The paper presents a research concerning the issue of visualization of blood vessels in the human body. In the initial phase of the investigations the focus was on understanding the optical properties of human body tissues. Optical transmittance of human skin was measured. Skin transmittance reaches the maximum at around 670–850 nm and 970–1100 nm. The optimal wavelength suitable for work in reflected and transmitted light was chosen. It was based on extracting blood vessels from the image for using them further in a developed system. A unique measuring system with an integrated illuminator and highly sensitive light detectors for medical imaging and stereoscopic observation was created. The high usable value of the developed system was largely gained by the original numerical program for development of measurement results. The elaborated system of blood vessels’ visualization is a mobile device. It was tested for imaging subcutaneous blood vessels. Three-dimensional observation of circulation and microcirculation in subcutaneous breast tissues is possible. Practical tests of the elaborated device for blood vessels’ medical stereoscopic observations were presented. Tests at a wavelength of 850 nm were performed. It is planned to conduct patient tests in the future at the Maria Skłodowska-Curie Institute - Oncology Center (MSCI), the Branch in Gliwice, Poland.
This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a long- term building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10-8 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.
Currently, work is underway to manufacture and find potential applications for a photoconductive semiconductor switch made of a semi-insulating material. The article analyzes the literature in terms of parameters and possibilities of using PCSS switches, as well as currently used switches in power and pulse power electronic system. The results of laboratory tests for the prototype model of the GaP-based switch were presented and compared with the PCSS switch parameters from the literature. The operating principle, parameters and application of IGBT transistor, thyristor, opto-thyristor, spark gap and power switch were presented and discussed. An analysis of the possibilities of replacing selected elements by the PCSS switch was carried out, taking into account the pros and cons of the compared devices. The possibility of using the currently made PCSS switch from gallium phosphide was also discussed.
The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.
Photoelectrical characteristics of scanning IR detectors with implemented time delay and integration mode are analyzed. A new “shifted cellular” layout of photosensitive elements in the FPA structure is proposed. Advantages of the new FPA configuration in terms of threshold sensitivity for small-size/point objects are demonstrated. The analysis is based on the Monte Carlo simulation of the diffusion process of photogenerated minority charge carriers in the photosensitive layer photodiode arrays. The analysis is performed taking into account the main photoelectric parameters of FPA elements: photosensitive layer thickness, diffusion length of charge carriers, optical absorption length, their design parameters: geometric sizes of FPA elements, diameters of p-n junctions, and design parameters of the optical system: optical-spot diameter.
In the paper, an effective way to design asymmetrical optics for a uniform vertical surface illumination was presented. Assessment of the obtained distribution of luminance (illuminance) on the illuminated surface is done almost at the same time as designing the optical system elements. Advantage of the final application of the presented method in 3D will be independence from the implementation of time-consuming simulations in order to verify the already designed optics. Understanding the method and its application is simple and intuitive. Observing the luminance distribution, created on the illuminated surface almost at the same time as its design, allows to see the effect of adding the next elements of the optical system on this distribution.
Guide for Authors
https://www.editorialsystem.com/opelre/journal/for_authors/
OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)
As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)
Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)
Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).
Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.
Articles are published in OPELRE in the following categories:
-invited reviews presenting the current state of the knowledge,
-specialized topics at the forefront of optoelectronics and photonics and their applications,
-refereed research contributions reporting on original scientific or technological achievements,
-conference papers printed in normal issues as invited or contributed papers.
Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.
Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.
Abstracting and Indexing:
Arianta
BazTech
EBSCO relevant databases
EBSCO Discovery Service
SCOPUS relevant databases
ProQuest relevant databases
Clarivate Analytics relevant databases
WangFang
additionally:
ProQuesta (Ex Libris, Ulrich, Summon)
Google Scholar
Policies and ethics:
The editors of the journal place particular emphasis on compliance with the following principles:
Ethical policy of Opto-Electronics Review
The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).
Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.
Research results
Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.
Authorship
All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.
Competing interests
All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.
Peer Review
We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.
Characteristics of the peer review process are as follows:
• Simultaneous submissions of the same manuscript to different journals will not be tolerated.
• Manuscripts with contents outside the scope will not be considered for review.
• Opto-Electronics Review is a single-blind review journal.
• Papers will be refereed by at least 2 experts as suggested by the editorial board.
• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.
• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.
• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.
• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.
• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.
• Personal criticism is inappropriate.
Plagiarism
Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.
Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).
Duplicate submission
Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.
Corrections and retractions
All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.
• The journal will issue retractions if:
• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);
• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);
• It constitutes plagiarism;
• It reports unethical research.
• The journal will issue errata, if:
• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);
• The author list is incorrect.
Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.
The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.
Human and Animal Rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.
All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.