Science and earth science

Polish Polar Research

Content

Polish Polar Research | 2022 | vol. 43 | No 1 |

Download PDF Download RIS Download Bibtex

Abstract

In the Central Caucasus region, the intense process of deglaciation is identified as caused by cryoconite formation and accumulation. The fine earth materials were collected on the surfaces of Skhelda and Garabashi glaciers as well as from zonal soils of Baksan Gorge and were studied in terms of chemical, particle-size, and micromorpholo-gical features. Supraglacial sediments are located at the glacial drift area of material and, thus, due to transfer of these sediments to the foothill area, their fine earth material can affect micromorphological and chemical characteristics of adjacent zonal soils. Thin sections of mineral and organo-mineral micromonoliths were analyzed by classic micromorphological methods. Data obtained showed that the weathering rates of cryoconite and soil minerals are different. The cryoconite material on the debris-covered Skhelda Glacier originated from local massive crystalline rocks and moraines, while for Garabashi Glacier the volcanic origin of cryoconite is more typical. Soils of Baksan Gorge are characterized by more developed microfabric and porous media, but their mineralogical composition is essentially inherited from sediments of glacial and periglacial soils. These new data could be useful for understanding the process of evolution of the mineral matrix of cryoconite to the soil matrix formed at the foot of the mountain.
Go to article

Bibliography


Aleynikova A.M. 2008. Periglacial landscapes of the Mt. Elbrus region as a zone of catastrophic debris flow formation. Selevye potoki: katastrofy, risk, prognoz, zashchita: 33–36 (in Russian).
Aleinikova A.M., Gaivoron T.D., Marsheva N.V. and Mainasheva G.M. 2020. Risk analysis of mudflows in the Central Caucasus. IOP Conference Series: Earth and Environmental Science 579: 012098.
Amato P., Joly M., Besaury L., Oudart A., Taib N., Mone A.I., Deguillaume L., Delort A.-M. and Debroas D. 2017. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS ONE 12: e0182869.
Anesio A.M., Hodson A.J., Fritz A., Psenner R. and Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15: 955–960.
Antony R., Mahalinganathan K., Thamban M. and Nair S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environmental Science and Technology 45: 9944–9950. Bagshaw E.A., Tranter M., Fountain A.G., Welch K.A., Basagic H. and Lyons W.B. 2007. The biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research-Biogeosciences 112: G04S35.
Bagshaw E.A., Tranter M., Fountain A.G., Welch K., Hassan J. Basagic H.J. and Berry W.L. 2013. Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic, and Alpine Research 45: 440–454.
Ball B.A., Barrett J.E., Gooseff M.N., Virginia R.A. and Wall D.H. 2011. Implications of meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Research 30: 14555.
Bowman G.M. and Hutka J. 2002. Particle size analysis. In: McKenzie N., Coughlan K., Cresswell H. (eds.) Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing, Victoria: 224–239.
Castaldini M., Mirabella A., Sartori G., Fabiani A., Santomassimo F. and Miclaus N. 2002. Soil development and microbial community along an altitudinal transect in Trentino mountains. Developments in Soil Science 28: 217–228.
Cook J., Edwards A., Takeuchi N. and Irvine-Fynn T. 2016. Cryoconite: the dark biological secret of the cryosphere. Progress in Physical Geography 40: 66–111.
Egli M., Mirabella A. and Sartori G. 2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102: 307–324.
FAO 2006. Guidelines for Soil Description. 4th edition. FAO, Rome.
Fountain A.G., Lyons, W.B., Burkins M.B., Dana G.L., Doran P.T., Lewis K.J., McKnight D.M., Moorhead D.L., Parsons A.N., Priscu J.C. and Wall, D.H. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49: 961–971.
Foreman C.M., Sattler B., Mikucki J.A., Porazinska D.L. and Priscu J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences 112: G04S32.
Fortner S.K. and Lyons W.B. 2018. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica. Frontiers in Earth Science 6: 31.
Franzluebbers A.J. 2005. Organic residues, decomposition. In: Hillel D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, Amsterdam: 112–188.
Gagarina E.I. 2004. Micromorphological method of soil investigation, St. Petersburg University Publishing, Saint Petersburg (in Russian).
Gerasimova M.I., Kovda I.V., Lebedeva M.P. and Tursina T.V. 2011. Micromorphological terms: the state of the art in soil microfabric research. Eurasian Soil Science 44: 804–817.
Glazovskaya M.A. 2005a. Subareal cover loams and soils of the inner Tyan-Shan ridges Mnogolikaya geografiya. Razvite idej Innokentiya Petrovicha Gerasimova (k 100-letiyu so dnya rozhdeniya): 132–162 (in Russian).
Glazovskaya M.A. 2005b. On the problem of the relative age of subaerial mountain meadow and mountain forest soils of Tien Shan. Eurasian Soil Science 38: 1265–1276.
Gooseff M.N., McKnight D.M., Runkel R.L. and Duff J.H. 2004. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnological Oceanography 49: 1884–1895.
Gurbanov A.G., Gazeev V.M., Bogatikov O.A., Dokuchaev A.Y., Naumov V.B. and Shevchenko A. V. 2004. Elbrus active Volcano and its geological history. Russian Journal of Earth Sciences 6: 257–277.
Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., Layborn-Parry J. and Sattler B. 2008. Glacial ecosystems. Ecological monographs 78: 41–67.
Jenkinson D.S. and Powlson D.S. 1976. The effects of biocidal treatments on metabolism in soil—V. A method for measuring soil biomass. Soil biology and Biochemistry 8: 209–213.
Kaczorek D. and Sommer M. 2003. Micromorphology, chemistry, and mineralogy of bogiron ores from Poland. Catena 54: 393–402.
Kalińska-Nartisa E., Lamsters K., Karuss J., Krievans M., Recs A. and Meija R. 2017. Fine-grained quartz from cryoconite holes of the Russell Glacier, southwest Greenland – A scanning electron microscopy study. Baltica 30: 63–73.
Kalińska E., Lamsters K., Karuss J., Krievans M., Recs A. and Jeskins J. 2022. Does glacial environment produce glacial mineral grains? Pro-and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617: 101–111.
Konistsev V. and Rogov V. 1977. Micromorphology of cryogenic soils. Eurasian Soil Science 2: 119–125.
Kotlyakov V.M., Chernova L.P., Muraviev A.Y., Khromova T.E. and Zverkova N.M. 2017. Changes of mountain glaciers in the Southern and Northern Hemispheres over the past 160 years. Ice and Snow 57: 453–467.
Kubiëna W.L. 1938. Micropedology. Ames, Iowa: Collegiate Press.
Kubiëna W.L. 1970. Micromorphological features of Soil geography. New Jersey: Rutgers University Press.
Langford H., Hodson A., Banwart S. and Boggild C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51: 87–94.
Lokas E., Zaborska A., Kolicka M., Rozycki M. and Zawierucha K. 2016. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162–172.
Maksimova E. and Abakumov E. 2017. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia. Solid Earth 8: 553–560.
Marchenko P., Gedueva M. and Dzhappuev D. 2017. Actual and potential exposure to mudflow processes of the upper reaches of the Baksan river. Izvestiya Kabardino-Balkarskogo Nauchnogo Centra RAN 3: 33–43 (in Russian).
Mazurek R., Kowalska J., Gasiorek M. and Setlak M. 2016. Micromorphological and physico- chemical analyses of cultural layers in the urban soil of a medieval city – A case study from Krakow, Poland. Catena 141: 73–84.
Nordenskjold A.E. 1875. Cryoconite found 1870, July 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geological Magazine 2: 157–162.
Nosenko G.A., Khromova T.E., Rototaeva O.V. and Shakhgedanova M.V. 2013. Glacier reaction to temperature and precipitation change in Central Caucasus, 2001–2010. Ice and Snow 53: 26–33 (in Russian).
Orlov D.S. 1985. Soil Chemistry: A Textbook. Moscow State University, Moscow (in Russian).
Pengerud A., Dignac M.-F., Certini G., Strand L.T., Forte C. and Rasse D.P. 2017. Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135: 277–292.
Polyakov V., Zazovskaya E. and Abakumov V. 2019. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area. Spitsbergen. Polish Polar Research 40: 105–120.
Riebe C.S., Kirchner J.W. and Finkel R.C. 2004. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters 218: 421–434.
Rogov V. and Konistsev V. 2008. The influence of cryogenesis on clay materials. Cryosphere of Earth 12: 51–59.
Sanyal A., Antony R., Samui G. and Thamban M. 2018. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiological Research 208: 32–42.
Stibal M., Tranter M., Benning L.G. and Rehak J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental microbiology 10: 2172–2178.
Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin section. Soil Science Society of America. Inc. Madison, Wisconsin, USA.
Stoops G. 2009. Evaluation of Kubiena’s contribution to micropedology. Eurasian Soil Science 42: 693–698.
Stoops G. and Eswaran H. 1986. Soil micromorphology. New York: Van Nostrands Reinhold Company.
Solomina O.N., Savoskyl O.S. and Cherkinsky A.E. 1994. Glacier variation, mudflow activity and landscape development in the Aksay Valley (Tien Shan) during the late Holocene. Holocene 4: 25–31.
Świstowiak M., Mroczek P. and Bednarek R. 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Regions (North Poland.) Catena 137: 583–595.
Takeuchi N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34: 409–414.
Takeuchi N., Koshima S. and Seko K. 2001. Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115–122.
Takeuchi N., Nishiyama H. and Li Z. 2010. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology 51: 9–14.
Walkely A. 1947. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of organic soil constituents. Soil Science 63: 251–264.
Weisleitner K., Perras A.K., Unterberger S.H., Moissl-Eichinger C., Andersen D.T. and Sattler B. 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11: 1165.
Wientjes I.G.M., Van De Wal R.S.W., Reichart G.J., Sluijs A. and Oerlemans J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere 5: 589– 601.
WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Zawierucha K., Baccolo G., Di Mauro B., Nawrot A., Szczuciński W. and Kalińska E. 2019. Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers. Polar Science 22: 100482.
Go to article

Authors and Affiliations

Evgeny Abakumov
1
ORCID: ORCID
Rustam Tembotov
2
Ivan Kushnov
1
Vyacheslav Polyakov
1

  1. Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia
  2. Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, 37a, I. Armand Street, Nalchik, 360051, Russia
Download PDF Download RIS Download Bibtex

Abstract

Antarctica features one of the most ancient, largest glacier reserves and the most pristine environment left on the earth. However, in last few decade disturbances due to industrialization and release of greenhouse gases have led to serious consequences such as melting of polar ice sheets, changing atmospheric chemistry and ozone depletion. Here, we use high-throughput sequencing to understand the impact of subtle changes in environmental parameters on bacterial communities. We observed dominance of Cyanobacteria (41.93%) followed by Bacteroidetes (14.8%), Acidobacteria (13.35%), Proteobacteria (9.67%), Actinobacteria (7.79%), Firmicutes (3.46%) among all the samples collected every alternate day for 20 days. Additionally, metagenomic imputations revealed higher abundance of gene families associated with DNA repair and carotenoid biosynthesis enabling bacterial communities to resist and function under the high UV radiations. We further observed bacterial communities are dependent on the single carbon metabolism as a strategy for nutrient uptake in such nutrient deprived conditions.
Go to article

Bibliography


Almela P., Justel A. and Quesada A. 2021. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region. Frontiers in Microbiology 12: 280.
Arrage A.A., Phelps T.J., Benoit R.E. and White D.C. 1993. Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Applied and Environmental Microbiology 59: 3545–3550
Blumthaler M. 2007. Factors, trends and scenarios of UV radiation in arctic-alpine environments. In: Ørbæk J.B., Kallenborn R., Tombre I., Hegseth E.N., Falk-Petersen S. and Hoel A.H. (eds.) Arctic Alpine Ecosystems and People in a Changing Environment. Springer, Berlin, Heidelberg.
Caldwell M.M., Bornman J.F., Ballaré C.L., Flint S.D. and Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6: 252–266.
Callahan B.J., Mcmurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A. and Holmes S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581–583.
Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N. and Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108 (Supl. 1): 4516–4522.
Carpenter L.G., Reimann S., Burkholder J.B., Clerbaux C., Hall B.D., Hossaini R., Laube J.C. and Yvon-Lewis S.A. 2014. Scientific Assessment of Ozone Depletion: 2014. World Meteorological Organization Geneva 10.
Chen W., Liu H., Wurihan, Gao Y., Card S.D. and Ren A. 2017. The advantages of endophyte- infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Scientific Reports 7: 6952.
Cid F.P., Inostroza N.G., Graether S.P., Bravo L.A. and Jorquera M.A. 2016. Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biology 40: 1319–1331.
Davey M.C. and Pickup J. 1992. Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarctic Science 4: 383–388.
Davis P.L. 2016. Antarctic moss is home to many epiphytic bacteria that secrete antifreeze proteins. Environmental Microbiology Reports 8: 1–2.
Dieser M., Greenwood M. and Foreman C.M. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research: An Interdisciplinary Journal 4: 396–405.
Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C. and Langille M.G.I. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology 38: 685–688.
Fernández Zenoff V., Siñeriz F. and Farías M.E. 2006. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Applied and Environmental Microbiology 72: 7857–7863.
George S. F., Fierer N., Levy J. S. and Adams B. 2021. Antarctic water tracks: Microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology 12: 616730
Hughes K.A., Lawley B. and Newsham K.K. 2003. Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Applied and Environmental Microbiology 69: 1488–1491.
Jani K., Ghattargi V., Pawar S., Inamdar M., Shouche Y. and Sharma A. 2018a. Anthropogenic activities induce depletion in microbial communities at urban sites of the River Ganges. Current Microbiology 75: 79–83.
Jani K., Dhotre D., Bandal J., Shouche Y., Suryavanshi M., Rale V. and Sharma A. 2018b. World’s largest mass bathing event influences the bacterial communities of Godavari, a Holy River of India. Microbial Ecology 76: 706–718.
Kajale S., Jani K. and Sharma A. 2021. Contribution of archaea and bacteria in sustaining climate change by oxidizing ammonia and sulphur in an Arctic Fjord. Genomics 113: 1272– 1276.
Langille M.G.I., Zaneveld J., Caporaso J.G., Mcdonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., Beiko R.G. and Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814–821.
Lim P.P., Pearce D.A., Convey P., Lee L.S., Chan K.G. and Tan G.Y.A. 2020. Effects of freeze-thaw cycles on High Arctic soil bacterial communities. Polar Science 23: 100487.
Louca S., Polz M.F., Mazel F., Albright M.B.N., Huber J.A., O’Connor M.I., Ackermann M., Hahn A.S., Srivastava D.S., Crowe S.A., Doebeli M. and Parfrey L.W. 2018. Function and functional redundancy in microbial systems. Nature Ecology and Evolution 2: 936 –943.
Lüder U.H. and Clayton M.N. 2004. Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory – The first microscopic study. Planta 218: 928–937.
Lütz C., Di Piazza L., Fredersdorf J. and Bischof K. 2016. The effect of ultraviolet radiation on cellular ultrastructure and photosystem II quantum yield of Alaria esculenta (L.) Greville from Spitsbergen (Norway). Polar Biology 39: 1957–1966.
Malard L.A., Šabacká M., Magiopoulos I., Mowlem M., Hodson A., Tranter M., Siegert M.J. and Pearce D.A. 2019. Spatial variability of Antarctic surface snow bacterial communities. Frontiers in Microbiology 10: 461.
Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyrö E., Larsen N., Levelt P.F., Makshtas A., Mcelroy C.T., Nakajima H., Parrondo M.C., Tarasick D.W., Von Der Gathen P., Walker K.A. and Zinoviev N.S. 2011. Unprecedented Arctic ozone loss in 2011. Nature 478: 469–475.
Molina-Montenegro M.A., Ballesteros G.I., Castro-Nallar E., Meneses C., Gallardo-Cerda J. and Torres-Díaz C. 2019. A first insight into the structure and function of rhizosphere microbiota in Antarctic plants using shotgun metagenomics. Polar Biology 42:1825–1835.
Newsham K.K., Tripathi B.M., Dong K., Yamamoto N., Adams J.M. and Hopkins D.W. 2019. Bacterial community composition and diversity respond to nutrient amendment but not warming in a maritime Antarctic soil. Microbial Ecology 78: 974–984.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. and Wagner H. 2013. Vegan: Community Ecology Package. R package version 2.0-10. http://cran.r-project.org/package=vegan, R Package. Ver. 2.0–8.
Pérez V., Hengst M., Kurte L., Dorador C., Jeffrey W.H., Wattiez R., Molina V. and Matallana- Surget S. 2017. Bacterial survival under extreme UV radiation: A comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Frontiers in Microbiology 8: 1173.
Peter H. and Sommaruga R. 2016. Shifts in diversity and function of lake bacterial communities upon glacier retreat. The ISME Journal 10: 1545–1554.
Pichrtová M., Remias D., Lewis L.A. and Holzinger A. 2013. Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microbial Ecology 65: 68–83.
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J. and Glöckner F.O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(Database issue): D590–D596.
Ramos L., Vollú R., Jurelevicius D., Rosado A. and Seldin L. 2019. Firmicutes in different soils of Admiralty Bay, King George Island, Antarctica. Polar Biology 42: 2219–2226.
Rastogi G., Sbodio A., Tech J.J., Suslow T. V., Coaker G.L. and Leveau J.H.J. 2012. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composi- tion on field-grown lettuce. The ISME Journal 6: 1812–1822.
Reis-Mansur M.C.P.P., Cardoso-Rurr J.S., Silva J.V.M.A., De Souza G.R., Cardoso V. Da S., Mansoldo F.R.P., Pinheiro Y., Schultz J., Lopez Balottin L.B., Da Silva A.J.R., Lage C., Dos Santos E.P., Rosado A.S. and Vermelho A.B. 2019. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Scientific Reports 9: 9554.
Rodriguez H., Rivas J., Guerrero M.G. and Losada M. 1989. Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. Applied and Environmental Microbiology 55: 758–760.
Rojas J.L., Martín J., Tormo J.R., Vicente F., Brunati M., Ciciliato I., Losi D., Van Trappen S., Mergaert J., Swings J., Marinelli F. and Genilloud O. 2009. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Marine Genomics 2: 33–41.
Schmidt É.C., Nunes B.G., Maraschin M. and Bouzon Z.L. 2010. Effect of ultraviolet-B radiation on growth, photosynthetic pigments, and cell biology of Kappaphycus alvarezii (Rhodophyta, Gigartinales) macroalgae brown strain. Photosynthetica 48: 161–172.
Sharma A., Jani K., Shouche Y.S. and Pandey A. 2014 Microbial diversity of the Soldhar hot spring, India, assessed by analyzing 16S rRNA and protein-coding genes. Annals of Microbiology 65: 1323–1332.
Sharma A., Paul D., Dhotre D., Jani K., Pandey A. and Shouche Y.S. 2017. Deep sequencing analysis of bacterial community structure of Soldhar hot spring, India. Microbiology (Russian Federation) 86: 136–142.
Sharma A., Jani K., Da Feng G., Karodi P., Vemuluri V.R., Zhu H.H., Shivaji S., Thite V., Kajale S., Rahi P. and Shouche Y. 2018. Subsaxibacter sediminis sp. nov., isolated from arctic glacial sediment and emended description of the genus Subsaxibacter. The International Journal of Systematic and Evolutionary Microbiology 68: 1678–1682.
Sharma A., Jani K., Thite V., Dhar S.K. and Shouche Y. 2019. Geochemistry shapes bacterial communities and their metabolic potentials in tertiary coalbed. Geomicrobiology Journal 36: 1678–1682.
Steinhoff F.S., Wiencke C., Müller R. and Bischof K. 2008. Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborean. Plant Biology 10: 388–397.
Teixeira L.C.R.S., Peixoto R.S., Cury J.C., Sul W.J., Pellizari V.H., Tiedje J. and Rosado A.S. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal 4: 989–1001.
Tian B. and Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends in Microbiology 18: 512–520.
Wang Q., Garrity G.M., Tiedje J.M. and Cole J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73: 5261–5267.
Warnecke F., Sommaruga R., Sekar R., Hofer J.S. and Pernthaler J. 2005. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Applied and Environmental Microbiology 71: 5551–5559.
Wiencke C., Lüder U.H. and Roleda M.Y. 2007. Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiologia Plantarum 130: 601–612.
Wynn-Williams D.D. 1996. Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microbial Ecology 31: 177–188.
Yergeau E., Bokhorst S., Kang S., Zhou J., Greer C.W., Aerts R. and Kowalchuk G.A. 2012. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal 6: 692–702.
Yu S.O., Brown A., Middleton A.J., Tomczak M.M., Walker V.K. and Davies P.L. 2010. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61: 327–334.
Go to article

Authors and Affiliations

Kunal Jani
1
Anoop Mahajan
2
Swapnil Kajale
1
Aditee Ashar
1
Avinash Sharma
1

  1. National Centre for Cell Science, Pune, India
  2. Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr. Homi Bhabha road, Pune 411008, India
Download PDF Download RIS Download Bibtex

Abstract

This paper contributes to the studies on the lichen diversity of Barentsøya. It covers 211 species, of which four ( Buellia schaereri, Myriolecis zosterae var. palanderi, Rhizocarpon furfurosum, R. leptolepis) are reported for the first time for the Svalbard archipelago. Additionally, 84 of the species are reported for the first time for Barensøya. Our study includes 2 subspecies as well, both new for Barentsøya. Thirty-six species (16.8% among the identified species) are rare in Svalbard, whereas more than two thirds (70.1% from identified in the Barensøya) are relatively widespread species in Svalbard and the Arctic.
Go to article

Bibliography


Ahti T., Jørgensen P.M., Kristinsson H., Moberg R., Søchting U. and Thor G. 2002. Nordic Lichen Flora Vol. 2. Physciaceae. TH-tryck AB, Uddevalla.
Ahti T., Jørgensen P.M., Kristinsson H., Moberg R., Søchting U. and Thor G. 2007. Nordic Lichen Flora Vol. 3. Cyanolichens. Mediaprint AB, Uddevalla.
Ahti T., Stenroos S. and Moberg R. 2013. Nordic Lichen Flora Vol. 5. Cladoniaceae. Zetterqvist tryckeri AB, Göteborg.
Alstrup V. and Olech M. 1993. Lichenicolous fungi from Spitsbergen. Polish Polar Research 14: 33–42.
Aptroot A. and Alstrup V. 1991. I.ichens from Edgeøya, Svalbard. Graphis Scripta 3: 73–75.
Breuss O. 2017. Flechten aus Spitzbergen im Herbarium des Oberösterreichischen landesmuseums (LI), gesammelt 1975 von Werner Repetzky. Stapfia 107: 163–168.
Chesnokov S. and Konoreva L. 2015. Additions to the lichen biota of SE Siberia: records from the Stanovoye Nagor’e Highlands (Trans-Baikal Region, Russia). Polish Botanical Journal 60: 203–216.
Cooper E.J. and Wookey P.A. 2001. Field measurements of the growth rates of forage lichens, and the implications of grazing by Svalbard reindeer. Symbiosis 31: 173–186.
Czernyadjeva I.V., Ahti T., Boldina O.N., Chesnokov S.V., Davydov E.A., Doroshina G.Ya., Fedosov V.E., Khetagurov Kh.М., Konoreva L.A., Kotkova V.M., Kuzmina E.Yu., Lavrentiev M.V., Liksakova N.S., Nikolayev I.А., Popova N.N., Safronova T.V., Shadrina S.N. and Yakovchenko L.S. 2020. New cryptogamic records. 6. Novosti Sistematiki Nizshikh Rastenii 54: 537–557.
Dobrysh A.A. 2003. Rhizocarpaceae М. Choisy ех Hafellner. In: Golubkova N.S. (eds.). Handbook of the lichens of Russia 8. Bacidiaceae, Саtillariaceae, Lecanoraceae, Megalariaceae, Mycobilimbiaceae, Rhizocarpaceae, Trapeliaceae. Saint-Petersburg, Nauka: 198–238 (in Russin).
Elenkin A.A. 1907. Lichens collected on the Spitsbergen Islands by A. A. Byalynitskiy-Birulei and A. Bunge in 1899. Trudy Botanicheskago Muzeia Imperatorskoi Akademii Nauk 3: 60–63 (in Russian).
Elenkin A.A. and Savicz V.P. 1912. Lichens collected by I.V. Palibin in the voyage of the icebreaker Ermak in the Arctic Ocean in 1901. Acta Horti Petropolitani 32: 94–97 (in Russian).
Elvebakk A. 1984. Contributions to the lichen flora and ecology of Svalbard, Arctic Norway. The Bryologist 87: 308–313.
Elvebakk A. and Hertel H. 1996. A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Part 6. Lichens. Norsk Polarinstitutt Skrifter 198: 271–359.
Elvebakk A. and Tønsberg T. 1992. Additions to the lichen flora of Svalbard. Graphis Scripta 3: 140–147.
Elvebakk A., Elven R. and Razzhivin V.Y. 1999. Delimitation, zonal and sectoral subdivision of the Arctic for the Panarctic Flora Project. In: Nordal I. and Razzhivin V.Y (eds.). The species concept in the High North – A panarctic flora initiativ. The Norwegian Academy of Science and Letters, Oslo, Norway: 375–386.
Eurola S. 1968. Űber die Fjeldheidevegetation in den Gebietcn von Isfjorden und Hornsund in Westspitzbergen. Aquilo. Seria Botanica 7: l–56.
Eurola S. 1971. Die Vegctation einer Sturzhalde (Sveagruva, Spitzbergen, 77°53′ n. Br.). Aquilo, Seria Botanica 10: 8–28.
Foucard T. 2001. Svenska skorplavar och svampar som växer på dem. Interpubllshing, Stockholm. Foucard T., Moberg R. and Nordin A. 2002. Buellia. In: Ahti T., Jørgensen P.M., Kristinsson H., Moberg R., Søchting U. and Thor G. (eds.). Nordic Lichen Flora Vol. 2. Physciaceae. TH-tryck AB, Uddevalla: 11–25.
Fries T.M. 1860. Lichenes Arctoi. Ex Actis Regiae Societatis Scientiarum Upsaliensis Seriei III 3: 103–398.
Fries T.M. 1867. Lichenes Spitsbergenses. Kongl Svenska Vetenskaps-Akademiens Handlingar 72: 1–53. Gyelnik V. 1932. Enumeratiolichenum europaeorum novorum rariorumque. 1. Annales Mycologici 30: 442–459.
Hafellner J. 1982. Flechtenfunde am Bockfjord, Spitzbergen. Ergebnisse der Österreichischen Spitzbergen-Expedition 1979, I. Phyton 22: 23–50.
Hafellner J. 2010. Contributions to a revision of lichenized, phaeospored species of Polyblastia coll., mainly in Central European mountains. Bibliotheca Lichenologica 104: 117–141.
Halonen P., Myllys L., Velmala S. and Hyvärinen H. 2009. Gowardia (Parmeliaceae) – a new alectorioid lichen genus with two species. The Bryologist 112: 138–146.
Hansen E.S. 2009. Lichens from Johannes V. Jensen Land, N Greenland, the northermost arctic land area. Willdenowia 39:179–186.
Hertel H. 1977a. Bemerkenswerte Flechtenfunde aus dem Gebiet des Kongsfjordes und des Isfjordes (Spitzbergen). Herzogia 4: 367–401.
Hertel H. 1977b. Lecidea in der Arktis I. Mitteilungen der Botanischen Staatssammlung München 13: 337–352.
Hertel H. 1981. Lecidea in der Arktis II. Mitteilungen der Botanischen Staatssammlung München 17: 171–184.
Hertel H. 1991. Lecidea in der Arktis III (lecideoide Flechten, Lecanorales). Mitteilungen der Botanischen Staatssammlung München 30: 297–333.
Hertel H. and Ullrich H. 1976. Flechten von Amsterdamøya (Svalbard). Mitteilungen aus der Botanischen Staatssammlung München 12: 417–512.
Inoue T., Uchida M., Inoue M., Kaneko R., Kudoh S., Minami Y. and Kanda H. 2019. Vegetation data of high Arctic lichens on Austre Brøggerbreen glacier foreland, Ny-Ålesund, Svalbard, in 1994. Polar Data Journal 3: 1–11.
Jørgensen P.M. and Zhurbenko M. 2002. Two new, remarkable, Arctic species in the lichen genus Fuscopannaria (Pannariaceae, lichenized Ascomycetes). The Bryologist 105: 465–469.
Kondratyuk S.Y., Lőkös L., Farkas E., Kärnefelt I., Thell A., Yamamoto Y. and Hur J.-S. 2020. Three new genera of the Teloschistaceae proved by three gene phylogeny. Acta Botanica Hungarica 62: 109–136.
Konoreva L.A. 2011. A contribution to the lichens of vicinity of the former Pyramiden settlement (Spitsbergen Island, Svalbard Archipelago). Novosti sistematiki nizshikh rastenii 45: 183–193 (in Russian).
Konoreva L.A. and Chesnokov S.V. 2018. Lichens of vicinity of the former township Kolsbey (West Spitsbergen). Bulletin of the Kola Scientific Center of the Russian Academy of Sciences 3: 31–42 (in Russian).
Konoreva L.A. and Chesnokov S.V. 2021. Lichens of Innvika Bay, Prins Oscars Land (Nordaustlandet, Svalbard). Czech Polar Reports 11: 253–269.
Konoreva L.A., Kholod S.S., Chesnokov S.V. and Zhurbenko M.P. 2019a. Lichens of Franz Josef Land archipelago. Polish Polar Research 40: 139–170.
Konoreva L., Kozhin M., Chesnokov S. and Hong S.G. 2019b. Lichens and vascular plants in Duvefjorden area on Nordaustlandet, Svalbard. Czech Polar Reports 9: 182–199.
Kristinsson H., Zhurbenko M.P. and Hansen E.S. 2010. Panarctic checklist of lichens and lichenicolous fungi. CAFF Technical Report 20: 1–120.
Krzewicka B. and Maciejowski W. 2008. Lichen species from the northeastern shore of Sørkapp Land (Svalbard). Polar Biology 31: 1319–1324.
Lumbsch H.T. and Huhndorf S.M. 2010. Myconet Volume 14. Part One. Outline of Ascomycota— 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life and Earth Sciences 1: 1–64.
Lynge B. 1926. Lichens from Bear Island (Bjørnøya) collected by Norwegian and Swedish expeditions, chiefly by Th. M. Fries during the Swedish polar expedition of 1868. Resultater av de Norske Statsunderstøttede Spitsbergen Ekspeditioner 1: 1–78.
Lynge B. 1938. Lichens from the west and north coasts of Spitsbergen and the North-East Land collected by numerous expeditions. l. The macrolichens. Skrifter Norsk videnskaps-akademi i Oslo. 1. Mathematisk-naturvidenskabelig klasse 6: 1–136.
Lynge B. 1940. Et bidrag til Spitsbergens lavflora. Laver samlet av Emil Hadac, fortrinsvis i Sassenområdet, sommeren 1939. Skrifter om Svalbard og Ishavet 79: 1–22.
Maciejowski W., Osyczka P., Smykla J., Ziaja W., Ostafin K. and Krzewicka B. 2018. Diversity and distribution of lichens in recently deglaciated areas of southeastern Spitsbergen. Acta Societatis Botanicorum Poloniae 87: 3596.
Magnusson A.H. 1935. The lichen-genus Acarospora in Greenland and Spitsbergen. Nyt Magazin for Naturvidenskaberne 75: 221–241.
Magnusson A.H. 1944. Studies in the ferruginea-group of the genus Caloplaca. Kungliga Vetenskaps- och Vitterhets-samhälles Handlingar, Sjätte Följden, serie B 3: 1–71.
Magnusson A.B. 1950. On some species of Blastenia and Caloplaca with black apothecia, Botaniska Notiser 1950: 369–386.
Makryi T.V. 2002. To the lichen flora of the Stanovoye Nagorye Uplands (Baikalian Siberia). I. The epilithic lichens of the Kodar Range. Turczaninowia 5: 47–67 (in Russian).
Mattick F. 1949. Die Flechten Spitzbergens. Polarforschung 19: 261–273.
Mayrhofer H. 1984. Die saxicolen Arten der Fleehtengattung Rinodina und Rinodinella in der alten Welt. Journal of the Hattori Botanical Laboratory 55: 327–493.
Moberg R., Tibell S. and Tibell L. 2017. Nordic Lichen Flora Vol. 6. Verrucariaceae 1. Billes Tryckeri AB, Molndal.
Nimis P.L 1985. Structure and floristie eomposition of a high arctic tundra: Ny Ålesund (Svalbard archipelago). Inter-Nord 17: 47–58.
Nowak J. 1965. The lichens from Hornsund (S.W.-Spitsbergen) collected during the Polish polar expeditions in 1957 and 1958. Fragmenta Floristica et Geobotanica 11: 171–190.
Olech M. 1987. Materials to the lichen flora of Hornsund (SW Spitsbergen). Zeszyty Naukowe Universytetu Jagiellońskiego, Prace Botaniczne 15: 165–168.
Olech M. 1990. Lichens of the NW Sørkapp Land (Spitsbergen). Zeszyty Naukowe Universytetu Jagiellońskiego, Prace Botaniczne 21: 197–210.
Olech M. and Alstrup V. 1989. Lichens new to Spitsbergen. Graphis Scripta 2: 146–148.
Osyczka P. 2006. The lichen genus Cladonia (Cladoniaceae, lichenized Ascomycota) from Spitsbergen. Polish Polar Research 27: 207–242.
Osyczka P. and Węgrzyn M. 2008. Lichens on lignum in the coastal regions of western Spitsbergen (Svalbard). Biologia 63: 1069–1072.
Øvstedal D.O., Tønsberg T. and Elvebakk A. 2009. The lichen flora of Svalbard. Sommerfeltia 33: 1–393.
Paulson R. 1928. Lichens of Spitsbergen and North-East Land. Journal of Botany 66: 249–253.
Redchenko O., Košnar J. and Gloser J. 2010. A contribution to lichen biota of the central part of Spitsbergen, Svalbard Archipelago. Polish Polar Research 31: 159–168.
Saag L., Saag A. and Randlane T. 2009. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). The Lichenologist 41: 25–60.
Schuhwerk F. 1992. Die Berucksichtigung der Okologie in der Lichenometrie: Datierung mit Sukzessionsstadien von Flechtengesellschaften. In: Blümel W.D. (ed.). Geowissenschaftliche Spitzbergen-Expedition 1990 und 1991 "Stofftransporte Land-Meer in polaren Geosystemen". Stuttgarter Geographische Studien 117: 161–175.
Sedelnikova N.V. 2013. Species diversity of lichen biota of the Altai-Sayan ecological region. Plant Life of Asian Russia 2: 12–54 (in Russian).
Singh S.M. and Ravindra R. 2013. Chapter 7. Impact of Climate Change on Lichen and Moss Communities in Ny-Ålesund, Arctic: Some Preliminary Observations. In: Sinha R. and Ravindra R. (eds.). Earth System Processes and Disaster Management. Society of Earth Scientists Series 1, Springer-Verlag Berlin Heidelberg: 93–100.
Svalbard Lichens Database. 2008. https://nhm2.uio.no/botanisk/nxd/sval_L/sld_e.htm
Śliwa L. 2007. A revision of the Lecanora dispersa complex in North America. Polish Botanical Journal 52: 1–70.
Smith C.W., Aptroot A., Coppins B.J., Fletcher A., Gilbert O.L., James P.W. and Wolseley P.A. 2009. The lichens of Great Britain and Ireland. The British Lichen Society, London.
Søchting U. 1989. Lignicolous species of the lichen genus Caloplaca from Svalbard. Opera botanica 100: 241–257.
Søchting U. 1992. On the identity and distribution of some Nordic Caloplaca species. Graphis Scripta 4: 91–92.
Søchting U. and Olech M. 1995. The lichen genus Caloplaca in polar regions. The Lichenologist 27: 463–471.
Søchting U., Balschmidt Lorentsen L. and Arup U. 2008. The lichen genus Caloplaca (Ascomycota, Lecanoromycetes) on Svalbard. Notes and additions. Nova Hedwigia 87: 69–96.
Šoun J., Vondrák J., Søchting U., Hrouzek P., Khodosovtsev A. and Arup U. 2011. Taxonomy and phylogeny of the Caloplaca cerina group in Europe. The Lichenologist 43: 113–135.
Sumerhayes V.S. and Elton C.S. 1928. Further contributions to the ecology of Spitsbergen. Journal of Ecology 16: 193–268.
Thell A. and Moberg R. 2011. Nordic Lichen Flora Vol. 4. Parmeliaceae. Zetterqvist tryckeri, Goteborg.
Urbanavichene I.N. and Koroleva N.E. 2008. Lichens. In: Koroleva N.E., Konstantinova N.A., Belkina O.A., Davydov D.A., Likhachev A.Yu., Savchenko A.N. and Urbanavichene I.N. (eds.). Flora of Vegetation of Grønfjord area (Spitsbergen archipelago). K&M, Apatity: 81– 92 (in Russian).
Urbanavichus G.P. 2010. A checklist of the lichen flora of Russia. St. Petersburg, Nauka (in Russian).
Urbanavichus G.P. and Urbanavichene I.N. 2004. Lichens. In: Afonina O.M. and Golubkova N.S. (eds.). The present-day state of biological diversity within protected areas in Russia. Issue 3. Lichens and Bryophytes. IUCN – The World Conservation Union, Moscow: 5–235 (in Russian).
Vainio E.A. 1905. Lichenes expeditionis G. Amdrup (1898-1902). Meddelelser om Grønland 30: 125–141.
Vězda J. 1967. Flechtensystematischc Studien VI. Die GaUttung Sagiolechia Massal. Folia Geobotanica et Phytotaxonomica 2: 383–396. Vitikainen O. 1994. Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Annales Botanici Fennici 152: 1–96.
Vitikainen O. 2007. Peltigeraceae. In: Ahti T., Jørgensen P.M., Kristinsson H., Moberg R., Søchting U. and Thor G. (eds.). Nordic Lichen Flora 3. Cyanolichens. The Nordic Lichen Society, Museum of Evolution, Uppsala University, Uddevalla: 113–131.
Węgrzyn M., Wietrzyk P., Adamska E. and Nicia P. 2015. New records of driftwood lichens in the Kaffiøyra Plain (NW Spitsbergen, Svalbard). Polish Polar Research 36: 189–195.
Węgrzyn M.H., Wietrzyk-Pełka P., Galanty A., Cykowska-Marzencka B. and Sundset M.A. 2019. Incomplete degradation of lichen usnic acid and atranorin in Svalbard reindeer (Rangifer tarandus platyrhynchus). Polar Research 38: 3375.
Westberg M. 2007. Candelariella (Candelariaceae) in western United States and northern Mexico: the polysporous species. The Bryologist 110: 375–390.
Westberg M., Moberg R., Myrdal M., Nordin A. and Ekman S. 2021. Santesson’s Checklist of Fennoscandian Lichen-Forming and Lichenicolous Fungi. Uppsala University, Museum of Evolution.
Wietrzyk P., Węgrzyn M. and Lisowska M. 2016. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen, Svalbard. Polish Polar Research 37: 493–509.
Wietrzyk P., Węgrzyn M. and Lisowska M. 2017. Lichen diversity on glacier moraines in Svalbard. Cryptogamie, Mycologie 38: 67–80.
Wietrzyk-Pełka P., Otte V., Węgrzyn M.H. and Olech M. 2018. From barren substrate to mature tundra – lichen colonization in the forelands of Svalbard glaciers. Acta Societatis Botanicorum Poloniae 87: 3599.
Wietrzyk-Pełka P., Rola K., Patchett A., Szymański W., Węgrzyn M.H. and Björk R.G. 2021. Patterns and drivers of cryptogam and vascular plant diversity in glacier forelands. Science of The Total Environment 770: 144793.
Zhurbenko M.P. 2010. Lichenicolous fungi and lichens growing on Stereocaulon from the Holarctic, with a key to the known species. Opuscula Philolichenum 8: 9–39.
Zhurbenko M.P. and Brackel W.V. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. Herzogia 26: 323–359. Ziaja W., Maciejowski W. and Ostafin K. 2009. Coastal Landscape Dynamics in NE Sørkapp Land (SE Spitsbergen), 1900–2005. A Journal of the Human Environment 38: 201–208
Go to article

Authors and Affiliations

Liudmila Konoreva
1
Sergey Chesnokov
2

  1. Avrorin Polar-Alpine Botanical Garden-Institute of Kola Scientific Centre of RAS, 184250 Kirovsk, Murmansk Region, Russia
  2. Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia
Download PDF Download RIS Download Bibtex

Abstract

European whitefish ( Coregonus lavaretus) is a highly polymorphic species, but the wider scale diversity and distribution of sympatric morphs in subarctic lakes of northwestern Russia has not been recently studied and analyzed. The aim of the present study was to investigate diversity and distribution of whitefish morphs in different sized lakes and watercourses of Murmansk region. Our study of the water bodies in four major river basins of Murmansk region revealed the presence of two whitefish morphs: sparsely rakered (further sr) and medium rakered ( mr). The mr morph is less common and observed only alongside the sr whitefish. In general, in sr whitefish the number of gill rakers ranges between 15 and 31, and in mr whitefish between 27 and 44. Among whitefishes with 27 to 31 gill rakers, both sr and mr morphs were observed and distinguishable by the shape of the rakers. In the studied sr whitefish populations, relatively long and short rakered whitefish morphs were found. In Lake Kuetsyarvi (Pasvik River basin), the sr and mr whitefish formed additional slow- and fastgrowing ecological morphs. The four whitefish morphs in Lake Kuetsyarvi specialize to different ecological niches correlating with morphological and behavioral differences. The observed diversity and distribution of whitefish in the Murmansk region requires genetic studies of the population to assess the origins of divergence.
Go to article

Bibliography


Amundsen P.-A., Staldvik F., Lukin A., Kashulin N., Reshetnikov Yu.S. and Popova O. 1993. Ecology and heavy metal contaminations in the fish communities of the Pasvik River System. Report. Norwegian College of Fishery Science, University of Tromsø, Norway.
Amundsen P.-A., Staldvik F. and Lukin A. 1997. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Science of the Total Environment 201: 211–224.
Amundsen P.-A., Staldvik F.J., Reshetnikov Yu.S., Kashulin N.A., Lukin A.A., Bøhn T., Sandlund O.T. and Popova O.A. 1999. Invasion of vendace (Coregonus albula) in a subarctic watercourse. Biological Conservation 88: 405–413.
Amundsen P.-A., Bøhn T. and Våga G. 2004а. Gill raker morphology and feeding ecology of two sympatric whitefish (Coregonus lavaretus) morphs. Annales ZoologiciFennici 41: 291– 300.
Amundsen P.-A., Knudsen R., Klemetsen A. and Kristoffersen R. 2004b. Resource competition and interactive segregation between sympatric whitefish morphs. Annales Zoologici Fennici 41: 301–307.
Bernatchez L. 2004. Ecological theory of adaptive radiation: empirical assessment from Coregonine fishes (Salmoniformes). In: Hendry A.P. and Stearns S.C. (eds.) Evolution illuminated: salmon and their relatives. Oxford, Oxford University Press: 175–207.
Bhat S., Amundsen P.-A., Knudsen R., Gjelland K.Ø., Fevolden S.-E., Bernatchez L. and Prǽbel K. 2014. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. PloS ONE 9: e91208.
Bydin F.I. 1962. Catalog of rivers in Murmansk Region. Academy of Sciences of the USSR, Moscow, Leningrad (in Russian).
Bøhn T. and Amundsen P.-A.1998. Effects of invading vendace (Coregonus albula L.) on species composition and body size in two zooplankton communities of the Pasvik River system, Northern Norway. Journal Plankton Research 20: 243–256.
Dauvalter V.A. and Kashulin N.A. 2010. Chalcophilic elements (Hg, Cd, Pb, As) in Lake Umbozero, Murmansk region. Water Resources 37: 461–476.
Feulner P.G.D. and Seehausen O. 2019. Genomic insights into the vulnerability of sympatric whitefish species flocks. Molecular Ecology 28: 615–629.
Griffiths A.J.F., Miller J.H., Suzuki D.T., Lewontin R. and Gelbart W.M. 2000. An introduction to genetic analysis, 7th Edition. New York: W.H. Freeman.
Harrod C., Mallela L. and Kahilainen K. 2010. Phenotype-environment correlations in a putative whitefish adaptive radiation. Journal of Animal Ecology 79: 1057–1068.
Kahilainen K., Lehtonen H. and Könönen K. 2003.Consequence of habitat segregation to growth rate of two sparsely rakered whitefish (Coregonus lavaretus (L.)) forms in a subarctic lake. Ecolоgy of Freshwater Fish 12: 275–285.
Kahilainen K., AlajärviE. and Lehtonen H. 2005. Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus (L.)) in a subarctic lake. Ecolоgy of Freshwater Fish 14: 50–58.
Kahilainen K.K., Malinen T., Tuamaala A. and Lehtonen H. 2004. Diel and seasonal habitat and food segregation of three sympatric Coregonus lavaretus forms in a subarctic lake. Journal of Fish Biology 64: 418–434.
Kahilainen K.K. and Østbye K. 2006. Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. Journal of Fish Biology 68: 63–79.
Kahilainen K.K., Malinen T., Tuomaala A., Alajaervi E., Tolonen A. and Lehtonen H. 2007. Empirical evaluation of phenotype–environment correlation and trait utility with allopatric and sympatric whitefish, Coregonus lavaretus (L.), populations in subarctic lakes. Biological Journal of the Linnean Society 92: 561–572.
Kahilainen K.K., Malinen T. and Lentonen H. 2009. Polar light regime and piscivory govern diel vertical migrations of planktivorous fish and zooplankton in a subarctic lake. Ecology Freshwater Fish 18: 481–490.
Kahilainen K.K., Siwertsson A., Gjelland K.Ø., Knudsen R., BøhnT. and Amundsen P.-A. 2011. The role of gill raker number variability in adaptive radiation of coregonid fish. EvolutionaryEcology 25: 573–588.
Kahilainen K., Patterson W., Sonninen E., Harrod C. and KiljunenМ. 2014. Adaptive Radiation along a Thermal gradient: preliminary results of habitat use and respiration rate divergence among whitefish morphs. PloS ONE9: e112085.
Kahi ainen K.K., Thomas S.M. and Nystedt E.K.M. 2017. Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lake. Science of the Total Environment 599–600: 1768– 1778.
Kashulin N.A., Lukin A.A. and Amundsen P.-A. 1999. Fish species of the freshwater water bodies of the Subarctic zone as bioindicators of industrial pollution. Kola Research Center RAS, Apatity (in Russian).
Kashulin N.A. 2004. Fish species of small lakes in Northern Fennoscandia under conditions of airborne industrial pollution. Kola Research Center RAS, Apatity (in Russian).
Kashulin N.A., Dauvalter V.A., Sandimirov S.S., Ratkin N.E., Terentjev P.M., Koroleva I.M., Vandysh O.I. and Kudryavtseva L.P. 2007. Anthropogenic changes in the lotic ecosystems of the Murmansk region. Part 2: Lake-river system of the Chuna River in the conditions of aerotechnogenic pollution. Kola Research Center RAS, Apatity (in Russian).
Kashulin N.A., Sandimirov S.S., Dauvalter V.A., Kudryavtseva L.P., Terentjev P.M. and Denisov D.B. 2009. Ecological catalog of lakes in Murmansk region: north-western part of the Murmansk region and border areas of neighboring countries. Kola Research Center RAS, Apatity (in Russian).
Kashulin N.A., Sandimirov S.S., Dauvalter V.A., Kudryatseva L.P., Terentyev P.M., Denisov D.B., Vandysh O.I. and Valkova S.A. 2012. Annotated ecological catalog of lakes in Murmansk Region: southeast (White Sea Basin). Kola Research Center RAS, Apatity (in Russian).
Klemetsen A., Elliott J.M., Knudsen R. and Sørensen P. 2002. Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. Journal of Fish Biology 60: 933– 950.
Knudsen R., Klemetsen A., Amundsen P.-A. and Hermansen B. 2006. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proceedings of the Royal Society B: Biological Sciences 273: 2291–2298.
Laske S.M., Rosenbergerc A.E., Wipflid M.S. and Zimmerman C.E. 2019. Surface water connectivity controls fish food web structure and complexity across local- and meta-food webs in Arctic Coastal Plain lakes. Food Webs 21: 1–13.
Likens G.E. 1975. Primary productivity of inland aquatic ecosystems. Primary Productivity of the Biosphere. Springer–Verlag, New York.
Lukin A.A. and Kashulin N.A. 1991. The state of the ichthyofauna in the water bodies in the border zone of the USSR and Norway. Kola Research Center RAS, Apatity (in Russian).
Lundsgaard-Hansen B., Matthews P.B., Vonlanthen P., Taverna A. and Seehausen O. 2013. Adaptive plasticity and genetic divergence in feeding efficiency during parallel adaptive radiation of whitefish (Coregonus spp.). Journal of Evolutionary Biology 26: 483– 498.
Mina M.V. 1986. Fish microevolution: evolutionary aspects of phenetic diversity. Nauka, Moscow (in Russian).
Moiseenko T.I. 1991. Acidification and heavy metal pollution of the surface waters of the Kola Arctic. Kola Research Center RAS, Apatity (in Russian).
Moiseenko T.I. 1997. Theoretical foundations for the regulation of anthropogenic loads on the water bodies in the subarctic zone. Kola Research Center RAS, Apatity.
Moiseenko T.I. 2000. Morphophysiological transformations in the fish organism under the influence of pollution (in the context of Schwartz theory). Ecology 6: 463–472.
Moiseenko T.I. and Yakovlev V.A. 1990. Anthropogenic transformations of aquatic ecosystems in the Kola Arctic. Nauka, Leningrad (in Russian).
Moiseenko T.I. and Lukina A. 1999. Fish pathologies in polluted water bodies of the subarctic zone and their identification. Journal of Ichthyology 39: 535–547.
Moiseenko T.I., Dauvalter V.A., Lukin A.A., Kudryavtseva L.P., Ilyashuk B.P., Ilyashuk E.A., Sandimirov S.S., Kagan L.A., Vandysh O.I., Sharov A.N., Sharova U.N. and Koroleva I.M. 2002. Anthropogenic modifications of the Lake Imandra ecosystem. Nauka, Moscow (in Russian).
Østbye K., Naesje T.-F., Bernatchez L., Sandlund O.T. and Hindar K. 2005. Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus (L.) in Lake Femud, Norway. Journal Evolutionary Biology 18: 683–702.
Pravdin I.F. 1954. Whitefish in the water bodies of the Karelo-Finnish SSR. USSR Academy of Sciences, Moscow, Leningrad (in Russian).
Pravdin I.F. 1966. Guide to the study of fish. Food Industry, Moscow (in Russian).
Præbel K., Knudsen R., Siwertsson A., Karhunen M., Kahilainen K.K., Ovaskainen O., Østbye K.,
Peruzzi S., Fevolden S.-E. and AmundsenP.-A. 2013. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and Evolution Research 15: 4970–4986.
Reshetnikov Yu.S.1966. Features of the growth and maturation of whitefishes in the water bodies of the North. Dynamics of the abundance of fish in the White Sea and its basin. Nauka, Moscow: 93–155 (in Russian).
Reshetnikov Yu.S. 1980. Ecology and taxonomy of whitefishes. Nauka, Moscow.
Reshetnikov Yu.S. and Bogdanov V.D. 2011. Reproduction of whitefishes. Journal of Ichthyology 51: 502–525.
Reshetnikov Yu.S., Sterligova O.P., Anikieva L.V. and Koroleva I.M. 2020. Manifestation of unusual properties in fish in a new environment: a case study of vendace Coregonus albula and smelt Osmerus eperlanus. Journal of Ichthyology 60: 352–363.
Rougeux C., Gagnaire P.-A. and Bernatchez L. 2019. Model‐based demographic inference of introgression history in European whitefish species pairs'. Journalof Evolutionary Biology 32: 806–817.
Schluter D. 1996. Ecological speciation in postglacial fishes. Philosophical Transactions of the Royal Society B: Biological Sciences351: 807–814.
Sharova Y.G. and Lukin A.A. 2000. Reproduction of whitefish Coregonus lavaretus when exposed to multifactor pollution). Journal of Ichthyology 40: 425–428.
Siwertsson A., Knudsen R. and Amundsen P.-A. 2008. Temporal stability in gill raker numbers of subarctic European whitefish populations. Advances in Limnology 63: 229–240.
Siwertsson A., Knudsen R., Kahilainen K., Præbel K., Primicerno R. and Amundsen P.-A.2010. Sympatric diversification as influenced by ecological opportunity and historical con- tingency in a young species lineage of whitefish. Evolutionary Ecology Research 12: 929– 947.
Skúlason S., Parson K.J., Svanbäck R., Räsänen K., Ferguson M.M., Adams C.E., Amundsen P.-A., Bartels P., Bean C.W., Boughman J.W., Englund G., Guðbrandsson G.J., Hooker O.E., Hudson A.G., Kahilainen K.K., Knudsen R., Kristjánsson B.K., Leblanc C.A.-L., Jonsson Z., Öhlund G., Smith C. and Snorrason S.S. 2019. A way forward with eco evo devo: an extended theory of recourse polymorphism with postglacial fishes as model system. Biological Reviews 94: 1786–1808.
Thomas S.M., Kainz M.J., Amundsen P.-A., Hayden B., Taipale S.J. and Kahilainen K.K. 2019. Resource polymorphism in European whitefish: Analysis of fatty acid profiles provides more detailed evidence than traditional methods alone. PloS ONE 14: e0221338.
Van Oosten J. 1928. Life history of the lake herring (Leucichthys artedi Le Sueur) of Lake Huron as revealed by its scales, with a critique of the scale method. USA Bureau of Fisheries Bulletin44: 265–428.
Ylikörkkö J., Christensen G.N., Kashulin N., Denisov D., Andersen H.J. and Jelkänen E. 2015. Environmental Challenges in the Joint Border Area. Reports 41. Centre for Economic Development, Transport and the Environment for Lapland. Juvenes Print, Kokkola (in Russian).
Zubova Е.M., Kashulin N.A., Terentjev P.M., Denisov D.B. and Valkova S.A. 2016a. Linear growth of sparsely rakered whitefish Coregonus lavaretus (Coregonidae) of the Imandra Lake (Murmansk Oblast). Journal of Ichthyology 56: 588–599.
Zubova E.M., Kashulin N.A. and Terentjev P.M. 2016b. Go to the method of growth rate baсk- calculation of whitefish Coregonus lavaretus (L.) in reservoirs of Northern Fennoscandia. Transactions of Karelian Research Centre of Russian Academy of Science 9: 78–89 (in Russian).
Zubova E.M., Kashulin N.A., Terentjev P.M., Valkova S.A., Cherepanov A.A. and Postnova S.V. 2018. New data on morphological features of the branchial apparatus of sparsely rakered and medium rakered morphs of whitefish Сoregonus lavaretus (L.) from the largest subarctic lake. Biology of Inland Water Bodies 4: 465–476.
Zubova E.M., Kashulin N.A. and Terentjev P.M. 2019. Biotic sympatry in the whitefish Coregonus lavaretus (L.) in Lake Kuetsjarvi (the Pasvik River basin, Murmansk Region). Principles of Ecology2: 3–20.
Zubova E.M., KashulinN.A., DauvalterV.A., Denisov D.B., Valkova S.A., Vandysh O.I., Slukovskii Z.I., Terentjev P.M. and Cherepanov A.A. 2020. Long-term environmental monitoring in an arctic lake polluted by metals under climate change. Environments 7(5): 34.
Zuikova E.I. and Bochkarev N.A. 2008. Structure and functioning of the branchial-jaw apparatus in the whitefish Coregonus lavaretus pravdinellus. Journal of Ichthyology 48: 76–776.
Go to article

Authors and Affiliations

Elena Mikhailovna Zubova
1
Nikolay Alexandrovich Kashulin
1
Petr Mikhailovich Terentjev
1
Alexey Valerievich Melekhin
2

  1. Aquatic Ecosystems Laboratory at the Institute of Industrial Ecology of the North, Kola Scientific Center, Russian Academy of Sciences, Akademgorodok 14a, 184209 Apatity, Murmansk region, Russia
  2. Flora and Vegetation Laboratory at the Polar-Alpine Botanical Garden-Institute, Kola Science Center, Russian Academy of Sciences, Akademgorodok 18a, 184209 Apatity, Murmansk region, Russia

Instructions for authors


The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

We warmly welcome review papers and proposals for thematic Special Issues.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide e-mail addresses of at least three suggested reviewers.


Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. Please use the PPRes style template when preparing the final version of your paper. Pay special attention to writing correctly the list of references with doi. Manuscripts which are not prepared in line with the template will be returned to the authors. Please submit your manuscripts using our online submission system.

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.





This page uses 'cookies'. Learn more