Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2021 | 29 | 2

Download PDF Download RIS Download Bibtex

Abstract

Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Go to article

Bibliography

  1. UViRCO Technologies. https://www.uvirco.com (2020)
  2. OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020)
  4. Olip Systems Inc. https://www.olipsystems.com (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020)
  6. ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020)
  26. NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020)
  27. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  29. Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID
Bolesław Safiej
2

  1. Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015). https://doi.org/10.1364/oe.23.020297
  2. Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013). https://doi.org/10.1109/MCOM.2013.6685758
  3. Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019). https://doi.org/10.3390/app9214520
  4. Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  5. Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018). https://doi.org/10.1364/ao.57.000273
  6. Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018). https://doi.org/10.1007/s10825-017-1096-2
  7. Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016). https://doi.org/10.1007/s11082-016-0602-2
  8. Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  9. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti: LiNbO 3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi:10.2174/1874129001206010036
  10. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-h igh bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  11. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014). https://doi.org/10.1007/s11082-013-9760-7
  12. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  13. Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  14. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective–Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  15. Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019). https://doi.org/10.1109/COMST.2019.2913348
  16. Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718
  17. Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020). https://doi.org/10.24425/opelre.2020.135259
  18. Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018). https://doi.org/10.1109/ACCESS.2018.2869878
  19. Shoreh, M.H., Fallahpour, A. & Salehi, J.A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015). https://doi.org/10.1364/JOCN.7.000554
  20. Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light commu¬nications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015). https://doi.org/10.1109/TCOMM.2015.2469285
  21. Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinc-tive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018)
  22. Mohammed, N. A, Abaza, M. R. & Aly, M. H. Improved perfor-mance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011)
  23. Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012). https://doi.org/10.1109/VETECS.2012.6240060
  24. Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015). https://doi.org/10.1109/ICECE.2014.7026929
  25. Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019). https://doi.org/10.1109/JPHOT.2019.2892871
  26. Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011). https://doi.org/10.1109/GLOCOMW.2011.6162561
  27. Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  28. Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015). https://doi.org/10.1049/el.2015.2024
  29. Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University,1–26 (2015). https://arxiv.org/abs/1510.08172v1
  30. Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016). https://doi.org/10.1364/oe.24.003950
  31. Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015). https://doi.org/10.1364/JOCN.7.00A277
  32. Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017). https://doi.org/10.1016/j.optcom.2017.06.015
  33. Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018)
  34. Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  35. Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communica¬tions in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2
  36. Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019). https://doi.org/10.1016/j.optcom.2019.03.013
  37. Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018). https://doi.org/10.1016/j.aeue.2017.11.016
  38. Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018). https://doi.org/10.1016/j.optcom.2018.04.064
  39. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  40. Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010). https://doi.org/10.1007/s11277-009-9726-z
  41. Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017). https://doi.org/10.1109/ACCESS.2017.2748057
  42. Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017). https://doi.org/10.1109/ACCESS.2017.2751620
  43. Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018). https://doi.org/10.1016/j.matpr.2017.11.159
  44. Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017). https://doi.org/10.1109/PICICT.2017.17
  45. Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016). https://doi.org/10.1109/LPT.2015.2503481
  46. Yadav, A.K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1
  47. Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013). https://doi.org/10.1007/s11277-013-1217-6
  48. Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017). https://doi.org/10.12785/ijcds/060304
  49. Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015). https://doi.org/10.1016/j.yofte.2014.08.014
  50. Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019). https://doi.org/10.1016/j.optcom.2018.09.045
  51. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  52. Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017). https://doi.org/10.1016/j.optcom.2016.07.073
  53. Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559
  54. Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017). https://doi.org/10.1016/j.optcom.2017.02.065
  55. Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011). https://doi.org/10.1007/s11801-011-1044-5
  56. Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013). https://doi.org/10.1007/s11801-013-3021-7
  57. Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019). https://doi.org/10.1016/j.icte.2018.07.001
  58. El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  59. Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  60. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
  61. Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017). https://doi.org/10.1016/j.optcom.2016.12.026
  62. Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017). https://doi.org/10.1016/j.optcom.2017.06.032
  63. Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018). https://doi.org/10.1049/el.2017.3158
  64. Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017). https://doi.org/10.1109/ACCESS.2017.2700877
  65. Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014). https://doi.org/10.1109/JPHOT.2014.2352643
Go to article

Authors and Affiliations

Nazmi A. Mohammed
1
Mohamed M. Elnabawy
2 3
Ashraf A. M. Khalaf
2
ORCID: ORCID

  1. Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  2. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  3. Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/opelre/journal/for_authors/

OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)

Article publishing charge: the flat fee of 400 EUR (in PLN 1 750) per paper (see the above link with instructions for Authors for details)

Additional info

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Arianta

BazTech

EBSCO relevant databases

EBSCO Discovery Service

SCOPUS relevant databases

ProQuest relevant databases

Clarivate Analytics relevant databases

WangFang

additionally:

ProQuesta (Ex Libris, Ulrich, Summon)

Google Scholar

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Ethical policy of Opto-Electronics Review

The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).

Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.

Research results

Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.

Authorship

All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.

Competing interests

All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.

Peer Review

We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.

Characteristics of the peer review process are as follows:

• Simultaneous submissions of the same manuscript to different journals will not be tolerated.

• Manuscripts with contents outside the scope will not be considered for review.

• Opto-Electronics Review is a single-blind review journal.

• Papers will be refereed by at least 2 experts as suggested by the editorial board.

• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.

• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.

• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.

• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.

• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.

• Personal criticism is inappropriate.

Plagiarism

Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.

Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).

Duplicate submission

Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.

Corrections and retractions

All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.

• The journal will issue retractions if:

• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);

• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);

• It constitutes plagiarism;

• It reports unethical research.

• The journal will issue errata, if:

• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);

• The author list is incorrect.

Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.

The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.

Human and Animal Rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.

This page uses 'cookies'. Learn more