Nauki Techniczne

Archive of Mechanical Engineering


Archive of Mechanical Engineering | 2020 | vol. 67 | No 4 |


For a deeper understanding of the inner ear dynamics, a Finite-Element model of the human cochlea is developed. To describe the unsteady, viscous creeping flow of the liquid, a pressure-displacement-based Finite-Element formulation is used. This allows one to efficiently compute the basilar membrane vibrations resulting from the fluid-structure interaction leading to hearing nerve stimulation. The results show the formation of a travelingwave on the basilar membrane propagating with decreasing velocity towards the peaking at a frequency dependent position. This tonotopic behavior allows the brain to distinguish between sounds of different frequencies. Additionally, not only the middle ear, but also the transfer behavior of the cochlea contributes to the frequency dependence of the auditory threshold. Furthermore, the fluid velocity and pressure fields show the effect of viscous damping forces and allow us to deeper understand the formation of the pressure difference, responsible to excite the basilar membrane.

Przejdź do artykułu

Autorzy i Afiliacje

Philipp Wahl
Pascal Ziegler
Peter Eberhard


Embedded delamination growth stability was analysed with the help of the FEM combined with a specially developed procedure for node relocation to obtain a smooth variation of the SERR components along the delamination contour. The procedure consisted in the replacement of the actual material with the very compliant fictitious one and the displacement of the delamination front nodes by the previously determined distance in a local coordinate system. Due to this loading, the new delamination front was created. Subsequently, the original material was restored. Evolution under inplane compression of three initially circular delaminations of diameters d = 30, 40 and 50 mm embedded in thin laminates of two different stacking sequences, i.e., 0o4//0o24 and 0o4//90o20/0o4 were considered. It was found that the growth history and the magnitude of the load that triggers unstable delamination growth depended mainly on the combined effects of the initial delamination size, delamination contour, out of plane post-buckling geometry of the disbonded layers, reinforcement arrangement, and magnitude and variation of the SERR components along the delamination contour. To present the combined effect of these features, an original concept of the effective resistance curve, GReff , was introduced.

Przejdź do artykułu

Autorzy i Afiliacje

Piotr Czarnocki
Tomasz Zagrajek


System identification is an approach for parameter detection and mathematical model determination using response signals of a dynamic system. Two degrees of freedom (2DOF) pendulum controlled by a QUBE-servo motor is a great experiment device to work with; though it is not easy to control this system due to its complex structure and multi-dimensional outputs. Hence, system identification is required for this system to analyze and evaluate its dynamic behaviors. This paper presents a methodology for identifying a 2DOF pendulum and its dynamic behaviors including noise from an encoder cable. Firstly, all parameters from both mechanical and electrical sides of the QUBE-servo motor are analyzed. Secondly, a mathematical model and identified parameters for the 2DOF pendulum are illustrated. Finally, disturbances from encoder cable of the QUBE-servo motor which introduce an unwanted oscillation or self-vibration in this system are introduced. The effect of itself on output response signals of the 2DOF QUBE-pendulum is also discussed. All identified parameters are checked and verified by a comparison between a theoretical simulation and experimental results. It is found that the disturbance from encoder cable of the 2DOF QUBE-pendulum is not negligible and should be carefully considered as a certain factor affecting response of system.

Przejdź do artykułu

Autorzy i Afiliacje

Hoai Nam Le
Phuoc Vinh Dang
Anh-Duc Pham
Nhu Thanh Vo


In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.

Przejdź do artykułu

Autorzy i Afiliacje

Saurabh Kumar


A compliant beam subjected to large deformation is governed by a multifaceted nonlinear differential equation. In the context of theoretical mechanics, solution for such equations plays an important role. Since it is hard to find closed-form solutions for this nonlinear problem and attempt at direct solution results in linearising the model. This paper investigates the aforementioned problem via the multi-step differential transformation method (MsDTM), which is well-known approximate analytical solutions. The nonlinear governing equation is established based on a large radius of curvature that gives rise to curvature-moment nonlinearity. Based on established boundary conditions, solutions are sort to address the free vibration and static response of the deforming flexible beam. The geometrically linear and nonlinear theory approaches are related. The efficacy of the MsDTM is verified by a couple of physically related parameters for this investigation. The findings demonstrate that this approach is highly efficient and easy to determine the solution of such problems. In new engineering subjects, it is forecast that MsDTM will find wide use.

Przejdź do artykułu

Autorzy i Afiliacje

Theddeus Tochukwu Akano
Patrick Shola Olayiwola


A numerical solution is presented to investigate the influence of the geometry and the amplitude of the transverse ridge on the characteristics of elastohydrodynamic lubrication for point contact problem under steady state condition. Several shapes of ridges with different amplitudes are used in the stationary case, such as flattop ridge, cosine wave ridge and sharp ridge of triangular shape. Results of film thickness and pressure distributions of the aforementioned ridge feature are presented at different locations through an elastohydrodynamically lubricated contact zone for different amplitude of the ridge. Simulations were performed using the Newton-Raphson iteration technique to solve the Reynolds equation. The numerical results reveal that, to predict optimum solution for lubricated contact problem with artificial surface roughness, the geometrical characteristics of the ridge should have profiles with smooth transitions such as those of a cosine wave shape with relatively low amplitude to reduce pressure spike and therefore cause the reduction in the film thickness. The position of the location of the ridge across the contact zone and the amplitude of the ridge play an important role in the formation of lubricant film thickness and therefore determine the pressure distribution through the contact zone.

Przejdź do artykułu

Autorzy i Afiliacje

Mohamed F. Abd Al-Samieh



Prof. Marek Wojtyra, Warsaw University of Technology, Poland


Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany


Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland


Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland


Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland




Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,


Instrukcje dla autorów

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at:

More detailed instructions for Authors can be found there.

Polityka Open Access

Archive of Mechanical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archive of Mechanical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji