Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2011 | vol. 58 | No 4 |

Download PDF Download RIS Download Bibtex

Abstract

A high performance and light-weight wound composite material wheel has been developed and is intended to be used for many purposes. One of these applications is marine current turbine (MCT). Traditionally, major problems influencing the design and operation of MCTs are fatigue, cavitation and corrosion due to the sea water. Considering these factors, implementation of composite materials, especially Kevlar fiber/epoxy matrix, in MCTs is explained in this paper. This novel design pattern of composite material marine current turbine (CMMCT) shows many advantages compared to conventional turbines. This paper investigated several factors which should be considered during this novel turbine design process such as the composite material selection, filament winding of composite wheel and turbine's structural and cavitation analysis. The power coefficient of CMMCT by using CFD is also obtained and the experimental facilities for testing CMMCT in a water towing tank are briefly described.

Go to article

Authors and Affiliations

Jifeng Wang
Janusz Piechna
Norbert Müller
Download PDF Download RIS Download Bibtex

Abstract

The dynamics of the turning process of a thin-walled cylinder in manufacturing is modeled using flexible multibody system theory. The obtained model is time varying due to workpiece rotation and tool feed and retarded, due to repeated cutting of the same surface. Instabilities can occur due to these consecutive cuts that must be avoided in practical application because of the detrimental effects on workpiece, tool and possibly the machine. Neglecting the small feed, the stability of the resulting periodic system with time-delay can be analyzed using the semi-discretization method. The use of an adaptronic tool holder comprising actuators and sensors to improve the dynamic stability is then investigated. Different control concepts, two collocated and two model-based, are implemented in simulation and tuned to increase the domain of stable cutting. Cutting of a moderately thin workpiece exhibits instabilities mainly due to tool vibration. In this case, the stability boundary can be significantly improved. When the instability is due to workpiece vibration, the collocated concepts fail completely. Model based concepts can still obtain some improvements, but are sensitive to modeling errors in the coupling of workpiece and tool.

Go to article

Authors and Affiliations

Achim Fischer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.

Go to article

Authors and Affiliations

Adam Dacko
Jacek Toczyski
Download PDF Download RIS Download Bibtex

Abstract

In high-performance optical systems, small disturbances can be sufficient to put the projected image out of focus. Little stochastic excitations, for example, are a huge problem in those extremely precise opto-mechanical systems. To avoid this problem or at least to reduce it, several possibilities are thinkable. One of these possibilities is the modification of the dynamical behavior. In this method the redistribution of masses and stiffnesses is utilized to decrease the aberrations caused by dynamical excitations. Here, a multidisciplinary optimization process is required for which the basics of coupling dynamical and optical simulation methods will be introduced. The optimization is based on a method for efficiently coupling the two types of simulations. In a concluding example, the rigid body dynamics of a lithography objective is optimized with respect to its dynamical-optical behavior.

Go to article

Authors and Affiliations

Nicolai Wengert
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the development procedures for both virtual 3D-CAD and material models of fractured segments of human spine formulated with the use of computer tomography (CT) and rapid prototyping (RP) technique. The research is a part of the project within the framework of which a database is developed, comprising both 3D-CAD and material models of segments of thoracic-lumbar spine in which one vertebrae is subjected to compressive fracture for a selected type of clinical cases. The project is devoted to relocation and stabilisation procedures of fractured vertebrae made with the use of ligamentotaxis method. The paper presents models developed for five patients and, for comparison purposes, one for a normal spine. The RP material models have been built basing on the corresponding 3D-CAD ones with the use of fused deposition modelling (FDM) technology. 3D imaging of spine segments in terms of 3D-CAD and material models allows for the analysis of bone structures, classification of clinical cases and provides the surgeons with the data helpful in choosing the proper way of treatment. The application of the developed models to numerical and experimental simulations of relocation procedure of fractured vertebra is planned.

Go to article

Authors and Affiliations

Anna Dąbrowska-Tkaczyk
Anna Floriańczyk
Roman Grygoruk
Konstanty Skalski
Piotr Borkowski
Download PDF Download RIS Download Bibtex

Abstract

The impact of the transversely-oriented sinusoidal wall corrugation on the hydraulic drag is investigated numerically for the flow through the channel of finite width and with flat sidewalls. The numerical method, based on the domain transformation and Chebyshev-Galerkin discretization, is used to investigate the flow resistance of the laminar, parallel and pressure-driven flow. The obtained results are compared to the reference case, i.e., to the flow through the channel with rectangular cross section of the same aspect ratio. Simple explanation of the gain in the volumetric flow rate observed in the flow through spanwise-periodic channel with long-wave transversely-oriented wall corrugation is provided. In the further analysis, pressure drop in the flows with larger Reynolds numbers are studied numerically by means of the finite-volume commercial package Fluent. Preliminary experimental results confirm the predicted tendency.

Go to article

Authors and Affiliations

Jacek Szumbarski
Slawomir Blonski
Tomasz Kowalewski
Download PDF Download RIS Download Bibtex

Abstract

The essential parameters for structure integrity assessment in Linear Elastic Fracture Mechanics (LEFM) are Stress Intensity Factors (SIFs). The estimation of SIFs can be done by analytical or numerical techniques. The analytical estimation of SIFs is limited to simple structures with non-complicated boundaries, loads and supports. An effective numerical technique for analyzing problems with singular fields, such as fracture mechanics problems, is the extended finite element method (XFEM). In the paper, XFEM is applied to compute an actual stress field in a two-dimensional cracked body. The XFEM is based on the idea of enriching the approximation in the vicinity of the discontinuity. As a result, the numerical model consists of three types of elements: non-enriched elements, fully enriched elements (the domain of whom is cut by a discontinuity), and partially enriched elements (the so-called blending elements). In a blending element, some but not all of the nodes are enriched, which adds to the approximation parasitic term. The error caused by the parasitic terms is partly responsible for the degradation of the convergence rate. It also limits the accuracy of the method. Eliminating blending elements from approximation space and replacing them with standard elements, together with applying shifted-basis enrichment, makes it possible to avoid the problem. The numerical examples show improvements in results when compared with the standard XFEM approach.

Go to article

Authors and Affiliations

Paweł Stąpór

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Outline of procedures
  • To ensure that high scientific standards are met, the editorial office of Archive of Mechanical Engineering implements anti-ghost writing and guest authorship policy. Ghostwriting and guest authorship are indication of scientific dishonesty and all cases will be exposed: editorial office will inform adequate institutions (employers, scientific societies, scientific editors associations, etc.).
  • To maintain high quality of published papers, the editorial office of Archive of Mechanical Engineering applies reviewing procedure. Each manuscript undergoes crosscheck plagiarism screening. Each manuscript is reviewed by at least two independent reviewers.
  • Before publication of the paper, authors are obliged to send scanned copies of the signed originals of the declaration concerning ghostwriting, guest authorship and authors contribution and of the Open Access license.
Submission of manuscripts

The manuscripts must be written in one of the following formats:
  • TeX, LaTeX, AMSTeX, AMSLaTeX (recommended),
  • MS Word, either as standard DOCUMENT (.doc, .docx) or RICH TEXT FORMAT (.rtf).
All submissions to the AME should be made electronically via Editorial System – an online submission and peer review system at https://www.editorialsystem.com/ame. First-time users must create an Author’s account to obtain a user ID and password required to enter the system. All manuscripts receive individual identification codes that should be used in any correspondence with regard to the publication process. For the authors already registered in Editorial System it is enough to enter their username and password to log in as an author. The corresponding author should be identified while submitting a paper – personal e-mail address and postal address of the corresponding author are required. Please note that the manuscript should be prepared using our LaTeX or Word template and uploaded as a PDF file.

If you experience difficulties with the manuscript submission website, please contact the Assistant to the Editor of the AME (ame.eo@meil.pw.edu.pl).

All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf in all matters pertaining to publication. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

Length and arrangement

Papers (including tables and figures) should not exceed in length 25 pages of size 12.6 cm x 19.5 cm (printing area) with a font size of 11 pt. For manuscript preparation, the Authors should use the templates for Word or LaTeX available at the journal webpage. Please notice that the final layout of the article will be prepared by the journal's technical staff in LaTeX. Articles should be organized into the following sections:
  • List of keywords (separated by commas),
  • Full Name(s) of Author(s), Affiliation(s), Corresponding Author e-mail address,
  • Title,
  • Abstract,
  • Main text,
  • Appendix,
  • Acknowledgments (if applicable),
  • References.
Affiliations should include department, university, city and country. ORCID identifiers of all Authors should be added.
We suggest the title should be as short as possible but still informative.

An abstract should accompany every article. It should be a brief summary of significant results of the paper and give concise information about the content of the core idea of the paper. It should be informative and not only present the general scope of the paper, but also indicate the main results and conclusions. An abstract should not exceed 200 words.

Please follow the general rules for writing the main text of the paper:
  • use simple and declarative sentences, avoid long sentences, in which the meaning may be lost by complicated construction,
  • divide the main text into sections and subsections (if needed the subsections may be divided into paragraphs),
  • be concise, avoid idle words,
  • make your argumentation complete; use commonly understood terms; define all nonstandard symbols and abbreviations when you introduce them;
  • explain all acronyms and abbreviations when they first appear in the text;
  • use all units consistently throughout the article;
  • be self-critical as you review your drafts.
The authors are advised to use the SI system of units.

Artwork/Equations/Tables

You may use line diagrams and photographs to illustrate theses from your text. The figures should be clear, easy to read and of good quality (300 dpi). The figures are preferred in a vector format (bitmap formats are acceptable, but not recommended). The size of the figures should be adequate to their contents. Use 8-9pt font size of the text within the figures.

You should use tables only to improve conciseness or where the information cannot be given satisfactorily in other ways. Tables should be numbered consecutively and referred to within the text by numbers. Each table should have an explanatory caption which should be as concise as possible. The figures and tables should be inserted in the text file, where they are mentioned.

Displayed equations should be numbered consecutively using Arabic numbers in parentheses. They should be centered, leaving a small space above and below to separate it from the surrounding text.

Footnotes/Endnotes/Acknowledgements

We encourage authors to restrict the use of footnotes. Information concerning research grant support should appear in a separate Acknowledgements section at the end of the paper. Acknowledgements of the assistance of colleagues or similar notes of appreciation should also appear in the Acknowledgements section.

References
References should be numbered and listed in the order that they appear in the text. References indicated by numerals in square brackets should complete the paper in the following style:

Books:
[1] R.O. Author. Title of the Book in Italics. Publisher, City, 2018.

Articles in Journals:
[2] D.F. Author, B.D. Second Author, and P.C. Third Author. Title of the article. Full Name of the Journal in Italics, 52(4):89–96, 2017. doi: 1234565/3554. (where means: 52 – volume; 4 – number or issue; 89–96 – pages, and 1234565/3554 – doi number (if exists).)

Theses:
[3] W. Author. Title of the thesis. Ph.D. Thesis, University, City, Country, 2010.

Conference Proceedings:
[4] H. Author. Title of the paper. In Proc. Conference Name in Italics, pages 001–005, Conference Place, 10-15 Jan. 2015. doi: 98765432/7654vd.

More examples are presented in the templates for LaTex and Word.

English language

Archive of Mechanical Engineering is published in English. Make sure that your manuscript is clearly and grammatically written. The content should be understandable and should not cause any confusion to the readers, including the reviewers. After accepting the manuscript for a publication in the AME, we offer a free language check service, for correcting small language mistakes.

Submission of Revised Articles

When revision of a manuscript is requested, authors are expected to deliver the revised version of the manuscript as soon as possible. The manuscript should be uploaded directly to the Editorial System as an answer to the Editor's decision, and not as a new manuscript. If it is the 1st revision, the authors are expected to return revised manuscript within 60 days; if it is the 2nd revision, the authors are expected to return revised manuscript within 14 days. Additional time for resubmission must be requested in advance. If the above mentioned deadlines are not met, the manuscript may be treated as a new submission.

Outline of the Production Process

Once an article has been accepted for publication, the manuscript is transferred into our production system to be language-edited and formatted. Language/technical editors reserve the privilege of editing manuscripts to conform with the stylistic conventions of the journal. Once the article has been typeset, PDF proofs are generated so that authors can approve all editing and layout.

Proofreading

Proofreading should be carried out once a final draft has been produced. Since the proofreading stage is the last opportunity to correct the article to be published, the authors are requested to make every effort to check for errors in their proofs before the paper is posted online. Authors may be asked to address remarks and queries from the language and/or technical editors. Queries are written only to request necessary information or clarification of an unclear passage. Please note that language/technical editors do not query at every instance where a change has been made. It is the author's responsibility to read the entire text, tables, and figure legends, not just items queried. Major alterations made will always be submitted to the authors for approval. The corresponding author receives e-mail notification when a PDF is available and should return the comments within 3 days of receipt. Comments must be uploaded to Editorial System.

Reviewers


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

This page uses 'cookies'. Learn more