A high performance and light-weight wound composite material wheel has been developed and is intended to be used for many purposes. One of these applications is marine current turbine (MCT). Traditionally, major problems influencing the design and operation of MCTs are fatigue, cavitation and corrosion due to the sea water. Considering these factors, implementation of composite materials, especially Kevlar fiber/epoxy matrix, in MCTs is explained in this paper. This novel design pattern of composite material marine current turbine (CMMCT) shows many advantages compared to conventional turbines. This paper investigated several factors which should be considered during this novel turbine design process such as the composite material selection, filament winding of composite wheel and turbine's structural and cavitation analysis. The power coefficient of CMMCT by using CFD is also obtained and the experimental facilities for testing CMMCT in a water towing tank are briefly described.
The dynamics of the turning process of a thin-walled cylinder in manufacturing is modeled using flexible multibody system theory. The obtained model is time varying due to workpiece rotation and tool feed and retarded, due to repeated cutting of the same surface. Instabilities can occur due to these consecutive cuts that must be avoided in practical application because of the detrimental effects on workpiece, tool and possibly the machine. Neglecting the small feed, the stability of the resulting periodic system with time-delay can be analyzed using the semi-discretization method. The use of an adaptronic tool holder comprising actuators and sensors to improve the dynamic stability is then investigated. Different control concepts, two collocated and two model-based, are implemented in simulation and tuned to increase the domain of stable cutting. Cutting of a moderately thin workpiece exhibits instabilities mainly due to tool vibration. In this case, the stability boundary can be significantly improved. When the instability is due to workpiece vibration, the collocated concepts fail completely. Model based concepts can still obtain some improvements, but are sensitive to modeling errors in the coupling of workpiece and tool.
The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.
In high-performance optical systems, small disturbances can be sufficient to put the projected image out of focus. Little stochastic excitations, for example, are a huge problem in those extremely precise opto-mechanical systems. To avoid this problem or at least to reduce it, several possibilities are thinkable. One of these possibilities is the modification of the dynamical behavior. In this method the redistribution of masses and stiffnesses is utilized to decrease the aberrations caused by dynamical excitations. Here, a multidisciplinary optimization process is required for which the basics of coupling dynamical and optical simulation methods will be introduced. The optimization is based on a method for efficiently coupling the two types of simulations. In a concluding example, the rigid body dynamics of a lithography objective is optimized with respect to its dynamical-optical behavior.
The paper presents the development procedures for both virtual 3D-CAD and material models of fractured segments of human spine formulated with the use of computer tomography (CT) and rapid prototyping (RP) technique. The research is a part of the project within the framework of which a database is developed, comprising both 3D-CAD and material models of segments of thoracic-lumbar spine in which one vertebrae is subjected to compressive fracture for a selected type of clinical cases. The project is devoted to relocation and stabilisation procedures of fractured vertebrae made with the use of ligamentotaxis method. The paper presents models developed for five patients and, for comparison purposes, one for a normal spine. The RP material models have been built basing on the corresponding 3D-CAD ones with the use of fused deposition modelling (FDM) technology. 3D imaging of spine segments in terms of 3D-CAD and material models allows for the analysis of bone structures, classification of clinical cases and provides the surgeons with the data helpful in choosing the proper way of treatment. The application of the developed models to numerical and experimental simulations of relocation procedure of fractured vertebra is planned.
The impact of the transversely-oriented sinusoidal wall corrugation on the hydraulic drag is investigated numerically for the flow through the channel of finite width and with flat sidewalls. The numerical method, based on the domain transformation and Chebyshev-Galerkin discretization, is used to investigate the flow resistance of the laminar, parallel and pressure-driven flow. The obtained results are compared to the reference case, i.e., to the flow through the channel with rectangular cross section of the same aspect ratio. Simple explanation of the gain in the volumetric flow rate observed in the flow through spanwise-periodic channel with long-wave transversely-oriented wall corrugation is provided. In the further analysis, pressure drop in the flows with larger Reynolds numbers are studied numerically by means of the finite-volume commercial package Fluent. Preliminary experimental results confirm the predicted tendency.
The essential parameters for structure integrity assessment in Linear Elastic Fracture Mechanics (LEFM) are Stress Intensity Factors (SIFs). The estimation of SIFs can be done by analytical or numerical techniques. The analytical estimation of SIFs is limited to simple structures with non-complicated boundaries, loads and supports. An effective numerical technique for analyzing problems with singular fields, such as fracture mechanics problems, is the extended finite element method (XFEM). In the paper, XFEM is applied to compute an actual stress field in a two-dimensional cracked body. The XFEM is based on the idea of enriching the approximation in the vicinity of the discontinuity. As a result, the numerical model consists of three types of elements: non-enriched elements, fully enriched elements (the domain of whom is cut by a discontinuity), and partially enriched elements (the so-called blending elements). In a blending element, some but not all of the nodes are enriched, which adds to the approximation parasitic term. The error caused by the parasitic terms is partly responsible for the degradation of the convergence rate. It also limits the accuracy of the method. Eliminating blending elements from approximation space and replacing them with standard elements, together with applying shifted-basis enrichment, makes it possible to avoid the problem. The numerical examples show improvements in results when compared with the standard XFEM approach.
Editor-in-Chief
Prof. Marek Wojtyra, Warsaw University of Technology, Poland
Editorial Board
Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland
Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland
Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany
Prof. Peter Eberhard, University of Stuttgart, Germany
Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada
Prof. Janusz Frączek, Warsaw University of Technology, Poland
Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
Prof. Andrzej J. Nowak, Silesian University of Technology, Poland
Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom
Prof. Jerzy Sąsiadek, Carleton University, Canada
Prof. Jacek Szumbarski, Warsaw University of Technology, Poland
Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland
Prof. Günter Wozniak, Chemnitz University of Technology, Germany
Assistant to the Editor
Małgorzata Broszkiewicz, Warsaw University of Technology, Poland
Editorial Advisory Board
Prof. Alberto Carpinteri, Politecnico di Torino, Italy
Prof. Fernand Ellyin, University of Alberta, Canada
Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China
Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece
Prof. Gregory Glinka, University of Waterloo, Ontario, Canada
Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania
Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal
Prof. Andrzej Neimitz, Kielce University of Technology, Poland
Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France
Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France
Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France
Prof. Jan Ryś, Cracow University of Technology, Poland
Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,
Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland
Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland
Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany
Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland
Language Editor
Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
ARCHIVE OF MECHANICAL ENGINEERING
Editorial Office:
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology
Nowowiejska 24, Room 132, 00-665 Warsaw, Poland
Phone: (+48) 22 234 7448, fax: (+48) 22 628 25 87,
E-mail: ame.eo@meil.pw.edu.pl
About the Journal
Archive of Mechanical
Engineering is an international journal publishing works of wide
significance, originality and relevance in most branches of mechanical
engineering. The journal is peer-reviewed and is published both in
electronic and printed form. Archive of Mechanical Engineering
publishes original papers which have not been previously published in
other journal, and are not being prepared for publication elsewhere. The
publisher will not be held legally responsible should there be any
claims for compensation. The journal accepts papers in English.
Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.
Original high quality papers on the following topics are preferred:
All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame
More detailed instructions for Authors can be found there.