding: Ron and Andy Juris: Farmer-to-Farmer Case Study Series: Increasing Resilience Among Cereal-Based Farmers in the Inland Pacific Northwest. PNW Publication 694 pp. 15.

Go to article

Authors and Affiliations

Vladimir L. Astafyev
1
ORCID: ORCID
Pavel G. Ivanchenko
1
ORCID: ORCID

  1. Kostanay Branch of LLC Scientific Production Center of Agricultural Engineering, 110011, Kostanay, Abai Avenue, 34, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Our scientific research is based on the monitoring of ions before and after filtration of groundwaters in the water plant of Velekinca in the municipality of Gjilan, Kosovo. Sandy filters are the most commonly used industrial filters in surface – and groundwater industries. The reason is their low construction cost and high processing capacity. In our scientific re-search, sand filters used in the plant do not have perfect filtration, so we can monitor results before filtration (BF) and after filtration (AF) by determining the concentration of some ions and molecules. The following average concentrations have described: Ca2+ (BF: 83.42, AF: 83.19) mg·dm–3, Mg2+ (BF: 35.59, AF: 34.35) mg·dm–3, Cl– (BF: 28.018, AF: 28.73) mg·dm–3, SO42– (BF: 42.76, AF: 44.46) mg·dm–3, HCO3– (BF: 410.9, AF: 404.81) mg·dm–3, A-HCl (BF: 6.73, AF: 6.63) ml-HCl, GH (BF: 19.94, AF: 19.62) °dH, CS (BF: 18.87, AF: 18.5) °dH and NO2– (BF: 0.0033, AF: 0.0022) mg·dm–3. Be-ing scientific researchers in the field of water treatment technology, we have concluded that ions create an affinity for sand particles. They attach to each other by creating an ion-sand particle physical chain. According to our scientific research, sand filters are difficult to guarantee a high quality of water processing.
Go to article

Bibliography

ALAM F. 2014. Evaluation of hydrogeochemical parameters of groundwater for suitability of domestic and irrigational purposes: A case study from central Ganga plain, India. Arabian Journal of Geosciences. Vol. 7 p. 4121–4131. DOI 10.1007/ s12517-013-1055-6.
BEKELE B., PAGE D., VANDERZALM J., KAKSONEN A., GONZALEZ D. 2018. Water recycling via aquifers for sustainable urban water quality management: Current status, challenges and opportunities. Water. Vol. 10. Iss. 4 p. 1–25. DOI 10.3390/ w10040457.
BELULI V. 2017. Thesis. Shkalla e përqendrimit të metaleve të rënda në lumenjtë Mirushë e Stanishor të komunës së Gjilanit dhe ndikimi i tyre në ujërat e lumit Moravë [The concentration of heavy metals in the Mirusha and Stanishor rivers in the municipality of Gjilan and their impact on the waters of Morava River]. Universiteti i Mitrovicës, Kosovë pp. 45.
BELULI V., HYSENI A., ALIU M. 2017. Vlerësimi i cilësisë së ujit të puseve si burim për sistemin publik të furnizimit me ujë të pijshëm të Gjilanit, Kosovë [Assessment of wells water quality as a source for the public supply system of drinking water Gjilan, Kosovo. BSHN – Universiteti i Tiranës, Shqipëri. Vol. 24 p. 264–270.
BELULI V.M. 2018. Influence of urbanization and industries on the pollution of rivers of Gjilan Municipality, Kosovo. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske. Vol. 67. Iss. 11–12 p. 517−525. DOI 10.15255/ KUI.2018.007.
BELULI V.M. 2019. Aassessment of groundwaters’ quality with depth of (8–60) m in the Arbëria neighbourhood of Gjilan municipality, Kosovo. Journal of the Turkish Chemical Society Section A: Chemistry. Vol. 6. Iss. 3 p. 419–428. DOI 10.18596/jotcsa.493909
CETIN G. 2014. Removal of hardness of earth alkaline metals from aqueous solutions by ion exchange method. ISRN Analytical Chemistry. Art. ID 621794 p. 1–7. DOI 10.1155/2014/ 621794.
COTRUVO J., BARTRAM J. (eds.) 2009. Calcium and magnesium in drinking-water public health significance. Geneva. World Health Organization. ISBN 978-92-4-156355-0 pp. 194.
COULSON J.M., RICHARDSON J.F., BACKHURST J.R., HARKER J.H. 1990. Chemical engineering. Vol. 2. 4th ed. ISBN 0-7506-2942-8 pp. 982.
ÇULLAJ A. 2010. Kimia mjedisore [Environmental chemistry]. Tiranë, Shqipëri. Shtepia Botuese “Perlat Voshtina”. ISBN 978-99927-0-562-9 pp. 338.
DACI N.M., DACI-AJVAZI M. 2014. Shkenca e mjedisit: zhvillim i qëndrueshëm [Environmental science: Sustainable development]. Prishtinë, Kosovë. Akademia e Shkencave të Kosovës. ISBN 978-9951-615-41-9 pp. 509.
DAI J., S. WU S., WU X., XUE W., YANG Q., ZHU S., WANG F., CHEN D. 2018. Effects of water diversion from Yangtze River to Lake Taihu on the phytoplankton habitat of the Wangyu River Channel. Water. Vol. 10. Iss. 6 p. 1–10. DOI 10.3390/w10060759.
DIA A., GRUAU G., OLIVIÉ-LAUQUET G., RIOU C., MOLÉNAT J., CURMI P. 2000. The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particle. Geochimica et Cosmochimica Acta. Vol. 64. Iss. 25 p. 4131–4151. DOI 10.1016/S0016-7037(00)00494-4.
Hach 1999. DR/2010 Spectrophotometer instrument manual. General description HACH® DR/2010. Hach Company pp. 15.
HIDROMORAVA WTI 2019. Construction of the filter in the „HIDROMORAVA” water treatment industry (WTI) in Velekinca, Gjilan, Kosovo [unpublished].
JIANG W., LIN L., XU X., CHENG X., ZHANG Y., HALL R, XU P. 2021. A critical review of analytical methods for comprehensive characterization of produced water. Water. Vol. 13. Iss. 2 p. 1–31. DOI 10.3390/w13020183.
KADAOUI M., BOUALI A., ARABI M. 2019. Assessment of physicochemical and bacteriological groundwater quality in irrigated Triffa Plain, North-East of Morocco. Journal of Water and Land Development. Vol. 42 (VII–IX) p. 100–109. DOI 10.2478/jwld-2019-0050.
LIU H., POURRET O., GUO H., MARTINEZ R.E., ZOUHRI L. 2018. Impact of hydrous manganese and ferric oxides on the beha-vior of aqueous rare earth elements (REE): Evidence from a modeling approach and implication for the sink of REE. International Journal of Environmental Research and Public Health. Vol. 15. Iss. 12 p. 1–19. DOI 10.3390/ijerph15122837.
OSMANAJ L., LAKO A. 2017. Operacionet Kryesore në Trajtimin e Ujërave të Pijshëm [Main operations in drinking water treatment]. Tirana, Albania. Polytechnic University of Tirana. Shtëpia Botuese “FOCUS”. ISBN 978-9951-560-26-9 pp. 164.
PARVIZISHAD M., DALVAND A., MAHVI A., GOODARZI F. 2017. A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Health Scope. Vol. 6. Iss. 3, e14164. DOI 10.5812/jhealthscope.14164.
PINGULI L., MALOLLARI I., MANAJ H. 2017. Kontrolli dhe Rregullimi i Proceseve të Industrisë Kimike [Control and Regulation of Chemical Industry Processes]. Tiranë, Shqipëri. Shtëpia Botuese ONFURI. ISBN 978-9928-164-28-5 pp. 336.
SHEHU E. 2009. Teknologjia kimike dhe mjedisore [Chemical technology and the environment]. Tiranë. Shqipëri. Shtëpia Botuese “Klean”. ISBN 978-99956-648-4-8 pp. 405.
VASJARI M., SHEHU A., BARAJ B., ÇULLAJ A. 2013. Metodat instrumentale të analizës [Instrumental methods of analysis]. Tirana, Albania. Botimet “Eneas”. ISBN 978-9928-110-37-4 pp. 329.
VIERO A.F., MAZZAROLLO A.C.R., WADA K., TESSARO I.C. 2002. Removal of hardness and COD from retanning treated effluent by membrane process. Desalination. Vol. 149. Iss. 1–3 p. 145–149. DOI 10.1016/S0011-9164(02)00746-4.
XIAO Y., GU X., YIN S., PAN X, SHAO J., CUI Y. 2017. Investigation of geochemical characteristics and controlling processes of groundwater in a typical long-term reclaimed water use area. Water. Vol. 9. Iss. 10 p. 1–16. DOI 10.3390/w9100800.

Go to article

Authors and Affiliations

Valdrin M. Beluli
1 2
ORCID: ORCID

  1. University of Mitrovica “Isa Boletini”, Faculty of Food Technology, Department of Technology, Str. Ukshin Kovaçica, 40000 Mitrovica, Republic of Kosovo
  2. University of Tirana, Faculty of Nature Sciences, Department of Industrial Chemistry, Str. Boulevard Zogu I, 1001 Tirana, Albania
Download PDF Download RIS Download Bibtex

Abstract

This article shows that the most sensitive indicator of local and regional karst activity in territories of apparent karst processes is the behaviour of karst lakes. The authors propose a hydrogeological monitoring methodology for the karst pro-cess based on the phase-measuring geoelectric control method in the coastal zone of karst lakes. The geoelectric current control of hydrogeological changes in the medium at local levels uses a multi-frequency vertical electric sounding com-bined with a phase-measuring method of registering the geoelectric signal. These proven methods permit to distinguish var-iations of spatial parameters and the electric conductivity of several layers at a time. Moreover, they significantly increase the noise resistance and sensitivity of the measuring system. An adaptive algorithm function of the measuring complex for geoelectric monitoring of karst lakes’ coastal zones was developed to control the operation of facilities and data collection systems. Based on an example of a lake where karst processes are active, the key zones of hydrogeological control were identified depending on karst manifestations. The research confirmed the possibility of local and regional monitoring of the development and forecasting of destructive karst-suffosion processes based on hydrogeological regime observations of karst lakes.
Go to article

Bibliography

ANGEL M.L., JOHNSTON S., O’STEEN K., BROWN C., SANDO T. 2015. Groundwater control issues in transportation engineering: A short review of dewatering methods and lessons learned. Journal of Engineering Science & Technology Review. Vol. 8(3) p. 8–13.
ANIKEEV A., ANISIMOVA N., KOZHEVNIKOVA I., KOZLYAKOVA I. 2015. Assessment of karst-suffosion hazard along the routes of designed metro lines in Moscow. In: Engineering geology for society and territory. Vol. 5. Eds. G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, F. Luino. Springer International Publishing, Cham p. 913–917. DOI 10.1007/ 978-3-319-09048-1_177.
BOHACHENKO L.D. 2012. Preparation and implementation of monitoring Geological and hydrogeological conditions during construction and operation multifunctional complex. Dnipropetrovsk University bulletin. Geology, Geography. Vol. 20(3/2) p. 77–81.
BONACCI O., JURAČIĆ M. 2010. Sustainability of the karst environment-Dinnaric karst and other karst regions. Geologia Croatica. Vol. 63(2) p. 127–127.
BYKOV A.A., KUZICHKIN R.O. 2014. Regression prediction algorithm of suffusion processes development during geoelectric monitoring. Advances in Environmental Biology. Vol. 8(5) p. 1404–1409.
BYKOV A., KUZICHKIN O., DOROFEEV N., KOSKIN A. 2017. Information-hardware support of systems of the automated electromagnetic monitoring of geodynamic objects. December 2017 Procedia Computer Science. Vol. 103 p. 253–259. DOI 10.1016/j.procs.2017.01.098.
CHEN H.-J., CHEN C.-C., OUILLON G., SORNETTE D. 2017. Using geoelectric field skewness and kurtosis to forecast the 2016/2/6, ML 6.6 Meinong, Taiwan Earthquake. Terrestrial, Atmospheric and Oceanic Sciences. Vol. 28(5) p. 745–761.
DOLOGLOU E. 2011. Possible interrelation between the lead time of precursory seismic electric signals (SES) and geodynamics in Aegean Sea. Natural Hazards and Earth System Sciences. Vol. 11(6) p. 1599–1603. DOI 10.5194/nhess-11-1599-2011.
DONG B., DANSKIN D.W., PIRJOLA R.J., BOTELER D.H., WANG Z.Z. 2013. Evaluating the applicability of the finite element method for modelling of geoelectric fields. Annales Geophysicae. Vol. 31 p. 1689–1698. DOI 10.5194/angeo-31-1689-2013
DOROFEEV N., KUZICHKIN O., EREMENKO V. 2016. The method of selection of key objects and the construction of forecast function of the destructive geodynamic processes. International Multidisciplinary Scientific GeoConference: SGEM 1 p. 883–890.
EPURE L., BORDA D.R. 2014. Groundwater contamination and the relationship between water chemistry and biotic components in a karst system (Bihor Mountains, Romania). Travaux de lInstitut de Spéologie Emil Racovita. Vol. 53 p. 69–84.
GOLDSCHEIDER N., DREW D. (eds.) 2014. Methods in karst hydrogeology. IAH: International Contributions to Hydrogeology. No. 26. CRC Press. ISBN 9780367388980 pp. 264.
GRBIĆ M., SALAMON D., PAVLOVIĆ A. 2013. Interpretation of the results of geoelectric sounding based on a mathematical model of double-layered soil. Zbornik radova, Elektrotehnički institut “Nikola Tesla”. Vol. (23) p. 189–198.
GRECHENEVA A.V., DOROFEEV N.V., KUZICHKIN O.R., EREMENKO V.T. 2016. Organization of geodynamic monitoring on the basis of the geoelectric method. In: GeoBaikal. Conference Proceedings. European Association of Geoscientists & Engineers p. 1–5. DOI 10.3997/2214-4609.201601691.
HAMDAN H., KRITIKAKIS G., ANDRONIKIDIS N., ECONOMOU N., MANOUTSOGLOU E., VAFIDIS A. 2010. Integrated geophysical methods for imaging saline karst aquifers: A case study of Stylos, Chania, Greece. Journal of the Balkan Geophysical Society. Vol. 13 (1) p. 1–8.
IRAWAN D., GRANDIS H., SUMINTADIREDJA P. 2015. Quasi-2D resistivity model from inversion of vertical electrical sounding (VES) data using guided random search algorithm. Journal of Mathematical and Fundamental Sciences. Vol. 47 (3) p. 269–280. DOI 10.5614/j.math.fund.sci.2015.47.3.5.
KAZEEV A., POSTOEV G. 2017. Landslide investigations in Russia and the former USSR. Natural Hazards. Vol. 88(1) p. 81–101.
KHOMENKO V.P., ALESHINA L.A. 2008. Estimation of sinkhole danger at a one-building’s site in Moscow, Russia. In: Sinkholes and the engineering and environmental impacts of karst. 11th Multidisciplinary Conference on Sinkholes p. 269–277. DOI 10.1061/41003(327)26.
KOLYUSHKO D.G., RUDENKO S.S. 2017. Prohrama dlya interpretatsiyi rezul'tativ vertykal'noho elektrychnoho zonduvan¬nya «VEZ-4A» [A computer program for interpretation of the data of vertical electrical sounding VEZ-4a]. Elektrotekhnika i elektromekhanika. No. 3 p. 63–66. DOI 10.20998/2074-272X.2017.3.09.
KUZMIN Y.O. 2015. Recent geodynamics of fault zones: Faulting in real time scale. Geodynamics & Tectonophysics. Vol. 5 (2) p. 401–443.
LA VIGNA F. 2016. Idrogeologia e protezione civile, cosa dovrebbe voler dire “rischio idrogeologico” [Groundwater and civil protection, what the Italian for “hydrogeological risk” should mean]. Acque Sotterranee – Italian Journal of Groundwater. Vol. 5(4) p. 55–57. DOI 10.7343/as-2016-242.
LARSEN P. 2003. Scientific accounts of a vanishing lake: Janez Valvasor. Lake Cerknica and the new philosophy [online]. [Access 03.06.2020]. Available at: https://pavellarsen.files.wordpress.com/2012/11/u-cerknica.pdf
MILANOVIĆ P.T. 2000. Geological engineering in karst: Dams, reservoirs, grouting, groundwater protection, water tapping, tunneling. Belgrade. Zebra. ISBN 867489125X pp. 347.
MOLEK H. 2003. Engineering-geological and geomechanical analysis for the fracture origin of sinkholes in the realm of a high velocity railway line. In: Sinkholes and the engineering and environmental impacts of karst. 11th Multidisciplinary Conference on Sinkholes p. 551–558.
OLADUNJOYE M., JEKAYINFA S. 2015. Efficacy of Hummel (modified Schlumberger) arrays of vertical electrical sounding in groundwater exploration: Case study of parts of Ibadan Metropolis, Southwestern Nigeria. International Journal of Geophysics. Art. ID 612303. DOI 10.1155/2015/ 612303.
OLAWUYI A.K., ABOLARIN S.B. 2013. Evaluation of vertical electrical sounding method for groundwater development in basement complex terrain of west-central Nigeria. Nigerian Journal of Technological Development. Vol. 10(2) p. 22–28.
RAVBAR N., GOLDSCHEIDER N. 2009. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal. Vol. 17(3) p. 725–733. DOI 10.1007/978-3-642-12486-0_51.
ROMANOV R.V., KUZICHKIN O.R., TSAPLEV A.V. 2015. Geoecological control of the aquifer in the decentralized water supply systems of the local level. 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Piscataway Township. IEEE p. 42–46. DOI 10.1109/IDAACS.2015.7340698.
SANTOSA L.W. 2007. The investigation of groundwater potential by Vertical Electrical Sounding (VES) approach in Arguni Bay Region, Kaimana Regency, West Papua. Forum Geografi. Vol. 21. No. 1 p. 43–56. DOI 10.23917/forgeo. v21i1.1820.
SCAIONI M., FENG T., BARAZZETTI L., PREVITALI M., LU P., QIAO G., WU H., CHEN W., TONG X., WANG W., LI R. 2015. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment. Geomatics, Natural Hazards and Risk. Vol. 6 (5–7) p. 473–496. DOI: 10.1080/19475705.2014.885090.
SHARAPOV R.V., KUZICHKIN O.R. 2014. Geodynamic monitoring in area of nuclear power plant. Applied Mechanics and Materials. Vol. 492 p. 556–560.
SOBEIH M.M., EL-ARABI N.E., ESAM EL DEEN Y.H., AWAD B.S. 2017. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Science. Vol. 31 (2) p. 137–150.
SOKOLOV S.Y., ABRAMOVA A.S., MOROZ E.A., ZARAISKAYA Y.A. 2017. Amplitudes of disjunctive dislocations in the knipovich ridge flanks (northern Atlantic) as an indicator of modern regional geodynamics. Geodynamics & Tectono-physics. Vol. 8(4) p. 769–789.
ŠOLAR S., SHIELDS D., LANGER W., ANCIAUX P. 2007. Trajnostni razvoj in mineralne surovine za gradbeništvo: izbrana (evropska) vprašanja in primeri prakse [Sustainability and aggregates: selected (European) issues and cases]. RMZ-Materials and Geoenvironment. Vol. 54(3) p. 345–359. DOI 10.1016/j.jeca.2014.10.002.
SOMARATNE N. 2015. Karst aquifer recharge: A case history of over simplification from the Uley South basin, South Australia. Water. Vol. 7(2) p. 464–479.
SONG T., LIU Y., WANG Y. 2017. Finite element method for modeling 3D resistivity sounding on anisotropic geoelectric media. Mathematical Problems in Engineering. Art. ID 8027616. DOI 10.1155/2017/8027616. SZYDLARSKI M., MODRZYŃSKI J., STOPIŃSKI M., MAJEWSKI M., MARAS K. 2017. Comparing natural regeneration of Norway spruce Picea abies (L.) Karst. in the Kaszuby Lake District and in the other regions of northern Poland. Leśne Prace Badawcze / Forest Research Papers. Vol. 78(4) p. 303–314. DOI 10.1515/frp-2017-0034.
WANG X., ZHANG G., XU Y.J. 2016. Groundwater and surface water availability via a joint simulation with a double control of water quantity and ecologically ideal shallow groundwater depth: a case study on the Sanjiang Plain, northeast China. Water. Vol. 8(9), 396 pp. 23. DOI 10.3390/w8090396.

Go to article

Authors and Affiliations

Oleg R. Kuzichkin
1
ORCID: ORCID
Roman V. Romanov
2
ORCID: ORCID
Nikolay V. Dorofeev
2
ORCID: ORCID
Gleb S. Vasilyev
1
ORCID: ORCID
Anastasia V. Grecheneva
1
ORCID: ORCID

  1. Belgorod National Research University, 85 Pobedy St., 308015 Belgorod, Russia
  2. Vladimir State University, Vladimir, Russia
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the impact of pesticides on the biological activity of soils, as well as an environmental assessment of the state of light chestnut soils by the Kazakh Research Institute of Agriculture and Crop Production with the aim to es-tablish diagnostic indicators that reduce biological activity. The study covers physical, chemical and biological properties of soils under crops of winter wheat in the light chestnut soil in the South-East of the Republic of Kazakhstan. The content of pesticides in soil samples was determined using the gas chromatography mass-spectrometric method. The paper shows results of the chromatographic analysis of soil samples regarding the content of pesticides. The study of changes of light chestnut soil biological activity was conducted to determine their relative resistance to pesticide contamination. Data ob-tained revealed the degree of light chestnut soil resistance to pesticide contamination. The study also identified species of soil invertebrates, as well as soil enzymes that should be used as bioindicators for the monitoring of the contamination with pesticides. Results obtained expand knowledge about changes in the biological activity of light chestnut soils due to pesti-cide contamination in the ecosystems of South-East Kazakhstan. In contrast to abundance indicators, the results suggest that the species composition of soil organisms can be used as a criterion for a qualitative assessment of the soil exposure to pesticides.
Go to article

Bibliography

AGGARWAL A., SHARMA D., PRAKASH V., SHARMA S., GUPTA A. 2005. Effect of bavistin and dithane M-45 on the mycorrhizae and rhizosphere microbes of sunflower. Helia. No 28(42) p. 75–88. DOI 10.2298/HEL0542075A.
ARORA S., SAHNI D. 2016. Pesticides effect on soil microbial ecology and enzyme activity – An overview. Journal of Applied and Natural Science. No. 8 р. 1126–1132. DOI 10.31018/jans.v8i2.929.
CHAUVIN C., DOREL M., VILLENAVE C., ROGER-ESTRADE J., THURIES L., RISÈDE J. 2015. Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil. Applied Soil Ecology. No. 96 p. 131–140. DOI 10.1016/j.apsoil.2015.07.013
CLUZEAU D., GUERNION M., CHAUSSOD R., MARTIN-LAURENT F., VILLENAVE C., CORTET J., PÉRÈS G. 2012. Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land use types. European Journal of Soil Biology. Vol. 49 р. 63–72. DOI 10.1016/j.ejsobi.2011.11.003.
GILYAROV M. 1965. Zoologicheskii metod diagnostiki pochv [Zoological method of soil diagnostics]. Moscow. Nauka pp. 278.
KHAZIEV F. 1990. Fermentativnaya aktivnost’ pochv [Enzymatic activity of soils]. Methodical manual. Moscow. Nauka pp. 180.
MIGLANI R., BISHT S. 2019. World of earthworms with pesticides and insecticides. Interdisciplinary Toxicology. No. 12(2) р. 71–82. DOI 10.2478/intox-2019-0008.
MOREL J., CHENU C., LORENZ K. 2015. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas. Journal of Soils Sediments. No. 8 p. 1659–1666. DOI 10.1007/s11368-014-0926-0. MUSTAFAYEV M. 2020. Change of the salts quantity and type in the irrigated soils of the Mughan Plain and their impact on plants productivity. International Journal of the Science of Food and Agriculture. No. 4(2) р. 101–108. DOI 10.26855/ ijfsa.2020.06.001.
PELOSI C., BAROT S., CAPOWIEZ Y., HEDDE M., VEDENBULCKE F. 2014. Pesticides and earthworms. A review. Agronomy for Sustainable Development. No. 34 p. 199–228. 10.1007/ s13593-013-0151-z.
ROMANOVA S., PONOMARENKO O., MATVEYEVA I., BEISEMBA¬YEVA L., KAZANGAPOVA N., TUKENOVA Z. 2019. Evaluation of mulching technology application for cultivation of agricultural crops. Journal of Chemical Technology and Metallurgy. Vol. 54(3) р. 514–521.
SHCHERBAKOV A., KUTOVAYA N.Y., DEVYATOVA T.A. 1993. Kharakteristika biologicheskoy aktivnosti chernozemov tsentral'no-chernozemnoy zony. V: Agroekologicheskiye printsipy zemledeliya [Characteristics of the biological activity of chernozems of the Central Chernozem zone. In: Agroecological principles of agriculture]. Eds. I.P. Makarov, A.P. Shcherbakov. Moscow. Kolos p. 197–219.
SILFVERBERG L. 1957. Chemical determination of soil organic matter. A critical review of existing methods. Stockholm. Royal Swedish Geotechnical Institute Proceedings. No. 15 p. 48.
SMITH M., HARTNETT D., RICE C. 2000. Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biology & Biochemistry. No. 32 р. 935–946. DOI 10.1016/s0038-0717(99)00223-0.
TUKENOVA Z., AKYLBEKOVA T., ALIMZHANOVA M., ASHIMULY K., SAPAROV A. 2020. Environmental assessment of the impact of technogenic factors on the soil mesofauna of the South-East of Kazakhstan and development bioindicative and indicative factors. ARPN Journal of Engineering and Applied Sciences. Vol. 15(22) p. 2706–2712.
WANG Y., CANG T., ZHAO X., YU R., CHEN L., WU CH., WANG Q. 2012. Comparative acute toxicity of twenty-four insecticides to earthworm, Eiseniafetida. Ecotoxicology and Environmental Safety. No. 79 p. 122–128. DOI 10.1016/j.ecoenv.2011.12.016.

Go to article

Authors and Affiliations

Zulfiya Tukenova
1
ORCID: ORCID
Mustafa Mustafayev
2
ORCID: ORCID
Mereke Alimzhanova
3
ORCID: ORCID
Turar Akylbekova
4
ORCID: ORCID
Kazhybek Ashimuly
5
ORCID: ORCID

  1. Al-Farabi Kazakh National University, Faculty of Geography and Environmental Sciences, Department of UNESCO in Sustainable Development, Almaty, Republic of Kazakhstan
  2. Azerbaijan National Academy of Science, Institute of Soil Science and Agrochemistry, 5, M. Rahim str., Baku, AZ10073, Azerbaijan Republic
  3. Al-Farabi Kazakh National University, Faculty of Thermal Physics and Technical Physics, Department of Physics and Technology, Almaty, Republic of Kazakhstan
  4. Abai Kazakh National Pedagogical University, Departments of Chemistry, Institute of Natural Sciences and Geography, Almaty, Republic of Kazakhstan
  5. Scientific Production Center of Microbiology and Virology, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The limitation in approachability to rainfall data sources with an appropriate spatial-temporal distribution is a signifi-cant challenge in different parts of the world. The development of general circulation models and mathematical algorithms has led to the generation of various rainfall products as new sources with the potential to overcome the shortage in data-scarce basins. In this study, the performance of the PERSIANN-CCS and CMORPH satellite-based rainfall product, as well as the ERA5 and ERA-Interim reanalysis, was evaluated based on detection skill and quantitative metrics in a daily, month-ly and seasonal time scales in the Dez basin located in the southwest of Iran. The basin has a wide topographic variation and scattered rain gauge stations. Overall results denote that the ERA5 dataset has the best performance in all statistic veri-fication than other rainfall products. Based on the daily evaluation of all rainfall products, the false alarm rate (FAR) is higher than 0.5, so none of the datasets could capture the temporal variability of rainfall occurrence. This study has covered the western parts of the Zagros steep slopes in which the topographic conditions have a significant effect on the activity of rainfall systems. On a monthly scale, the mean value of the correlation coefficient (CC) for ERA5, ERA-Interim, PER-SIANN-CCS, and CMORPH was equal to 0.86, 0.85, 0.51, 0.39, respectively. The results of seasonal evaluation suggested that all datasets have better rainfall estimation in autumn and winter, and the capability of all datasets dramatically de-creased in the spring. The current paper argues that the ERA5 reanalysis typically outperforms ERA-Interim and can be considered as a reliable rainfall source in the future hydrological investigation in the southwest of Iran.
Go to article

Bibliography

ALIJANI B., HARMAN J.R. 1985. Synoptic climatology of precipitation in Iran [online]. Annals of the Association of American Geographers. Vol. 75. No. 3 p. 404–416. [Access 5.03.2020]. Available at: https://www.jstor.org/stable/2562643
ALIJANI B., O’BRIEN J., YARNAL B. 2008. Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology. Vol. 94. No. 1–2 p. 107–124.
BERRISFORD P., DEE D.P., POLI P., BRUGGE R., FIELDING M., FUENTES M., KÅLLBERG P.W., KOBAYASHI, S., UPPALA S., SIMMONS A. 2009. The ERA-Interim Archive Version 2.0 [online].
ERA report series. [Access 5.03.2020]. Available at: https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
BROWN J.E.M. 2006. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sensing of Environment. Vol. 101. No. 1 p. 63–81. DOI 10.1016/j.rse.2005.12.005.
CAWR 2015. Forecast verification methods across time and space scales [online]. WWRP/WGNE Joint Working Group on Forecast Verification Research. Center for Advanced Water Research p. 1–48. [Access 11.03.2020]. Available at: https://www.cawcr.gov.au/projects/verification/#Introduction
CHANG K. 2019. Introduction to Geographic Information Systems. 9th ed. McGraw-Hill Higher Education. ISBN 1259929647 pp. 464.
CHEN F.-W., LIU C.-W. 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment. Vol. 10. No. 3 p. 209–222. DOI 10.1007/s10333-012-0319-1.
CHEN H., YONG B., SHEN Y., LIU J., HONG Y., ZHANG J. 2020. Comparison analysis of six purely satellite-derived global precipitation estimates. Journal of Hydrology. Vol. 581, 124376. DOI 10.1016/j.jhydrol.2019.124376.
CHRS undated. PERSIANN-CCS [online]. Center for Hydrometeorology and Remote Sensing Data Portal. [Access 11.04.2020]. Available at: https://chrsdata.eng.uci.edu/
CONDOM T., RAU P., ESPINOZA J.C. 2011. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrological Processes. Vol. 25. No. 12 p. 1924–1933. DOI 10.1002/hyp.7949.
DARAND M., AMANOLLAHI J., ZANDKARIMI S. 2017. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmospheric Research. Vol. 190 p. 121–127. DOI 10.1016/j.atmosres.2017. 02.011.
DARAND M., KHANDU K. 2020. Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. Journal of Arid Environments. Vol. 178, 104172. DOI 10.1016/j.jaridenv.2020.104172.
DERIN Y., YILMAZ K.K. 2014. Evaluation of multiple satellite-based precipitation products over complex topography. Journal of Hydrometeorology. Vol. 15. No. 4 p. 1498–1516.
DIACONESCU E.P., GACHON P., SCINOCCA J., LAPRISE R. 2015. Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Climate Dynamics. Vol. 45. No. 5–6 p. 1325–1354. DOI 10.1007/ s00382-014-2383-2.
EBERT E.E., JANOWIAK J.E., KIDD C. 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society. Vol. 88. No. 1 p. 47–64.
ECMWF 2017. ERA5 data documentation [online]. Reading. European Centre for Medium-Range Weather Forecasts. [Access 10.04.2020]. Available at: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
FAN M., XU J., CHEN Y., LI W. 2020. Simulating the precipitation in the data-scarce Tianshan Mountains, Northwest China based on the Earth system data products. Arabian Journal of Geosciences. Vol. 13. No. 14 p. 637. DOI 10.1007/s12517-020-05509-1.
HÉNIN R., LIBERATO M.L.R., RAMOS A.M., GOUVEIA C.M. 2018. Assessing the use of satellite-based estimates and high-resolution precipitation datasets for the study of extreme precipitation events over the Iberian Peninsula. Water. Vol. 10. No. 11 p. 1688. DOI 10.3390/w10111688.
HENN B., NEWMAN A.J., LIVNEH B., DALY C., LUNDQUIST J.D. 2018. An assessment of differences in gridded precipitation datasets in complex terrain. Journal of Hydrology. Vol. 556 p. 1205–1219. DOI 10.1016/j.jhydrol.2017.03.008.
HENNERMANN K., BERRISFORD P. 2018. What are the changes from ERA-Interim to ERA5 [online]. Reading. European Centre for Medium-Range Weather Forecasts. [Access 11.03.2020]. Available at: https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925
HERSBACH H., DEE D. 2012. ERA5 reanalysis is in production [online]. ECMWF. ECMWF Newsletter. No. 147 [Access 10.04.2020]. Available at: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
HONG Y., HSU K.-L., SOROOSHIAN S., GAO X. 2005. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology. Vol. 43. No. 12 p. 1834–1853. DOI 10.1175/jam2173.1.
HSU K.-L., GAO X., SOROOSHIAN S., GUPTA H.V. 2002. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology. Vol. 36. No. 9 p. 1176–1190. DOI 10.1175/1520-0450(1997)036 1176:pefrsi>2.0.co;2.
ISOTTA F.A., VOGEL R., FREI C. 2015. Evaluation of European regional reanalyses and downscalings for precipitation in the Alpine region. Meteorologische Zeitschrift. Vol. 24. No. 1 p. 15–37. DOI 10.1127/metz/2014/0584.
JOYCE R.J., JANOWIAK J.E., ARKIN P.A., XIE P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology. Vol. 5. No. 3 p. 487–503. DOI 10.1175/1525-7541(2004)0050487: camtpg>2.0.co;2.
KHOSHCHEHREH M., GHOMESHI M., SHAHBAZI A. 2020. Hydrological evaluation of global gridded precipitation datasets in a heterogeneous and data-scarce basin in Iran. Journal of Earth System Science. Vol. 129. No. 1, 201. DOI 10.1007/s12040-020-01462-5.
KIANI M., LASHKARI H., GHAEMI H. 2019. The effect of Zagros Mountains on rainfall changes of Sudanese low pressure system in western Iran. Modeling Earth Systems and Environment. Vol. 5. No. 4 p. 1769–1779. DOI 10.1007/s40808-019-00631-w.
KUCERA P.A., EBERT E.E., TURK F.J., LEVIZZANI V., KIRSCHBAUM D., TAPIADOR F.J., LOEW A., BORSCHE M. 2013. Precipitation from space: Advancing earth system science. Bulletin of the American Meteorological Society. Vol. 94. No. 3 p. 365–375. DOI 10.1175/BAMS-D-11-00171.1.
LIU Z., LIU Y., WANG S., YANG X., WANG L., BAIG M.H.A., WENFENG C., WANG Z. 2018. Evaluation of spatial and temporal performances of ERA-Interim precipitation and temperature in mainland China. Journal of Climate. Vol. 31. No. 11 p. 4347–4365. DOI 10.1175/JCLI-D-17-0212.1.
MOAZAMI S., GOLIAN S., HONG Y., SHENG CH., KAVIANPOUR M.R. 2016. Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrological Sciences Journal. Vol. 61. No. 2 p. 420–440. DOI 10.1080/02626667.2014.987675.
MOAZAMI S., GOLIAN S., KAVIANPOUR M.R., HONG Y. 2013. Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data over Iran. International Journal of Remote Sensing. Vol. 34. No. 22 p. 8156–8171. DOI 10.1080/01431161.2013.833360.
NGUYEN T.H., MASIH I., MOHAMED Y.A., VAN DER ZAAG P. 2018. Validating rainfall-runoff modelling using satellite-based and reanalysis precipitation products in the Sre Pok catchment, the Mekong River Basin. Geosciences. Vol. 8. No. 5, 164 p. 1–20. DOI 10.3390/geosciences8050164.
NOAA undated. Index of /precip/CMORPH_V1.0 [online]. Washington, DC. National Oceanic and Atmospheric Administration. Weather Service Climate Prediction Center. [Access date: 2020/02]. Available at: ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
NOGUEIRA M. 2020. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. Journal of Hydrology. Vol. 583, 124632. DOI 10.1016/j.jhydrol.2020. 124632.
PEEL M.C., FINLAYSON B.L., MCMAHON T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions. Vol. 4. No. 2 p. 439–473. DOI 10.5194/hess-11-1633-2007.
PREIN A.F., GOBIET A. 2017. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. International Journal of Climatology. Vol. 37. No. 1 p. 305–327. DOI 10.1002/joc.4706.
RAZIEI T. 2016. Köppen-Geiger climate classification of Iran and investigating its changes during 20th century. Journal of the Earth and Space Physics. Vol. 43 p. 419–440. DOI 10.22059/jesphys.2017.58916.
SAMADI A., SADROLASHRAFI S.S., KHOLGHI M.K. 2019. Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: A case study for the Dez River Basin. Physics and Chemistry of the Earth, Parts A/B/C. Vol. 109 p. 9–25. DOI 10.1016/j.pce.2018.07.003
SATGE F., DEFRANCE D., SULTAN B., BONNET M.-P., SEYLER F., ROUCHE N., PIERRON F., PATUREL J.-E. 2020. Evaluation of 23 gridded precipitation datasets across West Africa. Journal of Hydrology. Vol. 581, 124412. DOI 10.1016/j.jhydrol.2019. 124412.
SHARIFI E., STEINACKER R., SAGHAFIAN B. 2016. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing. Vol. 8. No. 2, 135 p. 1–24. DOI 10.3390/rs8020135.
SKOK G., ŽAGAR N., HONZAK L., ŽABKAR R., RAKOVEC J., CEGLAR A. 2016. Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic. Theoretical and Applied Climatology. Vol. 123. No. 1–2 p. 217–232. DOI 10.1007/ s00704-014-1350-5.
SOROOSHIAN S., HSU K.-L., GAO X., GUPTA H.V., IMAM B., BRAITHWAITE D. 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society. Vol. 81. No. 9 p. 2035–2046. DOI 10.1175/1520-0477(2000)0812035:EOPSSE> 2.3.CO;2.
SUSENO D.P.Y., YAMADA T.J. 2020. Simulating flash floods using geostationary satellite-based rainfall estimation coupled with a land surface model. Hydrology. Vol. 7. No. 1 p. 1–12. DOI 10.3390/hydrology7010009. TAN M.L., DUAN Z. 2017. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing. Vol. 9. No. 7, 720. DOI 10.3390/rs9070720.
TAN M.L., SANTO H. 2018. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research. Vol. 202 p. 63–76. DOI 10.1016/j.atmosres.2017.11.006.
TAREK M., BRISSETTE F.P., ARSENAULT R. 2020. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences. Vol. 24 p. 2527–2544. DOI 10.5194/hess-24-2527-2020.
WANG W., LU H., ZHAO T., JIANG L., SHI J. 2017. Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 10. No. 6 p. 2540–2549. DOI 10.1109/ JSTARS.2017.2672786.
WESTRICK K.J., MASS C.F., COLLE B.A. 1999. The Limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bulletin of the American Meteorological Society. Vol. 80. No. 11 p. 2289–2298. DOI 10.1175/1520-0477(1999)0802289: TLOTWR>2.0.CO;2.
WONG J.S., RAZAVI S., BONSAL B.R., WHEATER H.S., ASONG Z.E. 2017. Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrology and Earth System Sciences. Vol. 21. No. 4 p. 2163–2185. DOI 10.5194/hess-21-2163-2017.
XU X., FREY S.K., BOLUWADE A., ERLER A.R., KHADER O., LAPEN D.R., SUDICKY E. 2019. Evaluation of variability among different precipitation products in the Northern Great Plains. Journal of Hydrology: Regional Studies. Vol. 24, 100608. DOI 10.1016/j.ejrh.2019.100608.
YAO J., CHEN Y., YU X., ZHAO Y., GUAN X., YANG L. 2020. Evaluation of multiple gridded precipitation datasets for the arid region of northwestern China. Atmospheric Research. Vol. 236, 104818. DOI 10.1016/j.atmosres.2019.104818.
YONG B., HONG Y., REN L.L., GOURLEY J.J., HUFFMAN G.J., CHEN X., WANG W., KHAN S.I. 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. Journal of Geophysical Research: Atmospheres. Vol. 117. No. D9 p. n/a-n/a. DOI 10.1029/2011jd 017069.
YUAN F., ZHANG L., WIN K.W.W., REN L., ZHAO CH., ZHU Y., JIANG S., LIU Y. 2017. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar. Remote Sensing. Vol. 9. No. 3, 302. DOI 10.3390/rs9030302.
ZAMBRANO-BIGIARINI M., NAUDITT A., BIRKEL CH., VERBIST K., RIBBE L. 2017. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrology and Earth System Sciences. Vol. 21. No. 2 p. 1295–1320. DOI 10.5194/hess-21-1295-2017.
Go to article

Authors and Affiliations

Mostafa Khoshchehreh
1
ORCID: ORCID
Mehdi Ghomeshi
1
Ali Shahbazi
1
Hossein Bolboli
1
Hamed Saberi
2
Ali Gorjizade
1

  1. Shahid Chamran University of Ahvaz, Faculty of Water Science Engineering, Department of Water and Hydraulic Structures, Golestan Blvd., Ahvaz, 6135783151, Iran
  2. Khorramshahr University of Marine Science and Technology, Faculty of Engineering, Khorramshahr, Iran
Download PDF Download RIS Download Bibtex

Abstract

The article considers issues of ensuring sustainable agricultural production by increasing reliability of an irrigation sys-tem and water security. The article describes results of hydraulic tests performed at the water outlet with a vertical move-ment valve member. Resistance coefficients and hydrodynamic effects at the water outlet were determined experimentally. The study devel-oped a method for calculating hydromechanical transient processes in the water outlet at the stop and start of the pump. The paper substantiates the new construction of a water outlet facility with a vertical displacement of the breakdown valve. Such a design better corresponds to peculiarities of the operation of pumping stations and, if there are water pipes of considerable diameter, it has a positive effect on transition hydrodynamic processes by reducing the number of failures and downtime by up to 10%.
Go to article

Bibliography

ALTSHUL A.D., KISELEV P.G. 1975. Gidravlika i aerodinamika (Osnovy mekhaniki zhidkosti) [Hydraulics and aerodynamics (Fundamentals of fluid mechanics]. 2nd ed. revised and enlarged. Moscow. Stroiizdat pp. 327.
ANDRIIASHEV M.M. 1979. Gidravlicheskiye raschety oborudovaniya vodovodov [Hydraulic calculations of water pipelines]. Moscow. Stroiizdat pp. 104.
ARSHENEVSKII N.N., POSPELOV B.B. 1980. Perekhodnye protsessy krupnykh nasosnykh stantsii [Transition processes of large pumping stations]. B-ka gidrotekhnika i gidroenergetika. Iss. 66. Moscow. Energiya pp. 112.
BASHTA T.M., RUDNEV S.S., NEKRASOV B.B., BAYBAKOV O.V., KIRILLOVSKY YU.L. 1970. Gidravlika, gidravlicheskiye ma-shiny i gidravlicheskiye privody: Uchebnik dlya mashinostroitel’nykh vuzov [Hydraulics, hydraulic machines and hydraulic drives: Mechanical engineering college and university textbook]. Moscow. Mashinostroyeniye pp. 504.
BOGOMOLOV A.I., MIKHAILOV K.I. 1972. Gidravlik: Uchebnik dlya vuzov. [Hydraulic technician: College and university textbook]. 2nd ed. revised and enlarged]. Moscow. Stroiizdat pp. 648.
BOL’SHAKOV V.A. (ed.) 1977. Spravochnik po gidravlike [Reference book on hydraulics]. Kyiv. Vyshcha shkola pp. 320.
BRONSHTEIN I.N., SEMENDYAEV K.A. 1962. Spravochnik po matematike dlya inzhenerov i uchashchikhsiya vuzov [Reference textbook on mathematics for engineers and college or university students]. Moscow. Gosudarstvennoye izdatel'stvo fiziko-matematicheskoy literatury pp. 608.
CHEBAYEVSKIY V.F., RYCHAGOV V.V., VISHNEVSKIY K.P., TRET'YAKOV A.A. 1982. Proektirovaniye nasosnykh stantsii i ispytaniye nasosnykh ustanovok [Designing pumping stations and testing pump units]. 3rd ed. revised and enlarged. Moscow. Kolos pp. 320.
CHUGAYEV R.R. 1975. Gidravlika (Tekhnicheskaya mekhanika zhidkosti): Uchebnik dlya vuzov [Hydraulics (technical fluid mechanics): College and university textbook]. Leningrad. Energiya pp. 600.
GAVRILENKO B.A., MININ V.A., ROZHDESTVENSKII S.N. 1968. Gidravlicheskii privod [Hydraulic drive]. Moscow. Mashinostroyeniye pp. 502.
HERASYMOV H.H. 1993. Perekhidni protsesy v nasosnykh ustanovkakh z poplavkovymy vodovypuskamy [Transient processes in pumping plants with floating water outlets]. Hidromelioratyvne ta hidrotekhnichne budivnytstvo. Resp. Mizhvidomchyi n.-t. zb. No. 20 p. 57–63.
HERASYMOV H.H., BURDIUZHA P.D. 1981. Vodovypusk. A. s. No. 1086061 A SSSR, E 02 V 9/06. [Water outlet. Archived File No. 1086061 A USSR, E 02 V 9/06.] No. 3296804/29-15. Registered on February 22, 1981. Published on April, 15, 1984. Bulletin No. 141 p. 3.
IDELCHIK I.E. 1954. Gidravlicheskiye soprotivleniya (fiziko-mekhanicheskiye osnovy) [Hydraulic resistance (Physical and mathematical fundamentals)]. Moscow–Leningrad: Gosenergoizdat pp. 316.
IDELCHIK I.E. 1975. Spravochnik po gidravlicheskim soprotivleniyam [Reference book on hydraulic resistances]. 2nd ed. revised and enlarged. Moscow. Mashinostroyeniye pp. 559.
JONES G.M., SANKS R.L., TCHOBANOGLOUS G., BOSSERMAN B.E. 2008. Pumping station design. 2nd ed. Butterworth-Heine-mann. ISBN 978-1-85617-513-5 pp. 1104. DOI 10.1016/b978-1-85617-513-5.x5001-x. KARELIN V.YA., NOVODEREZHKIN R.A. 1980. Nasosnye stantsii gidrotekhnicheskikh sistem s osevymi i diagonal’nymi nasosami [Pumping stations of hydrotechnical systems with axial-flow and angular-flow pumps]. Moscow. Energiya pp. 288. KAY M. 2008. Practical hydraulics. 2nd ed. Taylor and Francis. ISBN 978-0415351157 pp. 272.
KONDRATYEV V.N., SKOSAREV E.V., CHIBISOV I.T., SHAVARIN V.N. 1976. Proektirovanie sifonnykh vodovypuskov dlya nasosnykh stantsii [Designing siphon water outlets for pumping stations]. Gidrotekhnicheskoe stroitel’stvo. No. 1 p. 54–56.
KONDRATYEVA T.F. 1976. Predokhranitel’nye klapany [Safety valves]. 2nd ed. revised and enlarged. Leningrad. Mashinostroyeniye pp. 232.
KOVALENKO P.I., TUGAI A.M. 1974. Meliorativnyye gidrotekhnicheskiye sooruzheniya [Ameliorative hydraulic facilities]. Kiev. Budivel’nik pp. 123.
KURGANOV A.M., FEDOROV N.F. 1978. Spravochnik po gidravlicheskim raschetam sistem vodosnabzheniya i kanalizatsii [Reference book on hydraulic calculations of the water supply and sewerage systems]. 2nd ed. revised and enlarged. Leningrad. Stroiizdat pp. 424.
MIKHAILOV I.E., ZOLOTUKHIN V.I. 1977. Vliianiye vysoty vodozabornykh otverstii bashennykh vodopriyemnikov na poteri napora [Influence of the height of water inlets of the tower water intakes on pressure loss]. Gidrotekhnicheskoye stroitel’stvo. No. 2 p. 27–28.
MIKHAILOV I.E., ZOLOTUKHIN V.I. 1978. Vybor form i razmerov bashennykh vodopriyemnikov [Selection of shapes and sizes of tower water intakes]. Gidrotekhnicheskoe stroitel’stvo. No. 2 p. 24–27.
NOVAK P., MOFFAT A.I.B., NALLURI C., NARAYANAN R.A.I.B. 2007. Hydraulic structures. 4th ed. Taylor and Francis. ISBN 0-203-96463-2 pp. 736.
PEPLOV E.E., KOKAYA N.V. 1956. Zatvor s vozdushnoi kameroi [Air shutter]. Gidrotekhnika i melioratsiya. No. 6 p. 37–41.
PLESEVIČIUS P.I. 1974. Vliyaniye vysoty pod"yema tareli na gidravlicheskoye soprotivleniye armatury zapornykh klapanov truboprovodov sudovykh sistem [Impact of the height of plate lifting on the hydraulic resistance of valve members of marine systems’ pipelines]. Trudy Leningradskogo korablestroitel’nogo instituta. No. 94 p. 74–84.
SHOMAYRAMOV M., NORKULOV B., RAKHMANOV J., TADJIYEVA D., SUYUNOV J. 2019. Experimental researches of hydraulic vacuum breakdown devices of siphon outlets of pumping stations. In: Construction the Formation of Living Environment. XXII International Scientific Conference (FORM-2019). Tashkent, Uzbekistan. Eds. A. Volkov, A. Pustovgar, T. Sultanov, A. Adamtsevich. E3S Web Conf. 97 05009. DOI 10.1051/e3sconf/20199705009.
SLISSKII P.M. 1974. Gidravlicheskiye raschety napornykh orositel’nykh sistem s regulirovaniyem po nizhnemu befu [Hydraulic calculations of pressure irrigation systems with downstream control]. Trudy Moskovskogo energeticheskogo instituta. No. 203 p. 134–139.
SLISSKIY S.M. 1970. Gidravlika zdanii gidroelektrostantsii [Hydraulics of hydroelectric power station premises]. Moscow. Energiya pp. 424.
STEPANOV P.M., OVCHARENKO I.KH., SKOBELTSYN YU.A. 1984. Spravochnik po gidravlike dlya melioratorov [Reference textbook on hydraulics for irrigation engineers]. Moscow. Kolos pp. 207.
SURIN A.A. 1946. Gidravlicheskii udar v truboprovodakh i bor’ba s nim [Water hammer in pipelines and combatting it]. Moscow. Transzheldorizdat pp. 372.
TSUKANOVA E.A., BARZHANSKII E.E. RAKHMANOV ZH.R. 1975. Opredeleniye koeffitsientov poter tsilindricheskikh klapanov [Determination of loss coefficients for cylindrical valves]. Mekhanika mashinostroyeniya. No. 49 p. 77–84. VALIPOUR M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI 10.1515/jwld-2017-0011.
VIL'NER YA.M., KOVALEV YA.T., NEKRASOV B.B. 1976. Spravochnoye posobiye po gidravlike, gidromashinam i gidroprivodam [Reference textbook on hydraulics of hydraulic machines and hydraulic drives]. Ed. B.B. Nekrasov. Minsk. Vysheishaya shkola pp. 419
YUREV A.S. 2001. Spravochnik po raschetam gidravlicheskikh i ventiliatsionnykh sistem [Reference textbook on calculations for hydraulic and ventilation systems]. Ed. A.S. Yurev. Saint Petersburg. ANO NPO Mir i semya. ISBN 5-94365-022-9 pp. 1154
ZAKHAROV O.V., KARELIN V.YA., NOVODEREZHKIN R.A. 1976. Opyt ekspluatatsii krupnykh osevykh nasosov na magistral’nykh kanalakh [Experience of operating large axial pumps on major supply channels]. Gidrotekhnicheskoye stroitel’stvo. No. 8 p. 20–24.
Go to article

Authors and Affiliations

Ievgenii Gerasimov
1
Henrikh Herasymov
1
ORCID: ORCID
Oleg Pinchuk
1
ORCID: ORCID

  1. National University of Water and Environmental Engineering, 11 Soborna St., 33028 Rivne, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The global demand for water has been growing rapidly in the last decade with a global population growth rate of 1.1% p.a., which is equivalent to 81 million people per year. Southeast Asian countries are facing severe water scarcity challenge due to their location in the tropics. In 2018, the Sumba Island experienced the highest temperature of 36°C and lesser rain-fall of 911.1 mm3 per year and it was classified as a long dry island prone to drought due to dry winds from Australian des-serts. This paper focuses on the perceived effect of water scarcity on livelihoods in the Mandahu Village, Indonesia, due to climate change. Sampling and survey covered rural households and the findings showed that the average household of 4 to 8 people consumed around 250 dm3 of water per day. The community relied on two main sources of clean water from two main springs. However, the prolonged dry season from May until December every year results in major challenges to ac-cess water and eventually affect the agricultural productivity. Hence, the feasibility of the fog collection technology has been investigated from technological, economic and social points of view as a reliable and cost-effective source of water. The outcome of this work will produce a feasibility statement for fog-to-water as an alternative solution counteracting water scarcity in the Sumba Island, a solution which can be replicated in other climate change stricken hot spots in South-east Asia.
Go to article

Bibliography

ABDELKHALEQ R.A., ALHAJ AHMED I. 2007. Rainwater harvesting in ancient civilizations in Jordan. Water Science and Technology: Water Supply. Vol. 7(1) p. 85–93. DOI 10.2166/ws.2007.010.
ABDUL‐WAHAB S.A., LEA V. 2008. Reviewing fog water collection worldwide and in Oman. International Journal of Environmental Studies. Vol. 65(3) p. 487–500. DOI 10.1080/ 00207230802149983.
AHMED W., GARDNER T., TOZE S. 2011. Microbiological quality of roof-harvested rainwater and health risks: A review. Journal of Environmental Quality. Vol. 40(1) p. 13–21. DOI 10.2134/jeq2010.0345.
AL-FARUQ U., SAGALA S., RIANAWATI E., CURRIE E. 2016. Assessment of renewable energy impact to community resilience in Sumba Island [online]. Resilience Development Initiative. Working Paper Series. No. 9 pp. 14. [Access 12.04.2020]. Available at: https://www.preventionweb.net/go/51505
AMOATEY P., BANI R. 2011. Wastewater management. In: Waste water: Evaluation and management [online]. Ed. F.S.G. Einschlag p. 379–398. DOI 10.5772/16158. [Access: 17.03.2020]. Available at: https://www.intechopen.com/books/waste-water-evaluation-and-management/wastewater-management
ARIFFIN N., ABDULLAH M.M.A.B., ZAINOL M.R.R.M.A., MURSHED M.F., FARIS M.A., BAYUAJI R. 2017. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences. Vol. 97, 01023 pp. 8.
BAAWAIN M., CHOUDRI B.S., AHMED M., PURNAMA A. (eds.). 2015. Recent progress in desalination, environmental and marine outfall systems. Basel, Switzerland: Springer International Publishing.
BHUVANESWARI K., GEETHALAKSHMI V., LAKSHMANAN A., SRINIVASAN R., SEKHAR N.U. 2013. The impact of El Nino/ Southern oscillation on hydrology and rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool. Weather and Climate Extremes. Vol. 2 p. 39–47. DOI 10.1016/j.wace.2013.10.003.
BPS 2013. Sumba Timur Dalam Angka 2013. Katalog BPS 1102001.5302. Waingapu. Badan Pusat Statistik Kabupaten Sumba Timurp Rovinsi Nusa Tenggara Timur pp. 431.
BPS 2016. Provinsi Nusa Tenggara Timur Dalam Angka 2016 [Nusa Tenggara Timur Province in Figures 2016]. Badan Pusat Statistik Provinsi Nusa Tenggara Timur. ISSN 0215-2223 pp. 511.
BPS 2017. Jumlah UMK dan Jumlah Penduduk Menurut Pulau di Peovinsi NTT [Number of UMK and Total Population by Island in NTT Province] [online]. Badan Pusat Statistic Provinsi Nusa Tenggara Timur. [Access 10.05.2020]. Available at: https://ntt.bps.go.id/statictable/
CERECEDA P., SCHEMENAUER R.S., SUIT M. 1992. An alternative water supply for Chilean coastal desert villages. International Journal of Water Resources Development. Vol. 8(1) p. 53–59.
CHANDRAPPA R., GUPTA S., KULSHRESTHA U.C. 2011. Coping with climate change: principles and Asian context. Berlin–Heidelberg. Springer Verlag. ISBN 978-3-642-44745-7 pp. 370. DOI 10.1007/978-3-642-19674-4. CRAINE S. 2013. Final short fieldwork report for a village electrification options on Sumba Island. Hivos.
DAVTALAB R., SALAMAT A., OJI R. 2013. Water harvesting from fog and air humidity in the warm and coastal regions in the south of Iran. Irrigation and Drainage. Vol. 62(3) p. 281–288. DOI 10.1002/ird.1720.
DEVI R., DIBOCH B., SINGH V. 2012. Rainwater harvesting practices: A key concept of energy-water linkage for sustainable development. Scientific Research and Essays. Vol. 7(5) p. 538–543. DOI 10.5897/SRE09.487.
DHINGRA N., SINGH N.S., SHARMA R., PARWEEN T. 2020. Rainwater harvesting and current advancements. In: Modern age waste water problems. Solutions Using Applied Nanotechnology. Eds. M. Oves, M. Omaish Ansari, M. Zain Khan, M., Shahadat, I.M.I. Ismail. Springer Nature Switzerland p. 293–307.
DODSON L.L., BARGACH J. 2015. Harvesting fresh water from fog in rural Morocco: research and impact Dar Si Hmad’s Fogwater Project in Aït Baamrane’. Procedia Engineering. Vol. 107 p. 186–193. DOI 10.1016/j.proeng.2015.06.073.
DOMEN J.K., STRINGFELLOW W.T., CAMARILLO M.K., GULATI S. 2014. Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy. Vol. 16(2) p. 235–249. DOI 10.1007/s10098-013-0645-z.
FESSEHAYE M., ABDUL-WAHAB S.A., SAVAGE M.J., KOHLER T., GHEREZGHIHER T., HURNI H. 2017. Assessment of fog-water collection on the eastern escarpment of Eritrea. Water International. Vol. 42(8) p. 1022–1036. DOI 10.1080/02508060.2017.1393714.
FISHER R., BOBANUBA W.E., RAWAMBAKU A., HILL G.J., RUSSELL-SMITH J. 2006. Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: Current patterns, future prospects. International Journal of Wildland Fire. Vol. 15(3) p. 307–317. DOI 10.1071/WF05083.
FREDERIKS B. 2013. Sumba energy from waste. Desk study report. Sumba Iconic Island Reports [online]. [Access 20.05.2020]. Hivos pp. 20 + App.. Available at: https://sumbaiconicisland.org/wp-content/
GANDHIDASAN P., ABUALHAMAYEL H.I., PATEL F. 2018. Simplified modeling and analysis of the fog water harvesting system in the Asir Region of the Kingdom of Saudi Arabia. Aerosol and Air Quality Research. Vol. 18(1) p. 200–213. DOI 10.4209/aaqr.2016.11.0481.
GOKKON B. 2015. Sumba renewable energy: A bright future where the lights don’t go out [online]. [Access 10.04.2020]. Available at: http://jakartaglobe.id/news/sumba-renewable-energybright-future-lights-dont-go/
HAMILTON K., REYNEKE B., WASO M., CLEMENTS T., NDLOVU T., KHAN W., …, AHMED W. 2019. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. npj Clean Water. Vol. 2(1), 7 p. 1–18. DOI 10.1038/s41545-019-0030-5.
HELMREICH B., HORN H. 2009. Opportunities in rainwater harvesting. Desalination. Vol. 248(1–3) p. 118–124. DOI 10.1016/j.desal.2008.05.046. Hivos 2012. Sumba: An iconic island to demonstrate the potential of renewable energy. Poverty reduction, economic development and energy access combined [online]. [Access 20.05.2020]. Available at: https://sumbaiconicisland.org/wp-content/
KHAWAJI A.D., KUTUBKHANAH I.K., WIE J. M. 2008. Advances in seawater desalination technologies. Desalination. Vol. 221(1–3) p. 47–69. DOI 10.1016/j.desal.2007.01.067.
LATTEMANN S., HÖPNER T. 2008. Environmental impact and impact assessment of seawater desalination. Desalination. Vol. 220(1–3) p. 1–15. DOI 10.1016/j.desal.2007.03.009.
MAYERHOFER M., LOSTER T. 2015. Fog nets. Available at: https://www.munichre-foundation.org/content/dam/munichre/
MBILINYI B.P., TUMBO S.D., MAHOO H.F., SENKONDO E.M., HATIBU N. 2005. Indigenous knowledge as decision support tool in rainwater harvesting. Physics and Chemistry of the Earth. P. A/B/C. Vol. 30(11–16) p. 792–798. DOI 10.1016/ j.pce.2005.08.022.
MCSWEENEY C., NEW M., LIZCANO G., LU X. 2010. The UNDP Climate Change Country Profiles Improving the Accessibility of Observed and Projected Climate Information for Studies of Climate Change in Developing Countries. Bulletin of the American Meteorological Society. Vol. 91 p. 157–166. DOI 10.1175/2009BAMS2826.1.
METER K.J.V., BASU N.B., TATE E., WYCKOFF J. 2014. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environmental Science & Technology. Vol. 48(8) p. 4217–4225. DOI 10.1021/es4040182.
MILLER J. 2019. Aqualonis: Converting fog into drinking water. Obtaining drinking water from fog [online]. [Access 12.04.2020]. Available at: https://www.european-business.com/aqualonis-gmbh/aqualonis-converting-fog-into-drinking-water
MONK K.A., DE FRETES Y., REKSODIHARDJO-LILLEY G. 1997. The ecology of Nusa Tenggara and Maluku. Vol. V. The Ecology of Indonesia Series. Hong Kong: Periplus Editions pp. 966.
OKTAVIANI R., AMALIAH S., RINGLER C., ROSEGRANT M.W., SULSER T.B. 2011. The impact of global climate change on the Indonesian economy [online]. International Food Policy Research Institute Discussion paper, 01148. [Access 17.05.2020]. Available at: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126762
OLIVIER J. 2008. Anyone for a glass of fresh fog? Alternative water sources for South Africa [online]. Research Report. Cape Town. UNISA p. 30–31. [Access 30.05.2020]. Available at: https://www.yumpu.com/en/document/view/27593719/unisa-2008-research-report-university-of-south-africa
PEREIRA D. 2008. Atacama [online]. flickr. [Access 20.05.2020]. Available at: https://www.flickr.com/photos/galeria_miradas/5816252302/in/photostream/
PIRNIA A., GOLSHAN M., DARABI H., ADAMOWSKI J., ROZBEH S. 2019. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change. Vol. 10(4) p. 725–742. DOI 10.2166/wcc.2018.162.
QADIR M., JIMÉNEZ G.C., FARNUM R.L., DODSON L.L., SMAKHTIN V. 2018. Fog water collection: Challenges beyond technology. Water. Vol. 10(4), 372 p. 1–10. DOI 10.3390/w10040372.
QDAIS H.A. 2008. Environmental impacts of the mega desalination project: the Red–Dead Sea conveyor. Desalination. Vol. 220(1–3) p. 16–23. DOI 10.1016/j.desal.2007.01.019.
RAHMAN A. 2017. Recent advances in modelling and implementation of rainwater harvesting systems towards sustainable development. Water. Vol. 9(12), 959. DOI 10.3390/ w9120959.
REARDON C., DOWNTON P., MCGEE C. 2013. Construction systems [online]. Your Home Australia’s guide to environmentally sustainable homes. [Access 17.05.2020]. Available at: https://www.yourhome.gov.au/materials/construction-systems
SASSEN K., WANG Z., LIU D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research: Atmospheres. Vol. 114. Iss. D4, ID D00H06. DOI 10.1029/2009JD011916.
SCHEMENAUER R.S., CERECEDA P. 1994. Fog collection's role in water planning for developing countries. Natural Resources Forum. Vol. 18. No. 2 p. 91–100. DOI 10.1111/j.1477-8947.1994.tb00879.x.
SCHEMENAUER R.S., OSSES P., LEIBBRAND M. 2004. Fog collection evaluation and operational projects in the Hajja Governorate, Yemen. In: Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew. 11–15.10.2004. Cape Town, South Africa.
SHANYENGANA E.S., SANDERSON R.D., SEELY M.K., SCHEMENAUER R.S. 2003. Testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology – AQUA. Vol. 52(3) p. 237–241.
SIDDIQUE M.N.I., MUNAIM M.S.A., ZULARISAM A.W. 2015. Feas¬ibility analysis of anaerobic co-digestion of activated manure and petrochemical wastewater in Kuantan (Malaysia). Journal of Cleaner Production. Vol. 106 p. 380–388. DOI 10.1016/j.jclepro.2014.08.003.
SII 2016. The iconic island for renewable energy. Sumba Iconic Island [online]. [Access 07.05.2020]. Available at: https://sumbaiconicisland.org/
SIPAYUNG S.B., SUSANTI I., MARYADI E., NURLATIFAH A., SISWANTO B., NAFAYEST M., PUTRI F.A., HERMAWAN E. 2019. Analysis of drought potential in Sumba Island until 2040 caused by climate change. Journal of Physics: Conference Series. Vol. 1373, 012004. DOI 10.1088/1742-6596/1373/1/012004.
SYAUKAT Y. 2011. The impact of climate change on food production and security and its adaptation programs in Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences. Vol. 17(1) p. 40–51. The Guardian 2016. Cloud fishing' reels in precious water for villagers in rural Morocco [online]. [Access 26.5.2020]. Available at: https://www.theguardian.com/global-development/2016/dec/26/cloud-fishing-reels-in-precious-water-villagers-rural-morocco-dar-si-hmad
TIEDEMANN K.J., LUMMERICH A. 2010. Fog harvesting on the verge of economic competitiveness [online]. 5th International Conference on Fog, Fog Collection and Dew. 25–30.07.2010. Münster, Germany. id.FOGDEW2010-93. [Access 07.05.2020]. Available at: http://meetings.copernicus.org/fog2010
TORTAJADA C. 2006. Water management in Singapore. Water Resources Development. Vol. 22(2) p. 227–240. DOI 10.1080/07900620600691944.
UNDP 2017. Sisi lain perubahan iklim: Mengapa Indonesia harus beradaptasi untuk melindungi rakyat iskinnya. United Nations Development Programme Indonesia. ISBN 978-979-17069-0-2 pp. 20.
USAID 2017. Climate risk profile: Indonesia [online]. Fact sheet pp. 5. [Access 30.05.2020]. Available at: https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_ATLAS_Climate%20Risk%20Profile_Indonesia.pdf
VINKE K., SCHELLNHUBER H.J., COUMOU D., GEIGER T., GLANEMANN N., HUBER V., KNAUS M., KROPP J., KRIEWALD S., LAPLANTE B., LEHMANN J. 2017. A region at risk: The human dimensions of climate change in Asia and the Pacific [online]. Mandaluyong City, Metro Manila: Asian Development Bank. [Access 30.04.2020]. Available at: https://www.adb.org/sites/default/files/publication/325251/region-risk-climate-change.pdf
WINQVIST G., DAHLBERG E., SMITH B., BERLEKOM M. 2008. Indonesia environmental and climate change policy brief. Gothenburg. Sida Helpdesk for Environmental Economics, University of Gothenburg pp. 24. WV 2016. World vision’s response to El Niño in Asia-Pacific. Snapshot of interventions in priority countries and funding available per response [online]. World Vision Asia Pacific, OCHA, US National Oceanic & Atmospheric Administration, World Meteorological Organization [Access 30.04.2020]. Available at: http://www.wvi.org/sites/default/files/ElNino_AsiaPacific_April2016.pdf
YOUNOS T. 2005. Environmental issues of desalination. Journal of Contemporary Water Research and Education. Vol. 132(1) p. 11–18. DOI 10.1111/j.1936-704X.2005.mp132001003.x.
ZHANG S.X., BABOVIC V. 2012. A real options approach to the design and architecture of water supply systems using innov-ative water technologies under uncertainty. Journal of Hydroinformatics. Vol. 14(1) p. 13–29. DOI 10.2166/hydro.2011.078.

Go to article

Authors and Affiliations

Zaitizila Ismail
1
ORCID: ORCID
Yun Ii Go
1
ORCID: ORCID
Mahawan Karuniasa
2
ORCID: ORCID

  1. Heriot-Watt University Malaysia, School of Engineering and Physical Science, 62200 Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
  2. Universitas Indonesia, School of Environmental Science, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of quality class determination and regulatory and monetary valuation of agricultural land in the steppe soils irrigation zone using the Karmanov’s methodology of soil and climatic quality class determination and au-thor's methodology of ecological, agro-ameliorative and climatic soils quality class determination. Based on the results of spatial modeling, a series of maps was created and characteristics of ecological, agro-ameliorative and relief and climatic components of soils quality class were presented based on the example of the Kherson Region, Ukraine. According to the results soil and climatic quality class determination, it is established that the value of the class varies from 25 to 46 points; the regulatory and monetary value of agricultural land varies from USD 490 per 1 ha for dark chestnut and chestnut al-kaline soils up to USD1,360 per ha for ordinary chernozem. According to the results of ecological, agro-ameliorative and climatic soils quality class determination, it is established that the value of the class varies from 6 to 59 points; the regulato-ry and monetary value of agricultural land varies from USD145 per 1 ha for degraded and highly saline chestnut soils up to USD2,060 per ha for irrigated southern chernozem. The suggested methodology of soil quality class calculation can have multiple purposes. It is intended to be used for different physiographic conditions of land use to develop adaptive soils pro-tection measures at different territorial levels of agricultural production management with the overall objective of ensuring sustainable land use.
Go to article

Bibliography

BEZNITSKA N.V. 2017. Modelyuvannya g'runtovo-klimatychnogo potentsyalu sil's'kogospodars'kykh zemel' Khersons'koyi oblasti iz zastosuvannya GIS-tekhnologyi [Modeling of soil and climatic potential of agricultural lands of the Kherson region using GIS-technology]. Visnyk Natsional'nogo universytetu vodnogo gospodarstva ta pryrodokorystuvannja. No. 4 (76) p. 31–43.
BREUS D., YEVTUSHENKO O., SKOK S., RUTTA O. 2019. Retrospective studies of soil fertility change on the example of the Kherson region (Ukraine). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. Vol. 19 (5.1) p. 645–652. DOI 10.5593/sgem2019/5.1/S20.080.
BURYAK ZH.A., GRIGOREVA O.I., PAVLYUK YA.V. 2014. GIS maintenance of rural territories geoplanning under basin principles. International Journal of Advanced Studies. Vol. 4 (2) p. 56–60. DOI 10.12731/2227-930X-2014-2-8.
DOMARATSKY YE.O., ZHUYKOV O.G., IVANIV M.O. 2018. Influence of sowing periods and seeding rates on yield of grain sorghum hybrids under regional climatic transformations. Indian Journal of Ecology. Vol. 45(4) p. 785–789.
DUDIAK N.V., PICHURA V.I., POTRAVKA L.A., STRATICHUK N.V. 2019a. Geomodelling of destruction of soils of Ukrainian steppe due to water erosion. Journal of Ecological Engineering. Vol. 20(8) p. 192–198. DOI 10.12911/22998993/110789.
DUDIAK N.V., PICHURA V.I., POTRAVKA L.A., STROGANOV A.A. 2020. Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecological Engineering. Vol. 21(2) p. 166–177. DOI 10.12911/22998993/ 116321.
DUDIAK N.V., POTRAVKA L.A., STROGANOV A.A. 2019b. Soil and climatic bonitation of agricultural lands of the steppe zone of Ukraine. Indian Journal of Ecology. Vol. 46(3) p. 534–540.
JENSENA J.L., SCHJØNNINGA P., WATTSB C.W., CHRISTENSENA B.T., OBOURAC P.B., MUNKHOLMA L.J. 2020. Soil degradation and recovery – Changes in organic matter fractions and structural stability. Geoderma. Vol. 364. DOI 10.1016/ j.geoderma.2020.114181.
Kabinet Ministriv Ukrayiny 2016. Metodyka normatyvnoyi hroshovoyi otsinky zemelʹ silʹsʹkohospodarsʹkoho pryznachennya [Methods of normative monetary valuation of agricultural land] [online]. November 16, 2016. No. 831. [Access 20.03.2020]. Available at: https://zakon.rada.gov.ua/laws/show/831-2016-%D0%BF
KARMANOV I.I. 1980. Plodorodye pochv SSSR [Soil fertility of the USSR]. Moscow. Kolos pp. 224.
KARMANOV I.I., BULGAKOV D.S. 2012. Metodika pochvenno-agroklimaticheskoy otsenki pakhotnykh zemel' dlya kadastra [Methodology of soil and agroclimatic assessment of arable land for cadaster]. Moscow. Rossiyskaya akademiya sel'skokhozyaystvennykh nauk, Gosudarstvennoe nauchnoe uchrezhdeniye Pochvennyy institut imeni V.V. Dokuchayeva. ISBN 978-5-904761-32-5 pp. 119.
KARMANOV I.I., BULGAKOV D.S., SHISHKONAKOVA E.A. 2013. Sistema otsenki prirodno-antropogennykh vozdeystviy na izmeneniye plodorodiya pochv pakhotnykh zemel' na osnove pochvenno-agroklimaticheskogo indeksa [An assessment system of natural and anthropogenic effects on changes]. Byulleten' Pochvennogo instituta imeni V.V. Dokuchaeva. No. 72 pp. 65–83.DOI 10.19047/0136-1694-2013-72-65-83.
LI J., CHEN H., ZHANG C. 2020. Impacts of climate change on key soil ecosystem services and interactions in Central Asia. Ecological Indicators. Vol. 116. DOI 10.1016/j.ecolind.2020.106490.
LISETSKII F., CHEPELEV O. 2014. Quantitative substantiation of pedogenesis model key components. Advances in Environmental Biology. Vol. 8(4) p. 996–1000.
LISETSKII F.N. 2012. Soil reproduction in steppe ecosystems of different ages. Contemporary Problems of Ecology. Vol. 5(6) p. 580–588. DOI 10.1134/S1995425512060108.
LISETSKII F.N., PICHURA V.I., BREUS D.S. 2017a. Use of geoinformation and neurotechnology to assess and to forecast the humus content variations in the steppe soils. Russian Agricultural Sciences. No. 2(43) p. 151–155. DOI 10.1134/S1995425512060108.
LISETSKII F.N., STOLBA V.F., PICHURA V.I. 2017b. Late-Holo¬cene palaeoenvironments of Southern Crimea: Soils, soil-climate relationship and human impact. Holocene. Vol. 27(12) p. 1859–1875. DOI 10.1177/0959683617708448.
MEDVEDEV V.V. 2009. Neodnorodnost' pochv i tochnoye zemledeliye [Soil heterogeneity and precision farming]. Part 2. Kharkov. KP «Gorodskaya topografiya». ISBN 978-966-8726-50-7 pp. 260.
MEDVEDEV V.V., PLISKO I.V. 2006. Bonitirovka i kachestvennaya otsenka pakhotnykh zemel' Ukrainy [Bonitation and qualitative assessment of arable land in Ukraine]. Kharkov. 13 tipografiya. ISBN 966-8726-31-6 pp. 386.
PICHURA V.I., DOMARATSKY Y.A., YAREMKO YU.I., VOLOCHNYUK Y.G., RYBAK V.V. 2017. Strategic ecological assessment of the state of the transboundary catchment basin of the Dnieper River under extensive agricultural. Indian Journal of Ecology. Vol. 44 (3) p. 442–450.
PICHURA V.I., POTRAVKA L.A., DUDIAK N.V., SKRYPCHUK P.M., STRATICHUK N.V. 2019. Retrospective and forecast of heterochronal climatic fluctuations within territory of Dnieper Basin. Indian Journal of Ecology. Vol. 46(2) p. 402–407.
RASMUSSEN C., TABOR N.J. 2007. Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal. Vol. 71(6) p. 1719–1729. DOI 10.2136/sssaj2007.0051.
STORIE R.E. 1978. Storie index soil rating. Division of Agricultural Sciences. Vol. 32(3) p. 1–4.
TSYBIKDORZHIEV TS.TS., KHUBRAKOVA B.TS., GONCHIKOV B-M.N. 2009. Bonitirovka i kadastrovaya otsenka pochv Dzhidinskogo rayona Respubliki Buryatiya [Valuation and cadastral valuation of soils of the Dzhidinsky district of the Republic of Buryatia]. Vestnik Buryatskoy gosudarstvennoy sel'skokhozyaystvennoy akademii im. V.R. Filippova. No. 3(16) p. 143–150.
ZELENSKAYA E., PICHURA V., DOMARATSKY YE. 2018. Priorities of agroecological monitoring of the composition of soil trace elements taking into account the peculiarities of its formation over time. Journal of Engineering and Applied Sciences. Vol. 13 p. 5807–5813. DOI 10.3923/jeasci.2018.5807.5813.

Go to article

Authors and Affiliations

Vitalii Pichura
1
Larisa Potravka
1
Nataliia Dudiak
1
Alexander Stroganov
1
Olha Dyudyaeva
1

  1. Kherson State Agrarian and Economic University, Stritens'ka str. 23, Kherson, 73006, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Agricultural residues rich in lignocellulosic biomass are low-cost and sustainable adsorbents widely used in water treatment. In the present research, thermodynamics, kinetics, and equilibrium of nickel(II) and lead(II) ion biosorption were studied using a corncob (Zea mays). The experiments were performed in a batch system evaluating the effect of tempera-ture and dose of adsorbent. Langmuir and Freundlich isotherms were used to study the equilibrium. Thermodynamic and kinetic parameters were determined using kinetic models (pseudo-first order, pseudo-second order, Elovich). Biosorbent characteristics were studied by Fourier-transform infrared spectroscopy, Scanning Electron Microscopy and Energy-dispersive X-ray spectroscopy. It was found that the hydroxyl, carboxyl, and phenolic groups are the major contributors to the removal process. Besides, Pb(II) ions form micro-complexes on the surface of the biomaterial while Ni(II) ions form bonds with active centers. It was found that the highest Ni(II) removal yields were achieved at 0.02 g of adsorbent and 70°C, while the highest Pb(II) removal yields were achieved at 0.003 g and 55°C. A maximum Ni(II) adsorption capacity of 3.52 mg∙g–1 (86%) and 13.32 mg∙g–1 (94.3%) for Pb(II) was obtained in 250 and 330 min, respectively. Pseudo-first or-der and pseudo-second order models best fit experimental data, and Langmuir and Freundlich models well describe the iso-therm of the process. Thermodynamic parameters (ΔH0, ΔG0, ΔS0) suggest that the adsorption process of both cations is exothermic, irreversible, and not spontaneous.
Go to article

Bibliography

ABDUL-HAMEED H.M., AL JUBOURY M.F. 2020. MgFe-doubled layers hydroxide intercalated with low cost local adsorbent using for removal of lead from aqueous solution. Journal of Water and Land Development. No. 45 (IV–VI) p. 10–18. DOI 10.24425/jwld.2020.133041.
BABAZADEH R., RAZMI J., PISHVAEE M.S, RABBANI M. 2017. A sustainable second-generation biodiesel supply chain net¬work design problem under risk. Omega. Vol. 66 p. 258–277. DOI 10.1016/J.OMEGA.2015.12.010.
BARDESTANI R., ROY C., KALIAGUINE S. 2019. The effect of biochar mild air oxidation on the optimization of lead(II) adsorption from wastewater. Journal of Environmental Mana¬gement. Vol. 240 p. 404–420. DOI 10.1016/j.jenvman.2019.03.110.
BUREVSKA K., MEMEDI H., LISICHKOV K., KUVENDZIEV S., MARINKOVSKI M., RUSESKA G., GROZDANOV A. 2017. Biosorption of nickel ions from aqueous solutions by natural and modified peanut husks: Equilibrium and kinetics. Water and Environment Journal. Promoting Sustainable Solutions. Vol. 32. Iss. 2 p. 276–284. DOI 10.1111/wej.12325.
CHEN Y., WANG H., ZHAO W., HUANG S. 2018. Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. Journal of the Taiwan Institute of Chemical Engineers. Vol. 88. p. 146–151. DOI 10.1016/j.jtice.2018.03.046.
CHERIK D., LOUHAB K. 2018. A kinetics, isotherms, and thermo¬dynamic study of Diclofenac adsorption using activated carbon prepared from olive stones. Journal of Dispersion Science and Technology. Vol. 39. No. 6 p. 814–825. DOI 10.1080/01932691.2017.1395346.
DAI Y., SUN ., WANG W., LU L., LIU M., LI J., ... ZHANG Y. 2018. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. Vol. 211 p. 235–253. DOI 10.1016/j.chemosphere.2018.06.179.
DOBROSZ-GÓMEZ I., GÓMEZ M., SANTA C. 2018. Optimización del proceso de adsorción de Cr(VI) sobre carbón activado de origen bituminoso [Optimization of the Cr(VI) adsorption process on activated carbon of bituminous origin]. Información Tecnológica. Vol. 29. No. 6 p. 43–56. DOI 10.4067/ S0718-07642018000600043.
GAŁCZYŃSKA M., MAŃKOWSKA N., MILKE J., BUŚKO M. 2019. Possibilities and limitations of using Lemna minor, Hydro-charis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. Journal of Water and Land Development. No. 40 p. 161–173. DOI 10.2478/jwld-2019-0018.
HAROON H., ASHFAQ T., GARDAZI S.M.H., SHERAZI T.A., ALI M., RASHID N., BILAL M. 2016. Equilibrium kinetic and thermo-dynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean Journal of Chemical Engineering. Vol. 33 No. 10 p. 2898–2907. DOI 10.1007/s11814-016-0160-0.
HERNÁNDEZ RODIGUEZ M., YPERMAN J., CARLEER R., MAGGEN J., DADDI D., GRYGLEWICZ G., VAN DER BRUGGEN B., FALCÓN HERNÁNDEZ J., OTERO CALVIS A. 2018. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering. Vol. 6. No. 1 p. 1161–1170. DOI 10.1016/j.jece.2017.12.045.
IBISI N.E., ASOLUKA C.A. 2018. Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water. Chemistry International. Vol. 4. No. 1 p. 52–59.
JOHARI K., SAMAN N., SONG S.T., CHIN C.S., KONG H., MAT H. 2016. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. International Biodeterioration and Biodegra-dation Vol. 109 p. 45–52. DOI 10.1016/j.ibiod.2016.01.004.
KAPLAN INCE O., INCE M., YONTEN V., GOKSU A. 2017. A food waste utilization study for removing lead(II) from drinks. Food Chemistry. Vol. 214 p. 637–643. DOI 10.1016/ j.foodchem.2016.07.117.
LIU Z., DENG X., WANG M., CHEN J., ZHANG A., GU Z., ZHAO C. 2009. BSA-modified polyethersulfone membrane: Prepara-tion, characterization and biocompatibility. Journal of Biomaterials Science, Polymer Edition. DOI 10.1163/156856209X412227.
MANIRETHAN V., GUPTA N., BALAKRISHNAN R.M., RAVAL K. 2019. Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes. Environmental Science and Pollution Research. Vol. 27 p. 24723–24737. DOI 10.1007/ s11356-019-06310-8.
MANJULADEVI M., ANITHA R., MANONMANI S. 2018. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science. Vol. 8 No. 1 p. 36. DOI 10.1007/s13201-018-0674-1.
NASEEM K., HUMA R., SHAHBAZ A., JAMAL J., ZIA UR REHMAN M., SHARIF A., …, FAROOQI Z.H. 2019. Extraction of heavy metals from aqueous medium by husk biomass: Adsorption isotherm, kinetic and thermodynamic study. Zeitschrift für Physikalische Chemie. Vol. 233 Iss. 2 p. 201–223. DOI 10.1515/zpch-2018-1182.
OUHIMMOU M., RÖNNQVIST M., LAPOINTE L.-A. 2019. Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain. Omega. Vol. 99, 102173. DOI 10.1016/J.OMEGA.2019.102173.
PRADHAN P., ARORA A., MAHAJANI S.M. 2018. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for Sustainable Development. Vol. 43 p. 1–14. DOI 10.1016/j.esd.2017.11.005.
RAVAL N.P, SHAH P.U., SHAH N.K. 2016. Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management. Vol. 179 p. 1–20. DOI 10.1016/j.jenvman.2016.04.045.
SHEN Z., ZHANG Y., MCMILLAN O., JIN F, AL-TABBAA A. 2017. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research International. Vol. 24. No. 14 p. 12809–12819.
SINGH S., SHUKLA S. 2017. Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels. Environmental Progress & Sustainable Energy. Vol. 36. No. 3 p. 864–872.
SIREGAR A., SULISTYO I., PRAYOGO N.A. 2020. Heavy metal contamination in water, sediments and Planiliza subviridis tissue in the Donan River, Indonesia. Journal of Water and Land Development. Vol. 45 (IV–VI) p. 157–164. DOI 10.24425/jwld.2020.133057.
TEJADA-TOVAR C., GONZALEZ-DELGADO A., VILLABONA-ORTIZ A. 2019a. Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences. Vol. 9. No. 21, 4486. DOI 10.3390/app9214486.
TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZÁLEZ-DELGADO Á.D., GRANADOS-CONDE C., JIMÉNEZ-VILLADIEGO M. 2019b. Kinetics of mercury and nickel adsorption using chemically pretreated cocoa (Theobroma cacao) husk. Transactions of the ASABE. Vol. 62. No. 2 p. 461–466. DOI 10.13031/trans.13133.
VALENCIA J.A.R., GONZÁLEZ J.P., JIMENEZ-PITRE I., MOLINA-BOLÍVAR G. 2019. Physico-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. Journal of Water and Land Development. Vol. 43 p. 171–176. DOI 10.2478/jwld-2019-0075.
YI Y., LV J., LIU Y., WU G. 2017. Synthesis and application of modified litchi peel for removal of hexavalent chromium from aqueous solutions. Journal of Molecular Liquids. Vol. 225 p. 28–33. DOI 10.1016/j.molliq.2016.10.140.
YIN W., ZHAO C., XU J., ZHANG J., GUO Z., SHAO Y. 2019. Removal of Cd(II) and Ni(II) from aqueous solutions using activated carbon developed from powder-hydrolyzed-feathers and Trapa natans husks. Colloids and Surfaces A: Physico-chemical and Engineering Aspects. Vol. 560 p. 426–433. DOI 10.1016/j.colsurfa.2018.10.031.

Go to article

Authors and Affiliations

Candelaria Tejada-Tovar
1
ORCID: ORCID
Ángel Villabona-Ortíz
1
ORCID: ORCID
Angel Dario Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The loss of soil quality due to erosion is a global problem, particularly affecting natural resources and agricultural pro-duction in Algeria. In this study, the Revised Universal Soil Loss Equation (RUSLE) is applied to estimate the risk of water erosion in the Ain Sefra arid watershed (Algeria). The coupling of this equation with Geographic Information Systems (GIS) allows to assess and map the soil loss rates. The land erosion is influenced by many control variables, such as the topographic factor of the terrain and the length of slope (LS factor), rainfall erosivity (R factor), sensitivity of soil to erosion (K factor), presence of vegetation (C factor) and the anti-erosion cultivation techniques (P factor). To calculate the average annual soil loss, these five factors were considered and multiplied in the RUSLE Equation. The result shows that the aver-age rate of soil loss is estimated at about 5.2 t·ha–1·y–1 over the whole watershed. This study is the first of its kind in the region and aims to assess the soil loss caused by water erosion processes in this arid zone. Consequently, it is essential to take real intervention measures in these upstream areas in order to combat this scourge, based on priorities ensuring the sustainable management of natural resources in the study area.
Go to article

Bibliography

ANRH 2020. Bulletins de Séries de données climatiques 1980–2020 [Climate Data Series Bulletins 1980–2020]. Agence Nationale des Ressources Hydrauliques Algérie pp. 30.
ARNOLD J.G., SRINIVASAN R., MUTTIAH R.S., WILLIAMS J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association. Vol. 34(1) p. 73–89. DOI 10.1111/j. 1752-1688.1998.tb05961.x.
BELASRI A., LAKHOUILI A. 2016. Estimation of Soil Erosion Risk Using the Universal Soil Loss Equation (USLE) and Geo-Information Technology in Oued El Makhazine Watershed, Morocco. Journal of Geographic Information System. Vol. 8 p. 98–107. DOI 10.4236/jgis.2016.81010.
BENCHETTOUH A., KOURI L., JEBARI S. 2017. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences. Vol. 10(4). DOI 10.1007/s12517-017-2875-6.
BENKADJA R., BOUSSAG F., BENKADJA A. 2015. Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien) [Identification and evaluation of erosion risk in the K'sob watershed (Eastern Algeria)]. Bulletin of Engineering Geology and the Environment. Vol. 74 p. 91–102. DOI 10.1007/s10064-014-0611-y.
BENSELAMA O., MAZOUR M., HASBAIA M., DJOUKBALA O., MOKHTARI S. 2018. Prediction of water erosion sensitive areas in Mediterranean watershed, a case study of Wadi El Maleh in north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190(12), 735. DOI 10.1007/s10661-018-7117-1.
DJOUKBALA O., MAZOUR M., HASBAIA M., BENSELAMA O. 2018. Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environmental Earth Sciences. Vol. 77, 345. DOI 10.1007/s12665-018-7532-1.
DPSB 2016. Monographie de la Wilaya de Naâma [Monograph of the Wilaya of Naâma]. Direction de la programmation et du Suivi Budgétaires de La Wilaya De Naâma pp. 164.
FAO 2015. Status of the world’s soil resources (SWSR) – Main report. Soil change: Impacts and responses. Chapt. 7. The impact of soil change on ecosystem services. Rome. Food and Agriculture Organization of the Unites Nations. ISBN 978-92-5-109004-6 pp. 222.
FAO/IIASA/ISRIC/ISSCAS/JRC 2012. Harmonized world soil database version 1.2 [online]. Rome Food and Agriculture Organization of the Unites Nations, Laxenburg, International Institute for Applied Systems Analysis. [Access 12.02.2019]. Available at: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
GESSESSE B., BEWKET W., BRÄUNING A. 2015. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation and Development. Vol. 26 p. 711–724. DOI 10.1002/ldr.2276.
HASBAIA M., DOUGHA M., BENJEDOU F. 2017. Erosion sensitivity mapping using a multi-criteria approach under GIS environment the case of the semiarid Hodna Basin in Central Algeria. International Journal of Water Resources and Arid Environments. Vol. 6(1) p. 13–19.
HONORATO R., BARRALES L., PENA I., BARRERA F. 2001. Evaluacion del modelo USLE en la estimacion de la erosion en seis localidades entre la IV y IX Region de Chile [Evaluation of the USLE model in the estimation of erosion in six locations between the IV and IX Region of Chile]. Ciencia e Investigacion Agraria. Vol. 28(1) p. 7–14.
KALMAN R. 1967. Le facteur climatique de l’érosion dans le bassin de Sebou [The climatic factor of erosion in the Sebou basin. Sebou Project, Report]. Projet Sebou, Rapport. Ronéo pp. 40.
KOUSSA M., BOUZIANE M.T. 2018. Apport du SIG a la cartographie des zones à risque d’érosion hydrique dans la région de Djelfa, Algérie. Lebanese Science Journal. Vol. 19. No. 1 p. 31–46. DOI 10.22453/LSJ-019.1.031-046.
KOUSSA M., BOUZIANE M.T. 2019. Estimation des paramètres de l'érosion hydrique par Approche SIG/USLE : cas du bassin versant de l'Oued Arab (région de Khenchela, Nord-Est de l’Algérie) [Estimation of water erosion parameters by GIS/USLE approach: Case of the Oued Arab watershed (Khenchela region, North-East Algeria)]. Agriculture and Forestry Journal. Vol. 3(1) p. 36–45. DOI 10.5281/zenodo. 3239252.
MAZOUR M., ROOSE E. 2002. Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans des bassins versants du Nord-Ouest de l’Algérie. En : Techniques traditionnelles de GCES en milieu méditerranéen [Influence of vegetation cover on runoff and soil erosion on erosion plots in watersheds in north-western Algeria. In: Traditional techniques of GCES in the Mediterranean environment]. Eds. E. Roose, M. Sabir, G. De Noni. Bulletin – Réseau Erosion. Vol. 21 p. 320–330.
NEARING M., FOSTER G., LANE L., FINKNER S. 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions for the ASAE. Vol. 32(5) p. 1587–1593. DOI 10.13031/2013.31195.
NEITSCH S., ARNOLD J., KINIRY J., WILLIAMS J. 2011. Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute Technical Report. No. 406 pp. 647.
PHAM T.G., DEGENER J., KAPPAS M. 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research. Vol. 6(2) p. 99–110. DOI 10.1016/j.iswcr.2018.01.001.
RANGO A., ARNOLDUS H.M.J. 1977. Applications de la télédé¬tection a l'amenagement des bassins versants. En : Aménagement des bassins versants [Applications of remote sensing for watershed management. In: Watershed management] [online]. Cahiers techniques de la FAO. Rome. FAO p. 1–11. [Access 12.02.2019]. Available at: http://www.fao.org/3/AD071F/AD071f00.htm
RENARD K.G., FOSTER G.R., WEESIES G.A., MCCOOL D.K., YODER D.C. 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook. No. 703 pp. 385.
RODRIGUEZ J., SUÁREZ M. 2010. Comparison of mathematical algorithms for determining the slope angle in GIS environment. Aqua-LAC. Vol. 2. No. 2 p. 78–82.
SEMWAL P., KHOBRAGADE S.D., NAINWAL H.C. 2017. Modelling of recent erosion rates in a lake catchment in the North-Western Siwalik Himalayas. Environmental Processes. Vol. 4 p. 355–374. DOI 10.1007/s40710-017-0234-y.
SHIN G.J. 1999. The analysis of soil erosion analysis in watershed using GIS. Ph.D. Thesis. Chuncheon. Gang-won National University. South Korea.
SOUIDI Z., HAMIMED A., DONZE F. 2014. Cartographie du risque de dégradation des terres en région semi-aride: Cas des Monts de Beni Chougrane dans le Tell Occidental Algérien [Mapping the risk of land degradation in the semi-arid region: Case of the Beni Chougrane Mountains in the Algerian Western Tell]. Geo-Eco-Trop. No. 38 p. 85–102.
STONE R.P., HILBORN D. 2000. Équation universelle des pertes en Terre (USLE) [Universal Soil Loss Equation (USLE)]. Ontario. Ministère de l’agriculture, de l’alimentation et des affaires rurales. Fiche technique. Commande. No. 00-002 pp. 8.
THIAW I., HONORE D. 2017. Mapping of soil erosion risk in the Diarha watershed using RUSLE, RS and GIS. American Journal of Remote Sensing. Vol. 5. No. 4 p. 30–42. DOI 10.11648/j.ajrs.20170504.11.
TOUBAL A.K., ACHITE M., OUILLON S., DEHNI A. 2018. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190, 210. DOI 10.1007/s10661-018-6580-z.
WOLDEMARIAM G.W., IGUALA A.D., TEKALIGN S., REDDY R.U. 2018. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land. Vol. 7(1), 25. DOI 10.3390/land7010025.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Supersedes Agriculture Handbook. No. 282. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agriculture Handbook. No. 537. Washington, DC. USDA pp. 58.
Go to article

Authors and Affiliations

Ahmed Melalih
1 2
ORCID: ORCID
Mohamed Mazour
3

  1. Abou Bakr Belkaïd University, Faculty of Natural and Life Sciences and theUniverse, BP 230, New campus, Tlemcen, 13000 Algeria
  2. University Center of Ain Temouchent Belhadj Bouchaib, Laboratory of Applied Hydrology and Environment (LHYDENV), Ain Temouchent, Algeria
  3. University Center of Ain Temouchent Belhadj Bouchaib, Institute of Science and Technology, Ain Temouchent, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Rainfall in the Lake Tana basin is highly seasonal and the base flow contribution is also low resulting in the need for reservoirs to meet the agricultural demand during the dry season. Water demand competition is increasing because of in-tense agricultural production. The objective of this study is to develop water balance models. The Mike Basin model has been selected for water allocation modelling and identifying potential changes needed to the existing water allocation scheme to reduce the stress due to increased water demand. The study considers baseline and future development scenarios. The construction of new dams results in two competing effects with respect to evaporation loss. The first effect is increased evaporation from new reservoirs, while the other is reduced evaporation from the Lake Tana as a result of a decreased sur-face area of the lake and reduced inflow of water to the lake. Once a dam is built, there will be an additional free water sur-face area and more evaporation loss. In dry months from January to May, the irrigation water demand deficit is up to 16 Mm3. It is caused by reservoirs built in the basin, which reduce the inflow to the Lake Tana. The inflow varies between wet and dry months, and there is more water flow in wet months (July, August and September) and reduced flow in dry months because of the regulatory effects produced by the reservoirs.
Go to article

Bibliography

ADSWE, LUPESP 2015. Hydrology and water resource assessment in Tana sub basin [online]. Vol. 3. Bahir Dar, Ethiopia. Amhara National Regional State, BoEFPLAU. [Access 23.11.2015]. Available at: https://mahiderzewdie.files.wordpress.com/2015/08/livestock-final-draft.pdf
ASCE 1993. Criteria for evaluation of watershed models. American Society of Civil Engineering. Journal of Irrigation and Drainage Engineering. Vol. 119(3) p. 429–442. DOI 10.1061/(ASCE)0733-9437(1993)119:3(429).
EL-RAEY M., EL-QUOSY D.H., EL-SHAER M., EL-KHOLY O.A., SOLIMAN A. 1995. Egypt: Inventory and mitigation options, and vulnerability and adaptation assessment. CSP Interim Report – Egypt, U.S. Country Studies Program.
HASHIMOTO T., STENDINGER J.R., LOUCKS D.P. 1982. Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation. Water Resources Research. Vol. 18. No. 1 p. 14–20.
JHA M.K., GUPTA A.D. 2003. Application of Mike Basin for water management strategies in a watershed. Water International. Vol. 28. No. 1 p. 27–35. DOI 10.1080/02508060308691662.
KEBEDE S., TRAVI Y., ALEMAYEHU T., MARC V. 2006. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. Journal of Hydrology. Vol. 316 p. 233–247.
LEGATES D.R., MCCABE G.J. Jr. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Resources. Vol. 35(1) p. 233–241. DOI 10.1029/1998WR900018.
MACDONALD M. 2004. Koga irrigation project interim report. Addis Ababa, Ethiopia. Ministry of Water Resource.
MORIASI D.N., ARNOD J.G., VAN LIEW M.W., BINGNER R.L., HARME R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885−900.
MoWR 2009. Growth corridor for Tana and Beles Sub-Basin: Endowment, potential and constraints. Vol. I. Main Text. Addis Ababa. Ministry of Water Resource.
NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. Vol. 10(3) p. 282–290.
PASTOR A.V., LUDWIG F., BIEMANS H., HOFF H, KABAT P. 2014. Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences. Vol. 18 p. 5041–5059. DOI 10.5194/hess-18-5041-2014.
SETEGN S.G., SRINVASAN R., DARGAHI B. 2008. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal. Vol. 2 p. 49–62.
SMEC 2008. Hydrological study of the Tana-Beles Sub-Basin main Report. Addis Ababa, Ethiopia. Ministry of Water Resources. Melbourne, Australia. SMEC (Snowy Mountains Engineering Corporation) pp. 110.
Studio Pietrangli 1990. Tana Beles project. Part 2. Chara Chara Weir General Report. Addis Ababa, Ethiopia.
WALE A. 2008. Hydrological Balance of Lake Tana, Upper Blue Nile basin, Ethiopia [online]. MSc thesis. Enschede. ITC, Netherlands. [Access 23.11.2015]. Available at: https://webapps.itc.utwente.nl/librarywww/papers_2008/msc/wrem/wale.pdf
WALKER G.R., ZHANG L. 2001. Plot-scale models and their application to recharge studies. In: Studies in catchment hydrology: The basics of recharge and discharge. Eds. L. Zhang, G.R. Walker. Melbourne. CSIRO Publishing. DOI 10.1071/ 9780643105423.
YOHANNES D. 2007. Remote sensing based assessment of water resource potential for Lake Tana [online]. MSc Thesis. Addis Ababa University Civil Engineering. [Access 23.11.2015]. Available at: http://etd.aau.edu.et/handle/123456789/2719

Go to article

Authors and Affiliations

Asegdew G. Mulat
1

  1. Bahir Dar University, Bahir Dar Institute of Technology, Faculty of Civil and Water Resource Engineering, P.O. Box. 26, Bahir Dar, Ethiopia

Instructions for authors

Authors should submit manuscripts via the Editorial Board ( Editorial system - Submit Your Manuscript )


1. "Journal of Water and Land Development” is published four times a year in English, articles are followed by a short (not exceeding 200 words) summary in Polish.
2. Conciseness of style is a prequisite, avoid verbose phrases and abvious statements. Manuscript should not exceed 1 printing sheet (20 standard pages of 1800 characters per page). Tables, figures and short summary should be typed at the end of the paper on separate pages.
3. Each article should contain the following elements: title, name and surname of the author(s), authors' affiliation, short abstract no longer than 150–200 words, key words, text of the paper divided into Introduction, Material and Methods, Results and Discussion, References (arranged in alphabetic order as shown below) and summary in Polish BENCALA K.E., WALTERS R.A. 1983. Simulation of solute transport in mountain pool-and riffle stream: a transient storage model. Water Resources Research. Vol. 19 p. 718–724. GÓRECKI A. 1987. Rozpoznanie i opis sztucznych pól odniesień przestrzennych [Recognition and description of the artificial plots of spatial relations]. Manuscript. Wrocław. Uniwersytet Wrocławski pp. 18. JANKOWSKI M. 2006. Elementy grafiki komputerowej [Elements of the computer graphics]. Warszawa. WNT. ISBN 8320431638 pp. 220. STRZELECKI T. 1994. Rola systemów informacji geograficznej w zarządzaniu państwem, województwem i gminą. W: Komputerowe wspomaganie badań naukowych [The role of GIS in the management of the state, voivodship and community. In: Computer aided research]. I Konferencja Środowiskowa. Wrocław. Wrocławskie Towarzystwo Naukowe p. 19–25. Papers referred to should be quoted in the text as KOWALSKI [1997], [KOWALSKI, NOWAK 1997]. If there are more than two authors, please add et al. after the first name i.e. NOWAK et al. [1997]. English version of the non-congress language title should be added in brackets.
4. Figures should be draw on tracing paper or delivered as laser printouts. Legends in the graphs should be restricted to numerical and letter descriptions, other explanations should be placed in the figure caption. Descriptions remaining within the graph should be in English and of the proportional size (i.e. they must ensure readability after graph size reduction).
5. Tables should fit to the width (16 cm) and height (24 cm) of the column.
6. Data illustrated in Figures should not appear in Tables and vice versa.
7. All variables in equations and in the text should be written in italic. Use SI units in the form g·cm–3 and not g/ml.
8. Manuscript should be sent in three copies with tables, graphs and English abstract and Polish summary with title and key words on separate pages. Enclose a floppy disc with the text written in Word for Windows with tables and figures saved in separate files.



Similarity Check Plagiarism Screening System
The editorial board is participating in a growing community of Similarity Check System's users in order to ensure that the content published is original and trustworthy. Similarity Check is a medium that allows for comprehensive manuscripts screening, aimed to eliminate plagiarism and provide a high standard and quality peer-review process. Detailed description of the Similarity Check System can be found at: www.crossref.org/services/similarity-check/


Payment fee:
225$ or 200€ including 23% VAT
(paper about 0.5 publishers sheet = 20,000 characters with spacies or 1,500 cm2 of figures).
For a volume exceeding 0.5 sheets, additionally paid in proportion to the exceedance.

Konto bankowe (dane do przelewu krajowego):
Nazwa: Instytut Technologiczno-Przyrodniczy
Adres: Falenty, ulica - aleja Hrabska 3, 05-090 Raszyn
Bank: Alior Bank S.A. BIC (Swift- code): ALBPPLPW
Numer rachunku: IBAN - PL40 2490 0005 0000 4530 9244 4533

Bank account for USD payments:
Name: Institute of Technology and Life Sciences
Address: Falenty , al. Hrabska 3 , 05-090 Raszyn
Bank: Alior Bank S.A.
BIC (Swift- code): ALBPPLPW
Account number:
IBAN - PL40 2490 0005 0000 4530 9244 4533

Bank account for EUR payments:

Name: Institute of Technology and Life Sciences
Address: Falenty , al. Hrabska 3 , 05-090 Raszyn
Bank: Alior Bank S.A.
BIC (Swift- code): ALBPPLPW
Account number: IBAN - PL88 2490 0005 0000 4600 8830 5411


Additional info

Abstracting & Indexing

Journal of Water and Land Development is covered by the following services:

AGRICOLA (National Agricultural Library)

AGRIS

AGRO

Arianta

Baidu Scholar

Cabell's Whitelist

CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)

CNPIEC - cnpLINKer

Current Geographical Publications Dimensions

DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

Genamics JournalSeek

GeoArchive

GeoRef

Google Scholar

Index Copernicus

Japan Science and Technology Agency (JST)

J-Gate

JournalGuide

JournalTOCs

KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

MyScienceWork

Naver Academic

Naviga (Softweco)

POL-index

Polish Scientific Journals Contents

Primo Central (ExLibris)

ProQuest (relevant databases)

Publons QOAM (Quality Open Access Market)

ReadCube

Reaxys

SCImago (SJR)

SCOPUS

Semantic Scholar

Sherpa/RoMEO

SIGZ

Summon (ProQuest)

TDNet

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

WorldCat (OCLC)

This page uses 'cookies'. Learn more