Science and earth science

Polish Polar Research

Content

Polish Polar Research | Accepted article - Special Issue: Processes controlling the development of periglacial and paraglacial landscapes in rapidly changing polar regions – 50th anniversary of the Stanislaw Baranowski Polar Station of the University of Wroclaw. Guest Editors: Matt C. Strzelecki, Marek Kasprzak, Piotr Owczarek and Łukasz Stachnik

Download PDF Download RIS Download Bibtex

Abstract

Studying the reaction of glaciers to climate warming and the interactions of ice masses with the atmosphere is cognitively highly significant and contributes to understanding the climate change. The results from the modelling of glacier surface ablation by the temperature–index and energy balance models as well as the results of meteorological and glaciological studies on Werenskioldbreen (south Spitsbergen, Svalbard) in 2011 have been analysed to improve the understanding of the glacier system’s functioning in the High Arctic. The energy balance modelling results showed that the radiation balance (58%) and sensible heat (42%) are the main factors influencing surface ablation on the glacier. The energy balance model offers a better fit to the measured ablation than the temperature–index model. These models have to be validated and calibrated with data from automatic weather stations, which provide the relevant gradient and calibration and validation. Presented models are highly suited for calculating ablation in Svalbard and other areas of the Arctic.
Go to article

Authors and Affiliations

Dariusz Ignatiuk
1
ORCID: ORCID

  1. University of Silesia in Katowice, Bankowa 12, 40-007 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Spitsbergen is the largest island in the Svalbard Archipelago (Norway) that has been permanently populated. The harsh Arctic climate prevents development of large vascular plants such as trees. A two-year aerobiological survey was conducted within the framework of two consecutive polar expeditions (2014 and 2015) in Spitsbergen (Calypsobyen, Bellsund). The air quality was measured continuously from June/July to August using a 7-day volumetric air sampler, Tauber trap and moss specimens. Collected air samples and gravimetric pollen deposits were processed following transfer to sterile laboratory conditions and analyzed with the aid of light microscopy. Days when pine pollen grains were detected in the air were selected for further analysis. Clusters of back-trajectories, computed using the Hybrid Single Particle Lagrangian Integrated Trajectory model in combination with ArcGIS software as well as the Flextra trajectory model, showed the movement of air masses to the sampling location at Hornsund, and thus indicated the likely origin of pollen grains. The GlobCover 2009 and CORINE Land Cover 2012 datasets were employed to establish the distribution of coniferous forests in the areas of interest. Conclusions were drawn based on the analyses of the circulation of air masses, using visualization of global weather conditions forecast to supercomputers. For the first time we have demonstrated that pine pollen grains occurring in pine-free Spitsbergen, could originate from numerous locations, including Scandinavia, Iceland, Siberia and northern Canada. Pollen grains were transported via air masses for distances exceeding ~2000 km. Both air samples and gravimetric pollen deposits revealed the same pattern of Pinus pollen distribution.
Go to article

Authors and Affiliations

Małgorzata Jędryczka
1
ORCID: ORCID
Beata Żuraw
2
ORCID: ORCID
Piotr Zagórski
3
Jan Rodzik
3
Karolina Mędrek
3
Irena Agnieszka Pidek
3
ORCID: ORCID
Weronika Haratym
4
ORCID: ORCID
Joanna Kaczmarek
1
ORCID: ORCID
Magdalena Sadyś
5
ORCID: ORCID

  1. Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479 Poznań, Poland
  2. Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-295 Lublin, Poland
  3. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, al. Kraśnicka 2D, 20-718 Lublin, Poland
  4. Paderewski Private Grammar School, Symfoniczna 1, 20-853 Lublin, Poland
  5. Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to demonstrate for the first time the results of hydrogeochmical studies carried out in the Steinvik River catchment, in order to provide detailed information regarding the chemical composition of groundwater in the Hornsund region, SW Spitsbergen. The water chemistry in the non-glaciated Steinvik River catchment is largely controlled by hydrological processes related to thaw of the near surface permafrost. Groundwater runoff is generated from the fast flow through well-permeable active layer. Recharge from melting snow, permafrost and rain, together with short residence time of groundwater, favors the forming of low-mineralized water, reaching 41 and 50 μS/cm for surface and groundwater, respectively, with the dominance of HCO3−, Cl−, Mg2+, Ca2+ and Na+ ions. In some water samples, increased concentrations of aluminum (up to 268 μg/L ) were found. The highest concentrations of phosphate, nitrite and ammonium in water seem to be related to the presence of bird colonies. Groundwater of active layer in the studied catchment belongs to young meteoric water with the age limited to one summer season.
Go to article

Authors and Affiliations

Michał Rysiukiewicz
1
ORCID: ORCID
Henryk Marszałek
1
ORCID: ORCID
Mirosław Wąsik
1
ORCID: ORCID

  1. Department of Applied Hydrogeology, Institute of Geological Sciences, Wrocław University, Pl. Maksa Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the permeability of the permafrost active layer determined in the Brattegg River catchment (SW Spitsbergen) for the 6-years interval of 2005–2010. The field permeability measurements technique of weathered rocks on various geomorphological forms allows to assess the value of their hydraulic conductivity ( k). High variability of k values, ranging from 6.37 10 −9 to 4.0 10 −3 m s −1, indicates the permeability of rocks from very low in clay to very high in gravel-rock rubble. Among the geomorphological forms, the best permeability was observed in boulder covers and rock debris, and the lowest one in patterned ground. The obtained results were used to determine the groundwater runoff ( q), assuming the unit thickness of the active layer aquifer. The q value from the Brattegg River catchment was calculated at 130 L s−1, which is from 15% to 47% of the average surface runoff.
Go to article

Authors and Affiliations

Mirosław Wąsik
1
ORCID: ORCID
Henryk Marszałek
1
ORCID: ORCID
Michał Rysiukiewicz
1
ORCID: ORCID

  1. Institute of Geological Sciences, Department of Applied Hydrogeology, Wrocław University, Plac M. Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

An analysis of a suite of climatological indices was undertaken on the basis of long-term (1979–2019) climatological data from the Polish Polar Station in Hornsund, SW Spitsbergen. It was followed by an attempt to assess the scale of their impact on the local environment. The temperature and precipitation indices were based on percentiles of the variables calculated for a population of daily values from the climate normals for 1981–2010. A greater share of both cyclonic and anticyclonic circulations from the S and SW sectors, forcing the advection of warm air masses from the south, was decisive for the trends of change in comparison with the long-term mean. Both extreme precipitation and drought events depend on the 500 hPa geopotential height and precipitable water anomalies, determined by the baric field over the North Atlantic. Climate changes impact on the dynamics of local geoecosystems by causing faster glacier ablation and retreat, permafrost degradation, intensification of the hydrological cycle in glaciated and unglaciated catchments, and changes in the condition and growth of tundra vegetation.
Go to article

Authors and Affiliations

Krzysztof Migała
1
ORCID: ORCID
Elżbieta Łepkowska
2
ORCID: ORCID
Marzena Osuch
3
ORCID: ORCID
Łukasz Stachnik
1
ORCID: ORCID
Tomasz Wawrzyniak
3
ORCID: ORCID
Dariusz Ignatiuk
2
ORCID: ORCID
Piotr Owczarek
1
ORCID: ORCID

  1. Institute of Geography and Regional Development, University of Wroclaw, Plac Uniwersytecki 1, 50-137 Wroclaw, Poland
  2. Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  3. Institute of Geophysics, Polish Academy of Sciences, ul. Księcia Janusza 6 , 01-452 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Evidence of recent geomorphic processes within debris cones, their spatial distribution and diversification on cones surface are interpreted in the context of contemporary slope morphogenesis. The detailed inventory of relief features on debris cones in the SW Spitsbergen revealed their great spatial diversity. It is linked with a dominance of different morphological processes in adjacent areas. Spatial and temporal diversity of process-relief assemblages on cones is strongly related with local factors, like bedrock lithology, slope aspect and inclination, local circulation and climatic conditions. However, the potential role of debris cones and their topographic features as geoindicators archiving information about the environmental impact of global changes, cannot be explicitly estimated. Local constraints obscure the regional expression of any global trends, which could be detected on the basis of process-relief assemblages on debris cones in polar regions.
Go to article

Authors and Affiliations

Agnieszka Latocha-Wites
1
ORCID: ORCID
Krzysztof Parzóch
1
ORCID: ORCID

  1. Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-137 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the 2008 ablation season, subglacial springs discharge, flow rate and profiling of the proglacial river, physical-chemical parameters (pH, temperature, electrical conductivity) and chemical composition (HCO3−, SO42−, Cl−, NO3−, NO2−, PO43−, Ca2+, Mg2+, Na+, K+, Fetot, Mn2+, Al3+, Zn2+, Pb2+ and SiO2) of water in the Werenskiold Glacier forefield were measured. Chemical composition of groundwater as well as water of lakes, the main watercourse, subglacial outflows and water representing direct meltwater recharge were studied to determine their origin, the depth of circulation and recharge systems. The results indicate that the main source of water in the glacial river were the subglacial outflows in the central part of the glacier. They generated 77% of the total amount of water in the glacier forefield. Direct inflow of groundwater from glacier moraine to proglacial river was marginally low and the water circulation system was shallow, fast and variable. There were no evidences for an important role of deeper than suprapermafrost water circulation systems. The water temperature, especially in the lakes, exceeding the mean daily air temperature during the ablation period, is due to the heating of the ground moraine rocks. A clear difference between groundwater chemical composition and surface water as well as subglacial runoff in terms of major ions, together with the homogeneity of chemical composition of the proglacial river from spring to mouth confirmed the marginal role of groundwater runoff in the drainage of the catchment area. It was confirmed that the chemical composition of groundwater and moraine lakes in the glacier forefield was shaped by geological factors, i.e., mainly chemical weathering of sulphides, carbonates and secondary sulphates. The possibility of secondary iron hydroxide precipitation and a high probability of complex aluminosilicate transformations were also demonstrated.
Go to article

Authors and Affiliations

Magdalena Modelska
1
Sebastian Buczyński
1

  1. University of Wrocław, Institute of Geological Sciences, Plac M. Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The talus slopes occur in all climatic zones on the Earth. These forms are sensitive to climate fluctuations, therefore they may be indicators of changes in the environment and contain the record of the geomorphological events after the deglaciation period. Both in the past and nowadays, slopes in area of the High Arctic have been developing in the specific conditions of periglacial zone. This is caused by simultaneously occurring different processes of weathering and deposition. The article presents the methodological approach and the results of the sedimentological measurements and geomorphological studies of the eight talus cones located in SW Spitsbergen. The study was conducted in the non-glaciated valley near the Stanislaw Baranowski Polar Station in Spitsbergen. The aim of the investigation was to determine the modern mechanisms of material transport on talus slopes and their impact on relief of slope surface in the polar environment. The obtained results and literature data allowed to indicate four separate zones of talus slope environment and develop a conceptual model for talus slope development in the Brattegg Valley, SW Spitsbergen.
Go to article

Authors and Affiliations

Krzysztof Senderak
1
ORCID: ORCID

  1. Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-137 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The soils of Arctic regions are of great interest due to their high sensitivity to climate change. Kvartsittsletta coast in the vicinity of the Baranowski Research Station of the University of Wrocław constitutes a sequence of differently aged sea terraces covered with different fractions of beach material. It is a parent material for several developing soil types. Despite the low intensity of the modern soil-forming processes, the soil cover is characterized by high diversity. Soil properties are formed mainly by geological and geomorphological factors, which are superimposed by the influence of climate and living organisms.
The degree of development of soil is usually an indicator of its relative age. This article highlights the dominant influence of lithology and microrelief over other soil-forming factors, including the duration for which the parent material was exposed to external factors. The soils on the highest (oldest) terrace steps of the Kvartsittsletta rarely showed deep signs of soil-forming processes other than cryoturbations. On the youngest terraces, deep-reaching effects of soil processes associated with a relatively warm climate, including the occurrence of cambic horizons, were observed. Their presence in Arctic regions carries important environmental information and may be relevant to studies of climate change.
Go to article

Authors and Affiliations

Bartosz Korabiewski
1

  1. Department of Physical Geography, Institute of Geography and Regional Development, University of Wrocław, Plac Uniwersytecki 1, 50-137 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Small Arctic catchments that are sensitive to climate change reinforced by Arctic amplification remain poorly studied. Since the end of the Little Ice Age (LIA) glaciers on Svalbard have been retreating, and thus, many catchments have transformed from glaciated or partly glaciated to ice-free conditions. Our study focuses on changes that have occurred since the end of the LIA in a small High Arctic mountain catchment, Bratteggdalen. In this study, we traced changes in the Bratteggbreen glacier areal extent since 1976 with parallel vegetation analysis using Landsat and Sentinel data. The geomorphology of Bratteggdalen was mapped and basic morphometric analyses, such as long profile, hypsometric curve, slope and aspect orientation analyses were carried out. We also present a map of landforms in Bratteggdalen based on a fieldwork in 2018 and an analysis of orthophotomaps. Through this research, we enhance the knowledge of small catchments in polar regions.
Go to article

Authors and Affiliations

Aleksandra Wołoszyn
1
ORCID: ORCID
Marek Kasprzak
1
ORCID: ORCID

  1. Institute of Geography and Regional Development, University of Wrocław, pl. Uniwersytecki 1, 50-137 Wrocław, Poland

Instructions for authors


The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

We warmly welcome review papers and proposals for thematic Special Issues.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide e-mail addresses of at least three suggested reviewers.


Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. Please use the PPRes style template when preparing the final version of your paper. Pay special attention to writing correctly the list of references with doi. Manuscripts which are not prepared in line with the template will be returned to the authors. Please submit your manuscripts using our online submission system.

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.





This page uses 'cookies'. Learn more